Transcript

  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMouldsSchoolofTechnologyandManagement,PolytechnicInstituteofLeiria

    CoolingSystemsinInjectionMoulds1

    The main phases in an injection moulding process involve filling, cooling andejection.Thecoolingphaseisthemostsignificantstepamongstthethree.Itdetermines the rate atwhich the parts are produced. In themoment of themeltedpolymer injection, ideally, themoulds temperature shouldbe likeof themeltedpolymerstemperatureandinthemomentofthepartsremovalthemouldmusttobe to the temperature of the environment. Of thisway, the polymerwould beinjectedwith theminimum of pressure and the difference between the surfacetemperature and thenucleus temperatureof the injectedpartswouldbe aminimum leading a slow cooling andminimising themouldings stresses.Notice thatthese technical advantages are not compatible with economical needs and thegeneralizedrule istoproducepartswiththebiggestpossiblespeed.Accordingtothisrule, themost important factor is thecapacityof thecoolingsystemremovesheatofthecavitiesofthemould.Usuallythetimeofcoolingisaround50%ofthetotalcycle.The injectedmaterial loses temperature in thecontactwith themouldsurfaces,transferringitselfheatthroughthemould.Forspeedingtheheattransferprocess, themoulddesignerdesign specificholes in the adjacent surfaces of themouldedpartinthemould.Theseholes,knownbylinesofwater(bythewateristhemorefrequentfluidofcooling),constitutethecoolingsystemofamould.

    Thefundamentalrulesthatshouldbehadincountinthecoolingsystemdesignare:

    Introduction

    i)The circuitsof thewater shouldbe symmetricaland independent relativelytothefillingzonesandimpression(s)ofthemould;

    ii) Thermal variations in thewalls of the impressions shouldnt be pronounced,sothelinesofwatershouldbedesignedinfunctionofitsdistancetotheimpressionwalls;

    iii) The cooling fluid input and output should be placed for themouldbackwards (opposite side to the operator), or alternative for the breakslower;

    iv)Itsimportanttoguaranteethatthecoolingflowinthechannelsbeturbulent.TheindexofturbulenceisgivenbyReynoldsnumber:

    m

    e

    dvR =

    Where,

    vFlowsspeeddChanneldiameterFluiddensity

    Dynamicviscosityofthefluidm

  • CAEDSMouldandDieDesign

    HeatTransferWhenitproceedstothepolymerinjectionforinsidetheimpressionofamouldtheremoval energy of thepolymer in themelted state is transmitted by conductionthrough themouldmaterialup to the channelsof the cooling system and to themouldexternalsurface.Theheatexchangemechanisms(fig.1)includetheconductionforthestructureoftheinjectionmouldingmachine,theforcedconvectionforthe fluid that circulates into the cooling channels and the thermal radiation andnaturalconvectionfortheairthatsurroundthewallsofthemould[1,2].

    Figure1Heatexchangeinamouldofinjection

    EnergyBalanceIntheinjectionmouldingcycle,theheatcorrespondingtotheenthalpyvariationofthemouldingmaterialduringthecycle,isexchangedforthemouldingzonesurface(or impressionsurfaceofthemould)andofthisforhisoutside.Todefinetheenergy swing, is established an equilibrium between the heat powers that areintroduced in themould, theheatpoweraccumulated ineverysinglemoment intheir interior and the heat powers removed from themould, being positive ornegativethosethatrespectivelyincreaseordiminishtheirinternalenergy[1,3].Inaprocess analysiswith accumulationof internal energy, theheat flow that is suppliedtothemouldandtheheatflowthatisremovedfromthemouldshouldbeinthermal equilibrium, in every singlemoment,with the heat accumulated in thestructureofthemould:

    CoolingSystemsinInjectionMoulds2

    PL

    Q + + = ACCUM

    QAMB

    Q TM

    Q

    PL

    Q Heatflowsuppliedbythepolymer

    AMB

    Q

    Heatflowtransferredfortheenvironment

    TM

    Q Heatflowtransferredforthecoolingfluid

    ACCUM

    Q Accumulatedenergyinthemouldmaterialpertimeunit

  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMoulds3

    Simplifiedhypothesestoobtainresults

    i)Quasistaticprocess

    ii)During the cycles the temperaturesand thermal flows fluctuationsaredespised

    iii)Duringthedifferentperiodsmediumvaluesareconsidered

    PL

    Q + + =0AMB

    Q TM

    Q

    Where,

    arref

    PLPL t

    mh=Qarref

    PLPL t

    Vh = Q or,

    Where,

    ;hh = hi- he i Polymerenthalpyattheinjectiontemperature;he Polymerenthalpyattheejectiontemperature;m Polymermassinjectedinthemould;PL PLPolymermediumdensitybetweentheinjectiontemperatureandtheejectiontemperature;tarrefCoolingtimeoftheplasticpart;VVolumeoftheplasticpart

    AMB

    Q = + + CONV

    Q COND

    Q RAD

    Q

    Where,

    CONV

    Q Heatflowbyconvectiononthemouldlateralwalls

    COND

    Q Heatflowbyconductionontheinjectionmouldingwalls

    RAD

    Q Heatflowbyconductiononthemouldlateralwalls

    CONV

    Q =ALxhx(TambT )mould

    Where,

    A Mouldexposedarea;hHeattransfercoefficient,naturalconvection;TL ambEnvironmentTemperature;TmouldMouldtemperature.

    COND

    Q =Afixxx(TambT )mould

    Where,

    AfixContactareaMould/Fixingsystem;Proportionalityfactor

    RAD

    Q

    44100100

    TmoldeTamb=ALxxradx

    Where,

    StefanBoltzmanconstant;Materialemissivityrad

    When thematerial is inside themould cools supplying him heat, by thatQPL isalwayspositive.Theheatchangedwiththeenvironment,canbepositiveornegativedependingonthetemperatureofthemould.

  • CAEDSMouldandDieDesign

    CoolingConditions

    An efficient system of cooling,with optimal cooling conditions, leads to a partuniformdistributionof temperatures,minimizing theundesired effects appearedduringdecoolingprocess,thecycletimeandtherateofrejections.Theconceptionofanefficientcoolingsystemisnotasimpletrial,becausetherearedifferentfactorsthatcancontributeforthefinalintendedresults.Someofthefactorsthatinfluencethecoolingprocessare:thegeometryofthepart,thetemperatureofthemould,thearchitectureofthecoolingchannels,thecoolingfluidtemperatureandthespeedoftheflow.

    Itcanbeidentifiedtworeferencetermsforaniterativeprocessofcharacterization

    ofthemouldcoolingsystem[3]:

    i)Theincreaseoftheheattransferrate ii)Uniformtemperaturedistributioninthemouldingsurface

    Whereas the increase of the heat removal rate between the plastic part and the

    mould is important in the economical point of view, the uniformization of thetemperaturesdistributiononthepartssurfaceswillprovidetheobtainingofpartswithestatesandqualityimproved.

    CoolingTimeTheWubkenequationallowustoestimatethecoolingtime[3]

    =

    bW

    aWK TT

    TTst22

    2 8ln

    Where

    CoolingSystemsinInjectionMoulds4

    isthematerialthermaldiffusivity;s isthepartthickness;Ta istheinjection temperature; Tb is the ejection temperature and Tw is the medium mouldtemperature.

    Themediummouldtemperatureisconsideredoneofthemostsignificantvariablesinthecoolingtimedetermination[4,5].Somedeterminationsusethetemperatureofthecoolingfluidforcalculatingthemediummouldtemperaturevariable.However, such utilization ignores the temperature increases of the melted plasticmaterialinthemoldingzones,duringtheinjectionphase.Duringthemoldingcyclethemould temperature increasewhiletheplasticmaterial is injected,diminishingprogressively up to the following injection.Also the flow regime of the coolingfluid,thetemperatureofthecoolingfluid,thearchitectureofthechannels,thekindofthecoolingfluid,andthemouldmaterialproperties(namelythemouldmaterialthermalconductivity),influencethemouldtemperature.

    Table1Propertiesofatypicalresin,Aluminiumandsteel,usedinthemanufactureofinjectionmoulds.

    SL Vantico 5260

    Aluminium Steel P20 AlZn5Mg3Cu

    Young modulus 600 - 800 MPa 72 MPa 2500 GPa Tensile strength 40 - 65 MPa 540 MPa 965-300 MPa Thermal conductivity 0.2 W.m-1 -1K 120-150 W.m-1K-1 29-34 W.m-1 -1KCoefficient of thermal expansion (at 20C)

    10510-6 K-1 23,610-6 -1 K 12,810-6 -1 K

  • CAEDSMouldandDieDesign

    Ifthecoolingchannelsarentcorrectlydesigned(fig.2),thecoreandcavitymouldwalltemperaturecanbedifferent.Ifthereisastronggradientinthecavitybetweenthetwohalvesthepartmaywarpanddistortitsshape[68].

    Sothetargetsthatacorrectcoolingsystemhastofollowaretheuniformityofthewalltemperatureandagradualreductionofthepolymertemperature,inordertofindacompromisebetween thenecessityofreducingcycle timeandallowing forthecrystallization.

    Ejected part

    Last layer to cool

    warpage

    or

    internal stresses Qcore

  • CAEDSMouldandDieDesign

    Inthiscontext,thedistancebetweenthecoolingchannelsandthemouldingsurface(h)and thedistancebetween cooling channels (e) are themainparameters tobeconsidered,asshownintheschemeofthefigure3.

    CoolingSystemsinInjectionMoulds6

    molding

    d

    qmin

    s/2

    qmx

    h

    emould

    Coolingchannels

    Figure3Heatflowprofile[13].

    Inthepracticalone,iscommontoconsider:e=2,5a3,5deh=0,8a1,5e

    On the issue ofdimensional criteria indesigning cooling channels, threedimensionshavetobeconsidered:thediameterofthecrosssection(orthecrosssectionareaifnotcircular),thedistancebetweenchannelsandthedistancebetweenchannel andwall of themould. Themain problems that arisewhen choosing thesedimensions concerns thepressure lossesderived from the choiceof thediameterand thedesignof thechannel.Aheating/cooling relationship reported inZollner[14]givesaguidelineonthechannelspositioning.Thisstatesthatthevalueresultingfromthesolutionoftherelationshipshouldstaybetween2.5and5%forsemicrystallinethermoplasticsandbetween5and10%foramorphousthermoplastics.

    ConformalCooling

    In the injectionmoldingprocess themainpartof thecycle time isdeterminedbythecoolingprocess.Therefore,itisimportanttooptimizethecoolingcycleinordertoreducethecoolingtime.Conformalcoolingchannels(i.e.channelsthatfollowthegeometricshapeofthepart)havebeenusedforthispurposeallowingasignificantcoolingtimereduction.AccordingtoWohlers[15]itispossibletoreducethecooling cycle by 20% using conformal cooling channel. Similarly, Dimla et al. [10]considers that cycle time can be significantly reducedwith cooling taking placeuniformly in all zones if the cooling channels aremade to conform to thepartsshapeasmuchaspossible.Someinvestigationshaverelatedthemouldscycletimereductionwithconformalcooling; themostrelevantresultassociated to itsuse isthemouldsurfacetemperatureuniformity.Furthermore,ifthepartisejectedwiththesametemperatureineverypointthesubsequentshrinkageoutsidethemouldisalsouniform,whichavoidspostinjectionwarpageofparts.Thiswasalsopointedout byVoet et al. [16],whichmentioned that the goal of cooling amould is toobtain auniform temperature at themould surface andwithin the final injectedproducttoavoidinternalstresses.

  • CAEDSMouldandDieDesign

    Amethodthatutilisesacontourlikechannel(fig.4),constructedascloseaspossible to the surface of themould to increase the heat absorption away from themoltenplastic,ensuresthatthepartiscooleduniformlyaswellasmoreefficiently.

    Figure4Conformalcoolingchannels

    Whenmoltenplasticisinjectedinthemoulditmustbesolidifiedtoformtheobject.Themouldtemperatureisregulatedbycirculationofaliquidcooler,usuallywateroroilthatflowsinsidechannelsinsidethemouldparts.

    Table2Heatconvectioncoefficientoftheair,waterandoil.

    Air Water Oil HeatconvectioncoefficientWm2k1

    50 900 400

    Whenthepart issufficientlycooled itcanbeejected.Most(95%)oftheshrinkagehappensinthemouldanditiscompensatedbytheincomingmaterial;theremainderoftheshrinkagetakesplacesometimefollowingtheproductionofthepart[17].

    Ifthechannelscarryingthewatercouldbeconformedtotheshapeofthepartand

    their cross section changed to increase the heat conducting area then a moreefficientmeans of heat removal could be realised.Thismay also help to reducewarpagewhenthepartisejected,astheplasticwouldbecooledmoreuniformly.

    Anotheradvantageisthatamouldequippedwithconformalchannelsreachestheoperation temperature quicker than a normal one equipped with standard (ordrilled)coolingchannels[18,19].

    Modelling

    The analysis toolsutilization for the cooling systems conception that assures theuniformityofthecoolingalongthepart,drivethesignificantimprovementsinthemouldproductionanddefinitionof theprocessconditions to thespecificationsoftheproductdemanded.

    Themain resistance to the transferenceofheat in thecoolinghappenof theownmaterialduetothelowthermaldiffusivityoftheplasticmaterial.So,itsessentialtoconsiderthedependenceofthematerialwiththetemperatureinthemodulationoftheheatconduction.

    CoolingSystemsinInjectionMoulds7

  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMoulds8

    Inthecoolingprocessitsessentialtoconsiderthethermalpropertiesofthemouldmaterialandappropriateborderconditions(e.g.theheattransferbyforcedconvectioninthecoolingchannels).

    Inisotropicdomaintheheattransferisdescribedbytheenergyconservationequation[20]:

    ( ) += QTK

    tTCP

    Where,CPandkrepresentthedensity,thespecificheatandthethermalconductivity of the material, respectively. T represents the local temperature in each

    instantmomenttand ineachspatialcoordinate,whereas representstheenergygenerated/dissipatedbyunitof timeandbyunitofvolume in thematerial. Thisdifferentialequationwithderivedpartial forbidimensionalheatconduction,notstationary,inCartesianscoordinatesandinasimplifiedform,takestheform:

    Q

    +

    +

    =

    QyTK

    yxTK

    xtTCP

    Thetemperatureprofile inagivenzoneofthematerialandhisvariationwiththetimeareabletobeobtainedresolvingthisequation.However,itisnecessaryspecifythetemperatureprofileintheinitialinstantandtheborderconditions.

    Tooptimise thedesignandconstructionof themould,withattentionon refiningthe tooldesign through application of finite element and thermal flow analyses,specific commercial software for injectionmouldinghave beenused. In thenextsection itwillbemadeabriefdescriptionabouttheheattransferprocessanalysisusingsomecommercialsoftware.

    ThelatestcommercialsoftwareofCAEallowsthreedimensionalsimulationoftheinjection molding process. This software has modules for conception efficientcoolingsystems.Thecoolinganalysisisbasedinthemethodoftheborderelementsapproach.

    InthecoolingmoduleofthecommercialCAEsoftware,thetransferenceofheatinthepolymer is treatedasonedimensionalconduction located in transientregime.Theheatexchangebetweenthesurfaceofthecoolingchannelsandthecoolingfluidareconsidered instationaryregime,consideringthecorrelationfortheheattransferencecoefficientbyconvection.Tosolvesimultaneouslytheprominentequationsoftransferenceofheatinthisprocess,theprogramutilizesahybridschemewherethe transference of heat is calculated by the approachmodified analyzes of theelement of three dimensional border for the region of the mould, and onedimensionalheat transferenceanalysis,along thepart thickness for the regionofmeltedplastic.Thesetwoanalysesareconjugatedofformitequalthetemperatureandtheheatflowintheinterfacepolymer/mould.

    Coolingsystemsimulation

  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMoulds9

    Theequationsfortheflowofthefluidinacircuitofcoolingareresolvedthroughthe iterative approach ofNewtonRaphson, to obtain the torrent and the fall ofpressureineachchannelofthecoolingsystem.Then,theheattransferencecoefficientsbetweenthesurfacesofthechannelsandthecoolingfluidarecalculated.

    Thechangeofheatbynaturalconvectionbetweentheenvironmentandthewallsofthemouldarealsocalculated.Forthiscalculation,commercialsoftwareconsiderstheexteriorsurfaceofthemouldasaspherewithanareaequivalenttothesurfaceofabox,inthatthechannelsofcoolingwillbeincluded,thefeedingsystemandthemoldingzones.

    Theprocesssimulationstarts inthephaseofthemouldfilling. Whenthecoolingmoduleof cooling isused, thepolymer injection temperature isassumedasconstant. This assumption has some associated errors; therefore the injectiontemperature can be a superior due to the heating by viscous dissipation of thematerialinthesprue.Thattemperaturewouldbeabletogoupuntil30Cdependingonthespeedofinjectionandofthematerialproperties[21].

    The thermal resistance in the interfacepolymer/moulddefines theheat transmissioncoefficient(hint)intheinterfacebetweenthepolymerandthemoldingsurfaces.Thiscoefficientisusedforsimulatetheresistancetotheexistingheatinthecontactbetweenthetwomaterialsbythefollowingequations:

    CAESoftwareSimplifications

    ( )bx

    bxM nTkTTh

    ==

    =intint

    ( )bx

    bxM nTkTTh

    +=+=

    +

    =intint

    where,Tintisthemelttemperatureintheinterfaceofthetwomaterials; and arethemoldingzonestemperatures,onthecavityside(negativeside)andonthecoreside(positiveside),respectively.Theindicesband+bindicatethepositiveandnegativesideofthedistancerelativelytothecenterofthepart(equivalentthehalfofitsthickness).

    MT

    +MT

    If the thermalconductivityassumes thezerovalue, (thermal isolatedborder), thechangesbetween the twomaterialsdonotexist. If itassumesanelevatedvalue,existaperfectthermalcontactbetweenthematerialsandtheinterfacetemperatureis considered equivalent at the mould wall temperature. Many times, and bydefect,thisvalueisof25000w/m2C,incommercialsoftware.

    The case study presented shows some important aspectswhendifferent coolingsystemsareconsidered.

  • CAEDSMouldandDieDesign

    CaseStudy

    Figure5Coolingsystemcasestudy.

    Coolingsysteminthecavityside

    a)Conventionalcoolingsystem

    Figure6Temperaturedistributiononthepartssurfaces

    Figure7Partsdeflection

    Figure8Partscoolingtime Figure9Percentagefrozenlayer

    CoolingSystemsinInjectionMoulds10

  • CAEDSMouldandDieDesign

    b)Bafflecoolingsystem

    Figure10Temperaturedistributiononthepartssurfaces

    Figure11Partsdeflection

    Figure12Partscoolingtime Figure13Percentagefrozenlayer

    c)Conformalcoolingsystem

    Figure14Temperaturedistributiononthepartssurfaces

    Figure15Partsdeflection

    Figure16Partscoolingtime Figure17Percentagefrozenlayer

    CoolingSystemsinInjectionMoulds11

  • CAEDSMouldandDieDesign

    Coolingsysteminthecavityandcoresides

    a)Conventionalcoolingsystemsinthecavityandcoresides

    Figure18Temperaturedistributiononthepartssurfaces

    Figure19Partsdeflection

    Figure20Partscoolingtime Figure21Percentagefrozenlayer

    b)Bafflecoolingsystemsinthecavityandcoresides

    Figure22Temperaturedistributiononthepartssurfaces

    Figure23Partsdeflection

    Figure24Partscoolingtime Figure25Percentagefrozenlayer

    CoolingSystemsinInjectionMoulds12

  • CAEDSMouldandDieDesign

    c)Conformalandbafflecoolingsystemsinthecavityandcoresides,respectively

    Figure26Temperaturedistributiononthepartssurfaces

    Figure27Partsdeflection

    Figure28Partscoolingtime Figure29Percentagefrozenlayer

    d)Conformalcoolingsysteminthecavityandcoresides

    Figure30Temperaturedistributiononthepartssurfaces

    Figure31Partsdeflection

    Figure32Partscoolingtime Figure33Percentagefrozenlayer

    CoolingSystemsinInjectionMoulds13

  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMoulds14

    References

    [1]MENGES,G.;MOHREN,P.How toMake InjectionMoulds.2nded,HanserPulishers,1993.ISBN3446163050

    [2] LIMA, S. P. Evaluation of the rapid prototyping incorporation in injectionmoulds,MasterThesis,October2002.

    [3] POUZADA,A.S. Heat transfer in injectionmoulds Support texts to theMouldDesignandManufacturingMasterDegree

    [4]BARROS,I.;TEIXEIRA,S.F.C.;TEIXEIRA,J.C.;CUNHA,A.M.EvaluationofthethermalBehaviourofInjectionMoulds.Intern.PolymerProcessing,Vol.15,No.1(2000),pp.95102.

    [5]BOELL,K.M.Predicting thecooling timeofna injectionmouldedpart,Proceedings of the 53th Annual Technical Conference & Exhibition, ANTEC 1995,Boston,711May1995,pp.42424246.

    [6]MALLOY,ROBERTA.Plastic partdesign for injectionmolding.NewYork:HanserPublishers,1994.460p.ISBN1569901295.

    [7]WANG,T.J.;YOON,C.K.Shrinkageandwarpageanalysisofinjectionmoldedparts.Orlando:SPEANTEC2000,p.687692.

    [8] JOHANNABER, F. Injectionmoldingmachines. Third Edition.New York:HanserPublishers,1994.315p.ISBN1569901694.

    [9]MARTINHO,P.G.Warpagestudy in injectionmouldingparts.UniversityofMinho,Guimares,2002.98p.MasterThesis

    [10]DIMLA,D.E.;CAMILOTTO,M.;MIANI,F.Designandoptimisationofconformalcoolingchannelsininjectionmouldingtools.JournalofMaterialsProcessingTechnology,164165,pp.12941300,2005.

    [11]SINGH,K.J.MoldCooling.InBERNHARDT,E.C.CAE:ComputerAidedEngineeringforInjectionMolding.Munich:CarlHanserVerlag,1983.ISBN3446139508.p.326347.

    [12]YANG,S.Y.;CHANG,H.C.Studyontheperformanceofcoolingsystemsinprecisioninjectionmolds.Intern.Polym.Proc.Vol.10,n2(1995),p.255261.

    [13] POTSCH,G.;MICHAELI,W. Injectionmolding: an introduction.Munich:CarlHanserVerlag,1995.195p.ISBN1569901937.

    [14]ZOLLNER,O.Optimisedmouldtemperaturecontrol,Appl.Technol.Inform.(1997)1104.

    [15]WOHLERS,T.,WohlersReport2006RapidprototypingandmanufacturingStateoftheIndustry.AnnualWorldwideProgressReport,WohlersAssociates,Inc.,2006.

    [16]VOET,A.;PEE,B.V.;MINGNEAU,J.;CARDON,L.;HOUTEKIER,R.Optimizationofconformalcoolingbyuseofdesignofexperiments:industrialcasestudyof an injectionmolded product, RPD 2006 Building the future by innovation,MarinhaGrande,1317November2006.

  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMoulds15

    [17]BRYCE,D.M.PlasticInjectionMoulding,SocietyofManufacturingEngineers,Dearborn,MI,1996.

    [18] SACHS,E.;WYLONIS,E.;ALLEN, S.;CIMA,M.;GUO,H. Production ofinjectionmoldingwith conformal cooling channels using the three dimensionalprintingprocess,Polym.Eng.Sci.,2000,40(5),12321247.

    [19]DELGARNO,K.,W., Layermanufactured production tooling incorporatingconformalheatingchannelsfortransfermouldingofelastomercompounds,PlasticRubberCompos.30(8)(2001)384388.

    [20]HOLMAN,J.P.HeatTransfer,NewYork:MacGrawHill,Inc,1989.ISBN0071004874.

    [21]CMOLDusersmanual,ACTechnology,IthacaNewYork,1997.

    Cooling Systems in Injection Moulds Case StudyCooling system in the cavity side Cooling system in the cavity and core sides

    References

top related