Top Banner
CAE DS – Mould and Die Design Cooling Systems in Injection Moulds School of Technology and Management, Polytechnic Institute of Leiria Cooling Systems in Injection Moulds 1 The main phases in an injection moulding process involve filling, cooling and ejection. The cooling phase is the most significant step amongst the three. It determines the rate at which the parts are produced. In the moment of the melted polymer injection, ideally, the mould’s temperature should be like of the melted polymer’s temperature and in the moment of the parts’ removal the mould must to be to the temperature of the environment. Of this way, the polymer would be injected with the minimum of pressure and the difference between the surface temperature and the nucleus temperature of the injected parts would be a minimum leading a slow cooling and minimising the mouldings stresses. Notice that these technical advantages are not compatible with economical needs and the generalized rule is to produce parts with the biggest possible speed. According to this rule, the most important factor is the capacity of the cooling system removes heat of the cavities of the mould. Usually the time of cooling is around 50% of the total cycle. The injected material loses temperature in the contact with the mould surfaces’, transferring itself heat through the mould. For speeding the heat transfer process, the mould designer design specific holes in the adjacent surfaces of the moulded part in the mould. These holes, known by ʺlines of waterʺ (by the water is the more frequent fluid of cooling), constitute the cooling system of a mould. The fundamental rules that should be had in count in the cooling system design are: Introduction i) The circuits of the water should be symmetrical and independent relatively to the filling zones and impression(s) of the mould; ii) Thermal variations in the walls of the impressions shouldn’t be pronounced, so the lines of water should be designed in function of its distance to the impression walls’; iii) The cooling fluid input and output should be placed for the mould backwards (opposite side to the operator), or alternative for the breaks lower; iv) It’s important to guarantee that the cooling flow in the channels be turbulent. The index of turbulence is given by Reynolds number: m e d v R μ ρ × × = Where, v – Flow’s speed d – Channel diameter ρ – Fluid density – Dynamic viscosity of the fluid μm
15
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMouldsSchoolofTechnologyandManagement,PolytechnicInstituteofLeiria

    CoolingSystemsinInjectionMoulds1

    The main phases in an injection moulding process involve filling, cooling andejection.Thecoolingphaseisthemostsignificantstepamongstthethree.Itdetermines the rate atwhich the parts are produced. In themoment of themeltedpolymer injection, ideally, themoulds temperature shouldbe likeof themeltedpolymerstemperatureandinthemomentofthepartsremovalthemouldmusttobe to the temperature of the environment. Of thisway, the polymerwould beinjectedwith theminimum of pressure and the difference between the surfacetemperature and thenucleus temperatureof the injectedpartswouldbe aminimum leading a slow cooling andminimising themouldings stresses.Notice thatthese technical advantages are not compatible with economical needs and thegeneralizedrule istoproducepartswiththebiggestpossiblespeed.Accordingtothisrule, themost important factor is thecapacityof thecoolingsystemremovesheatofthecavitiesofthemould.Usuallythetimeofcoolingisaround50%ofthetotalcycle.The injectedmaterial loses temperature in thecontactwith themouldsurfaces,transferringitselfheatthroughthemould.Forspeedingtheheattransferprocess, themoulddesignerdesign specificholes in the adjacent surfaces of themouldedpartinthemould.Theseholes,knownbylinesofwater(bythewateristhemorefrequentfluidofcooling),constitutethecoolingsystemofamould.

    Thefundamentalrulesthatshouldbehadincountinthecoolingsystemdesignare:

    Introduction

    i)The circuitsof thewater shouldbe symmetricaland independent relativelytothefillingzonesandimpression(s)ofthemould;

    ii) Thermal variations in thewalls of the impressions shouldnt be pronounced,sothelinesofwatershouldbedesignedinfunctionofitsdistancetotheimpressionwalls;

    iii) The cooling fluid input and output should be placed for themouldbackwards (opposite side to the operator), or alternative for the breakslower;

    iv)Itsimportanttoguaranteethatthecoolingflowinthechannelsbeturbulent.TheindexofturbulenceisgivenbyReynoldsnumber:

    m

    e

    dvR =

    Where,

    vFlowsspeeddChanneldiameterFluiddensity

    Dynamicviscosityofthefluidm

  • CAEDSMouldandDieDesign

    HeatTransferWhenitproceedstothepolymerinjectionforinsidetheimpressionofamouldtheremoval energy of thepolymer in themelted state is transmitted by conductionthrough themouldmaterialup to the channelsof the cooling system and to themouldexternalsurface.Theheatexchangemechanisms(fig.1)includetheconductionforthestructureoftheinjectionmouldingmachine,theforcedconvectionforthe fluid that circulates into the cooling channels and the thermal radiation andnaturalconvectionfortheairthatsurroundthewallsofthemould[1,2].

    Figure1Heatexchangeinamouldofinjection

    EnergyBalanceIntheinjectionmouldingcycle,theheatcorrespondingtotheenthalpyvariationofthemouldingmaterialduringthecycle,isexchangedforthemouldingzonesurface(or impressionsurfaceofthemould)andofthisforhisoutside.Todefinetheenergy swing, is established an equilibrium between the heat powers that areintroduced in themould, theheatpoweraccumulated ineverysinglemoment intheir interior and the heat powers removed from themould, being positive ornegativethosethatrespectivelyincreaseordiminishtheirinternalenergy[1,3].Inaprocess analysiswith accumulationof internal energy, theheat flow that is suppliedtothemouldandtheheatflowthatisremovedfromthemouldshouldbeinthermal equilibrium, in every singlemoment,with the heat accumulated in thestructureofthemould:

    CoolingSystemsinInjectionMoulds2

    PL

    Q + + = ACCUM

    QAMB

    Q TM

    Q

    PL

    Q Heatflowsuppliedbythepolymer

    AMB

    Q

    Heatflowtransferredfortheenvironment

    TM

    Q Heatflowtransferredforthecoolingfluid

    ACCUM

    Q Accumulatedenergyinthemouldmaterialpertimeunit

  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMoulds3

    Simplifiedhypothesestoobtainresults

    i)Quasistaticprocess

    ii)During the cycles the temperaturesand thermal flows fluctuationsaredespised

    iii)Duringthedifferentperiodsmediumvaluesareconsidered

    PL

    Q + + =0AMB

    Q TM

    Q

    Where,

    arref

    PLPL t

    mh=Qarref

    PLPL t

    Vh = Q or,

    Where,

    ;hh = hi- he i Polymerenthalpyattheinjectiontemperature;he Polymerenthalpyattheejectiontemperature;m Polymermassinjectedinthemould;PL PLPolymermediumdensitybetweentheinjectiontemperatureandtheejectiontemperature;tarrefCoolingtimeoftheplasticpart;VVolumeoftheplasticpart

    AMB

    Q = + + CONV

    Q COND

    Q RAD

    Q

    Where,

    CONV

    Q Heatflowbyconvectiononthemouldlateralwalls

    COND

    Q Heatflowbyconductionontheinjectionmouldingwalls

    RAD

    Q Heatflowbyconductiononthemouldlateralwalls

    CONV

    Q =ALxhx(TambT )mould

    Where,

    A Mouldexposedarea;hHeattransfercoefficient,naturalconvection;TL ambEnvironmentTemperature;TmouldMouldtemperature.

    COND

    Q =Afixxx(TambT )mould

    Where,

    AfixContactareaMould/Fixingsystem;Proportionalityfactor

    RAD

    Q

    44100100

    TmoldeTamb=ALxxradx

    Where,

    StefanBoltzmanconstant;Materialemissivityrad

    When thematerial is inside themould cools supplying him heat, by thatQPL isalwayspositive.Theheatchangedwiththeenvironment,canbepositiveornegativedependingonthetemperatureofthemould.

  • CAEDSMouldandDieDesign

    CoolingConditions

    An efficient system of cooling,with optimal cooling conditions, leads to a partuniformdistributionof temperatures,minimizing theundesired effects appearedduringdecoolingprocess,thecycletimeandtherateofrejections.Theconceptionofanefficientcoolingsystemisnotasimpletrial,becausetherearedifferentfactorsthatcancontributeforthefinalintendedresults.Someofthefactorsthatinfluencethecoolingprocessare:thegeometryofthepart,thetemperatureofthemould,thearchitectureofthecoolingchannels,thecoolingfluidtemperatureandthespeedoftheflow.

    Itcanbeidentifiedtworeferencetermsforaniterativeprocessofcharacterization

    ofthemouldcoolingsystem[3]:

    i)Theincreaseoftheheattransferrate ii)Uniformtemperaturedistributioninthemouldingsurface

    Whereas the increase of the heat removal rate between the plastic part and the

    mould is important in the economical point of view, the uniformization of thetemperaturesdistributiononthepartssurfaceswillprovidetheobtainingofpartswithestatesandqualityimproved.

    CoolingTimeTheWubkenequationallowustoestimatethecoolingtime[3]

    =

    bW

    aWK TT

    TTst22

    2 8ln

    Where

    CoolingSystemsinInjectionMoulds4

    isthematerialthermaldiffusivity;s isthepartthickness;Ta istheinjection temperature; Tb is the ejection temperature and Tw is the medium mouldtemperature.

    Themediummouldtemperatureisconsideredoneofthemostsignificantvariablesinthecoolingtimedetermination[4,5].Somedeterminationsusethetemperatureofthecoolingfluidforcalculatingthemediummouldtemperaturevariable.However, such utilization ignores the temperature increases of the melted plasticmaterialinthemoldingzones,duringtheinjectionphase.Duringthemoldingcyclethemould temperature increasewhiletheplasticmaterial is injected,diminishingprogressively up to the following injection.Also the flow regime of the coolingfluid,thetemperatureofthecoolingfluid,thearchitectureofthechannels,thekindofthecoolingfluid,andthemouldmaterialproperties(namelythemouldmaterialthermalconductivity),influencethemouldtemperature.

    Table1Propertiesofatypicalresin,Aluminiumandsteel,usedinthemanufactureofinjectionmoulds.

    SL Vantico 5260

    Aluminium Steel P20 AlZn5Mg3Cu

    Young modulus 600 - 800 MPa 72 MPa 2500 GPa Tensile strength 40 - 65 MPa 540 MPa 965-300 MPa Thermal conductivity 0.2 W.m-1 -1K 120-150 W.m-1K-1 29-34 W.m-1 -1KCoefficient of thermal expansion (at 20C)

    10510-6 K-1 23,610-6 -1 K 12,810-6 -1 K

  • CAEDSMouldandDieDesign

    Ifthecoolingchannelsarentcorrectlydesigned(fig.2),thecoreandcavitymouldwalltemperaturecanbedifferent.Ifthereisastronggradientinthecavitybetweenthetwohalvesthepartmaywarpanddistortitsshape[68].

    Sothetargetsthatacorrectcoolingsystemhastofollowaretheuniformityofthewalltemperatureandagradualreductionofthepolymertemperature,inordertofindacompromisebetween thenecessityofreducingcycle timeandallowing forthecrystallization.

    Ejected part

    Last layer to cool

    warpage

    or

    internal stresses Qcore

  • CAEDSMouldandDieDesign

    Inthiscontext,thedistancebetweenthecoolingchannelsandthemouldingsurface(h)and thedistancebetween cooling channels (e) are themainparameters tobeconsidered,asshownintheschemeofthefigure3.

    CoolingSystemsinInjectionMoulds6

    molding

    d

    qmin

    s/2

    qmx

    h

    emould

    Coolingchannels

    Figure3Heatflowprofile[13].

    Inthepracticalone,iscommontoconsider:e=2,5a3,5deh=0,8a1,5e

    On the issue ofdimensional criteria indesigning cooling channels, threedimensionshavetobeconsidered:thediameterofthecrosssection(orthecrosssectionareaifnotcircular),thedistancebetweenchannelsandthedistancebetweenchannel andwall of themould. Themain problems that arisewhen choosing thesedimensions concerns thepressure lossesderived from the choiceof thediameterand thedesignof thechannel.Aheating/cooling relationship reported inZollner[14]givesaguidelineonthechannelspositioning.Thisstatesthatthevalueresultingfromthesolutionoftherelationshipshouldstaybetween2.5and5%forsemicrystallinethermoplasticsandbetween5and10%foramorphousthermoplastics.

    ConformalCooling

    In the injectionmoldingprocess themainpartof thecycle time isdeterminedbythecoolingprocess.Therefore,itisimportanttooptimizethecoolingcycleinordertoreducethecoolingtime.Conformalcoolingchannels(i.e.channelsthatfollowthegeometricshapeofthepart)havebeenusedforthispurposeallowingasignificantcoolingtimereduction.AccordingtoWohlers[15]itispossibletoreducethecooling cycle by 20% using conformal cooling channel. Similarly, Dimla et al. [10]considers that cycle time can be significantly reducedwith cooling taking placeuniformly in all zones if the cooling channels aremade to conform to thepartsshapeasmuchaspossible.Someinvestigationshaverelatedthemouldscycletimereductionwithconformalcooling; themostrelevantresultassociated to itsuse isthemouldsurfacetemperatureuniformity.Furthermore,ifthepartisejectedwiththesametemperatureineverypointthesubsequentshrinkageoutsidethemouldisalsouniform,whichavoidspostinjectionwarpageofparts.Thiswasalsopointedout byVoet et al. [16],whichmentioned that the goal of cooling amould is toobtain auniform temperature at themould surface andwithin the final injectedproducttoavoidinternalstresses.

  • CAEDSMouldandDieDesign

    Amethodthatutilisesacontourlikechannel(fig.4),constructedascloseaspossible to the surface of themould to increase the heat absorption away from themoltenplastic,ensuresthatthepartiscooleduniformlyaswellasmoreefficiently.

    Figure4Conformalcoolingchannels

    Whenmoltenplasticisinjectedinthemoulditmustbesolidifiedtoformtheobject.Themouldtemperatureisregulatedbycirculationofaliquidcooler,usuallywateroroilthatflowsinsidechannelsinsidethemouldparts.

    Table2Heatconvectioncoefficientoftheair,waterandoil.

    Air Water Oil HeatconvectioncoefficientWm2k1

    50 900 400

    Whenthepart issufficientlycooled itcanbeejected.Most(95%)oftheshrinkagehappensinthemouldanditiscompensatedbytheincomingmaterial;theremainderoftheshrinkagetakesplacesometimefollowingtheproductionofthepart[17].

    Ifthechannelscarryingthewatercouldbeconformedtotheshapeofthepartand

    their cross section changed to increase the heat conducting area then a moreefficientmeans of heat removal could be realised.Thismay also help to reducewarpagewhenthepartisejected,astheplasticwouldbecooledmoreuniformly.

    Anotheradvantageisthatamouldequippedwithconformalchannelsreachestheoperation temperature quicker than a normal one equipped with standard (ordrilled)coolingchannels[18,19].

    Modelling

    The analysis toolsutilization for the cooling systems conception that assures theuniformityofthecoolingalongthepart,drivethesignificantimprovementsinthemouldproductionanddefinitionof theprocessconditions to thespecificationsoftheproductdemanded.

    Themain resistance to the transferenceofheat in thecoolinghappenof theownmaterialduetothelowthermaldiffusivityoftheplasticmaterial.So,itsessentialtoconsiderthedependenceofthematerialwiththetemperatureinthemodulationoftheheatconduction.

    CoolingSystemsinInjectionMoulds7

  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMoulds8

    Inthecoolingprocessitsessentialtoconsiderthethermalpropertiesofthemouldmaterialandappropriateborderconditions(e.g.theheattransferbyforcedconvectioninthecoolingchannels).

    Inisotropicdomaintheheattransferisdescribedbytheenergyconservationequation[20]:

    ( ) += QTK

    tTCP

    Where,CPandkrepresentthedensity,thespecificheatandthethermalconductivity of the material, respectively. T represents the local temperature in each

    instantmomenttand ineachspatialcoordinate,whereas representstheenergygenerated/dissipatedbyunitof timeandbyunitofvolume in thematerial. Thisdifferentialequationwithderivedpartial forbidimensionalheatconduction,notstationary,inCartesianscoordinatesandinasimplifiedform,takestheform:

    Q

    +

    +

    =

    QyTK

    yxTK

    xtTCP

    Thetemperatureprofile inagivenzoneofthematerialandhisvariationwiththetimeareabletobeobtainedresolvingthisequation.However,itisnecessaryspecifythetemperatureprofileintheinitialinstantandtheborderconditions.

    Tooptimise thedesignandconstructionof themould,withattentionon refiningthe tooldesign through application of finite element and thermal flow analyses,specific commercial software for injectionmouldinghave beenused. In thenextsection itwillbemadeabriefdescriptionabouttheheattransferprocessanalysisusingsomecommercialsoftware.

    ThelatestcommercialsoftwareofCAEallowsthreedimensionalsimulationoftheinjection molding process. This software has modules for conception efficientcoolingsystems.Thecoolinganalysisisbasedinthemethodoftheborderelementsapproach.

    InthecoolingmoduleofthecommercialCAEsoftware,thetransferenceofheatinthepolymer is treatedasonedimensionalconduction located in transientregime.Theheatexchangebetweenthesurfaceofthecoolingchannelsandthecoolingfluidareconsidered instationaryregime,consideringthecorrelationfortheheattransferencecoefficientbyconvection.Tosolvesimultaneouslytheprominentequationsoftransferenceofheatinthisprocess,theprogramutilizesahybridschemewherethe transference of heat is calculated by the approachmodified analyzes of theelement of three dimensional border for the region of the mould, and onedimensionalheat transferenceanalysis,along thepart thickness for the regionofmeltedplastic.Thesetwoanalysesareconjugatedofformitequalthetemperatureandtheheatflowintheinterfacepolymer/mould.

    Coolingsystemsimulation

  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMoulds9

    Theequationsfortheflowofthefluidinacircuitofcoolingareresolvedthroughthe iterative approach ofNewtonRaphson, to obtain the torrent and the fall ofpressureineachchannelofthecoolingsystem.Then,theheattransferencecoefficientsbetweenthesurfacesofthechannelsandthecoolingfluidarecalculated.

    Thechangeofheatbynaturalconvectionbetweentheenvironmentandthewallsofthemouldarealsocalculated.Forthiscalculation,commercialsoftwareconsiderstheexteriorsurfaceofthemouldasaspherewithanareaequivalenttothesurfaceofabox,inthatthechannelsofcoolingwillbeincluded,thefeedingsystemandthemoldingzones.

    Theprocesssimulationstarts inthephaseofthemouldfilling. Whenthecoolingmoduleof cooling isused, thepolymer injection temperature isassumedasconstant. This assumption has some associated errors; therefore the injectiontemperature can be a superior due to the heating by viscous dissipation of thematerialinthesprue.Thattemperaturewouldbeabletogoupuntil30Cdependingonthespeedofinjectionandofthematerialproperties[21].

    The thermal resistance in the interfacepolymer/moulddefines theheat transmissioncoefficient(hint)intheinterfacebetweenthepolymerandthemoldingsurfaces.Thiscoefficientisusedforsimulatetheresistancetotheexistingheatinthecontactbetweenthetwomaterialsbythefollowingequations:

    CAESoftwareSimplifications

    ( )bx

    bxM nTkTTh

    ==

    =intint

    ( )bx

    bxM nTkTTh

    +=+=

    +

    =intint

    where,Tintisthemelttemperatureintheinterfaceofthetwomaterials; and arethemoldingzonestemperatures,onthecavityside(negativeside)andonthecoreside(positiveside),respectively.Theindicesband+bindicatethepositiveandnegativesideofthedistancerelativelytothecenterofthepart(equivalentthehalfofitsthickness).

    MT

    +MT

    If the thermalconductivityassumes thezerovalue, (thermal isolatedborder), thechangesbetween the twomaterialsdonotexist. If itassumesanelevatedvalue,existaperfectthermalcontactbetweenthematerialsandtheinterfacetemperatureis considered equivalent at the mould wall temperature. Many times, and bydefect,thisvalueisof25000w/m2C,incommercialsoftware.

    The case study presented shows some important aspectswhendifferent coolingsystemsareconsidered.

  • CAEDSMouldandDieDesign

    CaseStudy

    Figure5Coolingsystemcasestudy.

    Coolingsysteminthecavityside

    a)Conventionalcoolingsystem

    Figure6Temperaturedistributiononthepartssurfaces

    Figure7Partsdeflection

    Figure8Partscoolingtime Figure9Percentagefrozenlayer

    CoolingSystemsinInjectionMoulds10

  • CAEDSMouldandDieDesign

    b)Bafflecoolingsystem

    Figure10Temperaturedistributiononthepartssurfaces

    Figure11Partsdeflection

    Figure12Partscoolingtime Figure13Percentagefrozenlayer

    c)Conformalcoolingsystem

    Figure14Temperaturedistributiononthepartssurfaces

    Figure15Partsdeflection

    Figure16Partscoolingtime Figure17Percentagefrozenlayer

    CoolingSystemsinInjectionMoulds11

  • CAEDSMouldandDieDesign

    Coolingsysteminthecavityandcoresides

    a)Conventionalcoolingsystemsinthecavityandcoresides

    Figure18Temperaturedistributiononthepartssurfaces

    Figure19Partsdeflection

    Figure20Partscoolingtime Figure21Percentagefrozenlayer

    b)Bafflecoolingsystemsinthecavityandcoresides

    Figure22Temperaturedistributiononthepartssurfaces

    Figure23Partsdeflection

    Figure24Partscoolingtime Figure25Percentagefrozenlayer

    CoolingSystemsinInjectionMoulds12

  • CAEDSMouldandDieDesign

    c)Conformalandbafflecoolingsystemsinthecavityandcoresides,respectively

    Figure26Temperaturedistributiononthepartssurfaces

    Figure27Partsdeflection

    Figure28Partscoolingtime Figure29Percentagefrozenlayer

    d)Conformalcoolingsysteminthecavityandcoresides

    Figure30Temperaturedistributiononthepartssurfaces

    Figure31Partsdeflection

    Figure32Partscoolingtime Figure33Percentagefrozenlayer

    CoolingSystemsinInjectionMoulds13

  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMoulds14

    References

    [1]MENGES,G.;MOHREN,P.How toMake InjectionMoulds.2nded,HanserPulishers,1993.ISBN3446163050

    [2] LIMA, S. P. Evaluation of the rapid prototyping incorporation in injectionmoulds,MasterThesis,October2002.

    [3] POUZADA,A.S. Heat transfer in injectionmoulds Support texts to theMouldDesignandManufacturingMasterDegree

    [4]BARROS,I.;TEIXEIRA,S.F.C.;TEIXEIRA,J.C.;CUNHA,A.M.EvaluationofthethermalBehaviourofInjectionMoulds.Intern.PolymerProcessing,Vol.15,No.1(2000),pp.95102.

    [5]BOELL,K.M.Predicting thecooling timeofna injectionmouldedpart,Proceedings of the 53th Annual Technical Conference & Exhibition, ANTEC 1995,Boston,711May1995,pp.42424246.

    [6]MALLOY,ROBERTA.Plastic partdesign for injectionmolding.NewYork:HanserPublishers,1994.460p.ISBN1569901295.

    [7]WANG,T.J.;YOON,C.K.Shrinkageandwarpageanalysisofinjectionmoldedparts.Orlando:SPEANTEC2000,p.687692.

    [8] JOHANNABER, F. Injectionmoldingmachines. Third Edition.New York:HanserPublishers,1994.315p.ISBN1569901694.

    [9]MARTINHO,P.G.Warpagestudy in injectionmouldingparts.UniversityofMinho,Guimares,2002.98p.MasterThesis

    [10]DIMLA,D.E.;CAMILOTTO,M.;MIANI,F.Designandoptimisationofconformalcoolingchannelsininjectionmouldingtools.JournalofMaterialsProcessingTechnology,164165,pp.12941300,2005.

    [11]SINGH,K.J.MoldCooling.InBERNHARDT,E.C.CAE:ComputerAidedEngineeringforInjectionMolding.Munich:CarlHanserVerlag,1983.ISBN3446139508.p.326347.

    [12]YANG,S.Y.;CHANG,H.C.Studyontheperformanceofcoolingsystemsinprecisioninjectionmolds.Intern.Polym.Proc.Vol.10,n2(1995),p.255261.

    [13] POTSCH,G.;MICHAELI,W. Injectionmolding: an introduction.Munich:CarlHanserVerlag,1995.195p.ISBN1569901937.

    [14]ZOLLNER,O.Optimisedmouldtemperaturecontrol,Appl.Technol.Inform.(1997)1104.

    [15]WOHLERS,T.,WohlersReport2006RapidprototypingandmanufacturingStateoftheIndustry.AnnualWorldwideProgressReport,WohlersAssociates,Inc.,2006.

    [16]VOET,A.;PEE,B.V.;MINGNEAU,J.;CARDON,L.;HOUTEKIER,R.Optimizationofconformalcoolingbyuseofdesignofexperiments:industrialcasestudyof an injectionmolded product, RPD 2006 Building the future by innovation,MarinhaGrande,1317November2006.

  • CAEDSMouldandDieDesign

    CoolingSystemsinInjectionMoulds15

    [17]BRYCE,D.M.PlasticInjectionMoulding,SocietyofManufacturingEngineers,Dearborn,MI,1996.

    [18] SACHS,E.;WYLONIS,E.;ALLEN, S.;CIMA,M.;GUO,H. Production ofinjectionmoldingwith conformal cooling channels using the three dimensionalprintingprocess,Polym.Eng.Sci.,2000,40(5),12321247.

    [19]DELGARNO,K.,W., Layermanufactured production tooling incorporatingconformalheatingchannelsfortransfermouldingofelastomercompounds,PlasticRubberCompos.30(8)(2001)384388.

    [20]HOLMAN,J.P.HeatTransfer,NewYork:MacGrawHill,Inc,1989.ISBN0071004874.

    [21]CMOLDusersmanual,ACTechnology,IthacaNewYork,1997.

    Cooling Systems in Injection Moulds Case StudyCooling system in the cavity side Cooling system in the cavity and core sides

    References