Modified Fock-Schwinger method - Kyoto U

Post on 06-Apr-2022

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

IABLOKOV S.N. [1,2] and KUZNETSOV A.V. [1]

19.01.2021

Modified Fock-Schwinger method

[1] P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

[2] A.A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia

simplifies calculation of charged particle propagators in a constant magnetic field

2 approaches to find propagators

Canonical quantization

“Sum over solutions”

2

2 approaches to find propagators

Canonical quantization Path integral formalism

“Sum over solutions” Propagator equation

3

Sum over solutions: main features

Obtain general form

4

Orthogonalization & normalization

Sum over polarizations

Find polarizations vectors

Propagator equation: main features

Obtain general form

Orthogonalization & normalization

Sum over polariations

Find polarizations vectors

5

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿4(𝑥 − 𝑥′)

𝑆 𝑥, 𝑥′ = 𝑆 𝑥 − 𝑥′ = න𝑑4𝑝

2𝜋 4𝑒−𝑖 𝑝 𝑥−𝑥′

𝑆(𝑝)

Translational invariance is assumed

Propagator equation

Add external field

6

𝑖𝜕𝜇 → 𝑖𝐷𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

Propagator equation

Translational invariance is lostAdd external field

7

𝑖𝜕𝜇 → 𝑖𝐷𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥) 𝑆 𝑥, 𝑥′ ≠ 𝑆 𝑥 − 𝑥′

≠ න𝑑4𝑝

2𝜋 4𝑒−𝑖 𝑝(𝑥−𝑥′) 𝑆(𝑝)

Fock-Schwinger (FS) method

Let’s solve this equation for S(x,x’):

8

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿(𝑥 − 𝑥′)

Fock-Schwinger (FS) method

Let’s solve this equation for S(x,x’): Choose a parametrization:

9

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿(𝑥 − 𝑥′) 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝑈(𝑥, 𝑥′, 𝜏)

Ref: J.SchwingerPhys. Rev. 82, 664Published 1 June 1951

See also: FS method ina book on QFT byC. Itzykson, J.-B. Suber

Fock-Schwinger (FS) method

Let’s solve this equation for S(x,x’): Choose a parametrization:

10

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿(𝑥 − 𝑥′) 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝑈(𝑥, 𝑥′, 𝜏)

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝐻 𝑥, 𝜕𝑥 𝑈(𝑥, 𝑥′, 𝜏) = 𝛿(𝑥 − 𝑥′)

Ref: J.SchwingerPhys. Rev. 82, 664Published 1 June 1951

See also: FS method ina book on QFT byC. Itzykson, J.-B. Suber

Fock-Schwinger (FS) method

In the FS method we demand the following:

11

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Fock-Schwinger (FS) method

In the FS method we demand the following:

12

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Fock-Schwinger (FS) method

In the FS method we demand the following:

13

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Fock-Schwinger (FS) method

In the FS method we demand the following:

14

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Fock-Schwinger (FS) method

In the FS method we demand the following:

15

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏 = 𝑈 𝑥, 𝑥′, 0 − 𝑈 𝑥, 𝑥′, −∞

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Fock-Schwinger (FS) method

In the FS method we demand the following:

16

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝑈 𝑥, 𝑥′, 0 − 𝑈 𝑥, 𝑥′, −∞

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Fock-Schwinger (FS) method

In the FS method we demand the following:

17

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝑈 𝑥, 𝑥′, 0 − 𝑈 𝑥, 𝑥′, −∞ = 𝛿(𝑥 − 𝑥′)

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Fock-Schwinger (FS) method

In the FS method we demand the following:

18

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿(𝑥 − 𝑥′)

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Let’s check:

Fock-Schwinger (FS) method

Solving this Schroedinger-type equation…

19

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

Fock-Schwinger (FS) method

Solving this Schroedinger-type equation…

20

𝑈 𝑥, 𝑥′, 𝜏 = e−i𝜏𝐻 𝑥,𝜕𝑥 + 𝜏 𝛿(𝑥 − 𝑥′)

𝐻 𝑥, 𝜕𝑥 𝑈 𝑥, 𝑥′, 𝜏 = 𝑖𝜕

𝜕𝜏𝑈 𝑥, 𝑥′, 𝜏

𝑈 𝑥, 𝑥′, 0 = 𝛿(𝑥 − 𝑥′) 𝑈 𝑥, 𝑥′, −∞ = 0

…one obtains the following result:

Fock-Schwinger (FS) method

21

Finally, the solution of

is the following expression:

𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏𝐻+ 𝜏 𝛿(𝑥 − 𝑥′)

𝐻 𝑥, 𝜕𝑥 𝑆 𝑥, 𝑥′ = 𝛿(𝑥 − 𝑥′)

Fock-Schwinger (FS) method

22

What’s next?

𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏𝐻+ 𝜏 𝛿(𝑥 − 𝑥′)

Fock-Schwinger (FS) method

23

What’s next?

𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏𝐻+ 𝜏 𝛿(𝑥 − 𝑥′)

In the original FS method we actually usethis result to further “massage” theoriginal differential equation:

𝑯 𝒙, 𝝏𝒙 𝑼 𝒙, 𝒙′, 𝝉 = 𝒊𝝏

𝝏𝝉𝑼 𝒙, 𝒙′, 𝝉

Fock-Schwinger (FS) method

24

What’s next?

𝑆 𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏𝐻+ 𝜏 𝛿(𝑥 − 𝑥′)

In the original FS method we actually usethis result to further “massage” theoriginal differential equation:

𝑯 𝒙, 𝝏𝒙 𝑼 𝒙, 𝒙′, 𝝉 = 𝒊𝝏

𝝏𝝉𝑼 𝒙, 𝒙′, 𝝉

In the modified Fock-Schwinger (MFS)method one directly evaluates the actionof exponential operator on 𝛿-function:

𝒆−𝒊𝝉𝑯+𝜺𝝉 𝜹 𝒙 − 𝒙′ = …

Ref: S. N. IABLOKOV & A. V.KUZNETSOV, 2019 J. Phys.:Conf. Ser. 1390 012078

Ref: S. N. IABLOKOV & A. V.KUZNETSOV, Phys. Rev. D102, 096015 – Published 12November 2020

Modified Fock-Schwinger (MFS) method

Assume the following decomposition of 𝛿-function:

such that:

25

Modified Fock-Schwinger (MFS) method

26

Modified Fock-Schwinger (MFS) method

27

Modified Fock-Schwinger (MFS) method

28

Modified Fock-Schwinger (MFS) method

29

Application of MFS

30

Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇− 2𝑖𝑒𝑄𝐹 𝜌

𝜇− 1 − ൗ1 𝜉 Π𝜇Π𝜌 𝐺 𝜈

𝜌𝑥, 𝑥′ = 𝛿4 𝑥 − 𝑥′ 𝛿 𝜈

𝜇

𝐹 𝜌𝜇=

0 0 0 00 0 𝐵 00 −𝐵 0 00 0 0 0 𝜌

𝜇

Π𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

𝐴𝜇 = (0,0,−𝐵𝑥, 0)

Vector charged boson in a constant magnetic field:

Application of MFS

31

Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇− 2𝑖𝑒𝑄𝐹 𝜌

𝜇− 1 − ൗ1 𝜉 Π𝜇Π𝜌 𝐺 𝜈

𝜌𝑥, 𝑥′ = 𝛿4 𝑥 − 𝑥′ 𝛿 𝜈

𝜇

A B C𝐹 𝜌𝜇=

0 0 0 00 0 𝐵 00 −𝐵 0 00 0 0 0 𝜌

𝜇

Π𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

𝐴𝜇 = (0,0,−𝐵𝑥, 0)

A remarkable fact:

𝐴, 𝐵 = 0

Vector charged boson in a constant magnetic field:

Application of MFS

32

Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇− 2𝑖𝑒𝑄𝐹 𝜌

𝜇− 1 − ൗ1 𝜉 Π𝜇Π𝜌 𝐺 𝜈

𝜌𝑥, 𝑥′ = 𝛿4 𝑥 − 𝑥′ 𝛿 𝜈

𝜇

A B C

A remarkable fact:

𝐹 𝜌𝜇=

0 0 0 00 0 𝐵 00 −𝐵 0 00 0 0 0 𝜌

𝜇

Π𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

𝐴𝜇 = (0,0,−𝐵𝑥, 0)

𝐴 + 𝐵, 𝐶 = 0

𝐴, 𝐵 = 0

Vector charged boson in a constant magnetic field:

According to the MFS method:

Application of MFS

33

𝐺 𝜈𝜌

𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏𝐻+ 𝜏𝜈

𝜌𝛿4 𝑥 − 𝑥′

A B C= Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇

= −2𝑖𝑒𝑄𝐹 𝜌𝜇 = − 1 − ൗ1 𝜉 Π𝜇Π𝜌

According to the MFS method:

Application of MFS

34

𝐺 𝜈𝜌

𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏 𝐴+𝐵+𝐶 + 𝜏𝜈

𝜌𝛿4 𝑥 − 𝑥′

A B C= Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇

= −2𝑖𝑒𝑄𝐹 𝜌𝜇 = − 1 − ൗ1 𝜉 Π𝜇Π𝜌

𝐴 + 𝐵, 𝐶 = 0

𝐴, 𝐵 = 0

According to the MFS method:

Application of MFS

35

𝐺 𝜈𝜌

𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏 𝐴+𝐵+𝐶 + 𝜏𝜈

𝜌𝛿4 𝑥 − 𝑥′

A B C= Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇

= −2𝑖𝑒𝑄𝐹 𝜌𝜇 = − 1 − ൗ1 𝜉 Π𝜇Π𝜌

𝐴 + 𝐵, 𝐶 = 0

𝐴, 𝐵 = 0

e−i𝜏 𝐴+𝐵+𝐶

Separating the exponent…

According to the MFS method:

Application of MFS

36

𝐺 𝜈𝜌

𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏 𝐴+𝐵+𝐶 + 𝜏𝜈

𝜌𝛿4 𝑥 − 𝑥′

A B C= Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇

= −2𝑖𝑒𝑄𝐹 𝜌𝜇 = − 1 − ൗ1 𝜉 Π𝜇Π𝜌

𝐴 + 𝐵, 𝐶 = 0

𝐴, 𝐵 = 0

e−i𝜏 𝐴+𝐵+𝐶 = e−i𝜏 𝐶e−i𝜏 𝐴+𝐵

Separating the exponent…

According to the MFS method:

Application of MFS

37

𝐺 𝜈𝜌

𝑥, 𝑥′ = −𝑖 න−∞

0

𝑑𝜏 e−i𝜏 𝐴+𝐵+𝐶 + 𝜏𝜈

𝜌𝛿4 𝑥 − 𝑥′

A B C= Π𝜆Π𝜆 −𝑚2 𝛿 𝜌𝜇

= −2𝑖𝑒𝑄𝐹 𝜌𝜇 = − 1 − ൗ1 𝜉 Π𝜇Π𝜌

𝐴 + 𝐵, 𝐶 = 0

𝐴, 𝐵 = 0

e−i𝜏 𝐴+𝐵+𝐶 = e−i𝜏 𝐶e−i𝜏 𝐴+𝐵 = e−i𝜏 𝐶e−i𝜏 𝐵e−i𝜏 𝐴

Separating the exponent…

Application of MFS

38

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

Application of MFS

39

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

The expression has a nested structure:

Application of MFS

40

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

Propagation of a scalar particle

The expression has a nested structure:

Application of MFS

41

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

Propagation of a scalar particle

Accounting for a spin

The expression has a nested structure:

Application of MFS

42

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

Propagation of a scalar particle

Accounting for a spin

Considering an arbitrary 𝜉-gauge

The expression has a nested structure:

Application of MFS

43

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

What about 𝛿-function?

Application of MFS

44

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

What about 𝛿-function?

𝛿4 𝑋 − 𝑋′ =

𝑛=0

න𝑑3𝑝∥,𝑦2𝜋 3

𝑒−𝑖 𝑝 𝑋−𝑋′

∥,𝑦𝑉𝑛 𝑥 𝑉𝑛(𝑥′)

here, 𝑉𝑛 𝑥 are simple harmonic oscillator eigenfunctions

Π𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

𝐴𝜇 = (0,0,−𝐵𝑥, 0)

Application of MFS

45

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

What about 𝛿-function?

𝛿4 𝑥 − 𝑥′ =

𝑛=0

න𝑑3𝑝∥,𝑦2𝜋 3

𝑒−𝑖 𝑝 𝑥−𝑥′

∥,𝑦𝑉𝑛 𝑥 𝑉𝑛(𝑥′)

here, 𝑉𝑛 𝑥 are simple harmonic oscillator eigenfunctions

Π𝜆Π𝜆 −𝑚2 𝑒−𝑖 𝑝 𝑥−𝑥′

∥,𝑦𝑉𝑛 𝑥 = 𝑝∥2 −𝑚2 + 𝑄𝑒𝐵 2𝑛 + 1 𝑒

−𝑖 𝑝 𝑥−𝑥′∥,𝑦𝑉𝑛(𝑥)

Π𝜇 = 𝑖𝜕𝜇 + 𝑒𝑄𝐴𝜇(𝑥)

𝐴𝜇 = (0,0,−𝐵𝑥, 0)An example of simplification:

Application of MFS

46

𝐺 𝜈𝜇= −𝑖 න

−∞

0

𝑑𝜏 𝛿4 𝑥 − 𝑥′e+i𝜏 1− ൗ1 𝜉 Π𝜇Π𝜌 𝑒−2𝜏𝑒𝑄𝐹 𝜌

𝜇

e−i𝜏 Π𝜆Π𝜆−𝑚2 𝛿 𝜈

𝜇+ 𝜏

What about 𝛿-function?

𝛿4 𝑥 − 𝑥′ =

𝑛=0

න𝑑3𝑝∥,𝑦2𝜋 3

𝑒−𝑖 𝑝 𝑥−𝑥′

∥,𝑦𝑉𝑛 𝑥 𝑉𝑛(𝑥′)

here, 𝑉𝑛 𝑥 are simple harmonic oscillator eigenfunctions

The rest of the calculations are boring straightforward…

Charged massive vector boson propagator in a constant magnetic field in arbitrary ξ-gaugeobtained using the modified Fock-Schwinger method; S. N. Iablokov and A. V. KuznetsovPhys. Rev. D 102, 096015 – Published 12 November 2020

Application of MFS

47

Charged massive vector boson propagator in a constant magnetic field in arbitrary ξ-gaugeobtained using the modified Fock-Schwinger method; S. N. Iablokov and A. V. KuznetsovPhys. Rev. D 102, 096015 – Published 12 November 2020

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

48

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

49

MFS simplifies calculations and provides additional representations of the propagator.

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

50

MFS simplifies calculations and provides additional representations of the propagator.

Drawback: MFS is as good as one’s ability to obtain/guess the form of the wave-equation’s solution.

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

51

MFS simplifies calculations and provides additional representations of the propagator.

Drawback: MFS is as good as one’s ability to obtain/guess the form of the wave-equation’s solution.

Can be applied for the constant electric field configuration, which is relevant for the Schwinger effect.

Thank you for your attention

52

top related