Top Banner
IABLOKOV S.N. [1,2] and KUZNETSOV A.V. [1] 19.01.2021 Modified Fock-Schwinger method [1] P.G. Demidov Yaroslavl State University, Yaroslavl, Russia [2] A.A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia simplifies calculation of charged particle propagators in a constant magnetic field
52

Modified Fock-Schwinger method - Kyoto U

Apr 06, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Modified Fock-Schwinger method - Kyoto U

IABLOKOV S.N. [1,2] and KUZNETSOV A.V. [1]

19.01.2021

Modified Fock-Schwinger method

[1] P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

[2] A.A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia

simplifies calculation of charged particle propagators in a constant magnetic field

Page 2: Modified Fock-Schwinger method - Kyoto U

2 approaches to find propagators

Canonical quantization

β€œSum over solutions”

2

Page 3: Modified Fock-Schwinger method - Kyoto U

2 approaches to find propagators

Canonical quantization Path integral formalism

β€œSum over solutions” Propagator equation

3

Page 4: Modified Fock-Schwinger method - Kyoto U

Sum over solutions: main features

Obtain general form

4

Orthogonalization & normalization

Sum over polarizations

Find polarizations vectors

Page 5: Modified Fock-Schwinger method - Kyoto U

Propagator equation: main features

Obtain general form

Orthogonalization & normalization

Sum over polariations

Find polarizations vectors

5

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = 𝛿4(π‘₯ βˆ’ π‘₯β€²)

𝑆 π‘₯, π‘₯β€² = 𝑆 π‘₯ βˆ’ π‘₯β€² = ࢱ𝑑4𝑝

2πœ‹ 4π‘’βˆ’π‘– 𝑝 π‘₯βˆ’π‘₯β€²

𝑆(𝑝)

Translational invariance is assumed

Page 6: Modified Fock-Schwinger method - Kyoto U

Propagator equation

Add external field

6

π‘–πœ•πœ‡ β†’ π‘–π·πœ‡ = π‘–πœ•πœ‡ + π‘’π‘„π΄πœ‡(π‘₯)

Page 7: Modified Fock-Schwinger method - Kyoto U

Propagator equation

Translational invariance is lostAdd external field

7

π‘–πœ•πœ‡ β†’ π‘–π·πœ‡ = π‘–πœ•πœ‡ + π‘’π‘„π΄πœ‡(π‘₯) 𝑆 π‘₯, π‘₯β€² β‰  𝑆 π‘₯ βˆ’ π‘₯β€²

β‰  ࢱ𝑑4𝑝

2πœ‹ 4π‘’βˆ’π‘– 𝑝(π‘₯βˆ’π‘₯β€²) 𝑆(𝑝)

Page 8: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

Let’s solve this equation for S(x,x’):

8

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = 𝛿(π‘₯ βˆ’ π‘₯β€²)

Page 9: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

Let’s solve this equation for S(x,x’): Choose a parametrization:

9

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = 𝛿(π‘₯ βˆ’ π‘₯β€²) 𝑆 π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ π‘ˆ(π‘₯, π‘₯β€², 𝜏)

Ref: J.SchwingerPhys. Rev. 82, 664Published 1 June 1951

See also: FS method ina book on QFT byC. Itzykson, J.-B. Suber

Page 10: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

Let’s solve this equation for S(x,x’): Choose a parametrization:

10

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = 𝛿(π‘₯ βˆ’ π‘₯β€²) 𝑆 π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ π‘ˆ(π‘₯, π‘₯β€², 𝜏)

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ 𝐻 π‘₯, πœ•π‘₯ π‘ˆ(π‘₯, π‘₯β€², 𝜏) = 𝛿(π‘₯ βˆ’ π‘₯β€²)

Ref: J.SchwingerPhys. Rev. 82, 664Published 1 June 1951

See also: FS method ina book on QFT byC. Itzykson, J.-B. Suber

Page 11: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

11

𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏 = π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏

π‘ˆ π‘₯, π‘₯β€², 0 = 𝛿(π‘₯ βˆ’ π‘₯β€²) π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž = 0

Page 12: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

12

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ 𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏

𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏 = π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏

π‘ˆ π‘₯, π‘₯β€², 0 = 𝛿(π‘₯ βˆ’ π‘₯β€²) π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž = 0

Let’s check:

Page 13: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

13

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ 𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏

𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏 = π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏

π‘ˆ π‘₯, π‘₯β€², 0 = 𝛿(π‘₯ βˆ’ π‘₯β€²) π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž = 0

Let’s check:

Page 14: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

14

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏

𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏 = π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏

π‘ˆ π‘₯, π‘₯β€², 0 = 𝛿(π‘₯ βˆ’ π‘₯β€²) π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž = 0

Let’s check:

Page 15: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

15

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏 = π‘ˆ π‘₯, π‘₯β€², 0 βˆ’ π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž

𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏 = π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏

π‘ˆ π‘₯, π‘₯β€², 0 = 𝛿(π‘₯ βˆ’ π‘₯β€²) π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž = 0

Let’s check:

Page 16: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

16

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = π‘ˆ π‘₯, π‘₯β€², 0 βˆ’ π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž

𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏 = π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏

π‘ˆ π‘₯, π‘₯β€², 0 = 𝛿(π‘₯ βˆ’ π‘₯β€²) π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž = 0

Let’s check:

Page 17: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

17

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = π‘ˆ π‘₯, π‘₯β€², 0 βˆ’ π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž = 𝛿(π‘₯ βˆ’ π‘₯β€²)

𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏 = π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏

π‘ˆ π‘₯, π‘₯β€², 0 = 𝛿(π‘₯ βˆ’ π‘₯β€²) π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž = 0

Let’s check:

Page 18: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

In the FS method we demand the following:

18

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = 𝛿(π‘₯ βˆ’ π‘₯β€²)

𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏 = π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏

π‘ˆ π‘₯, π‘₯β€², 0 = 𝛿(π‘₯ βˆ’ π‘₯β€²) π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž = 0

Let’s check:

Page 19: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

Solving this Schroedinger-type equation…

19

𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏 = π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏

π‘ˆ π‘₯, π‘₯β€², 0 = 𝛿(π‘₯ βˆ’ π‘₯β€²) π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž = 0

Page 20: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

Solving this Schroedinger-type equation…

20

π‘ˆ π‘₯, π‘₯β€², 𝜏 = eβˆ’i𝜏𝐻 π‘₯,πœ•π‘₯ + 𝜏 𝛿(π‘₯ βˆ’ π‘₯β€²)

𝐻 π‘₯, πœ•π‘₯ π‘ˆ π‘₯, π‘₯β€², 𝜏 = π‘–πœ•

πœ•πœπ‘ˆ π‘₯, π‘₯β€², 𝜏

π‘ˆ π‘₯, π‘₯β€², 0 = 𝛿(π‘₯ βˆ’ π‘₯β€²) π‘ˆ π‘₯, π‘₯β€², βˆ’βˆž = 0

…one obtains the following result:

Page 21: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

21

Finally, the solution of

is the following expression:

𝑆 π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ eβˆ’i𝜏𝐻+ 𝜏 𝛿(π‘₯ βˆ’ π‘₯β€²)

𝐻 π‘₯, πœ•π‘₯ 𝑆 π‘₯, π‘₯β€² = 𝛿(π‘₯ βˆ’ π‘₯β€²)

Page 22: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

22

What’s next?

𝑆 π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ eβˆ’i𝜏𝐻+ 𝜏 𝛿(π‘₯ βˆ’ π‘₯β€²)

Page 23: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

23

What’s next?

𝑆 π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ eβˆ’i𝜏𝐻+ 𝜏 𝛿(π‘₯ βˆ’ π‘₯β€²)

In the original FS method we actually usethis result to further β€œmassage” theoriginal differential equation:

𝑯 𝒙, 𝝏𝒙 𝑼 𝒙, 𝒙′, 𝝉 = π’Šπ

𝝏𝝉𝑼 𝒙, 𝒙′, 𝝉

Page 24: Modified Fock-Schwinger method - Kyoto U

Fock-Schwinger (FS) method

24

What’s next?

𝑆 π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ eβˆ’i𝜏𝐻+ 𝜏 𝛿(π‘₯ βˆ’ π‘₯β€²)

In the original FS method we actually usethis result to further β€œmassage” theoriginal differential equation:

𝑯 𝒙, 𝝏𝒙 𝑼 𝒙, 𝒙′, 𝝉 = π’Šπ

𝝏𝝉𝑼 𝒙, 𝒙′, 𝝉

In the modified Fock-Schwinger (MFS)method one directly evaluates the actionof exponential operator on 𝛿-function:

π’†βˆ’π’Šπ‰π‘―+πœΊπ‰ 𝜹 𝒙 βˆ’ 𝒙′ = …

Ref: S. N. IABLOKOV & A. V.KUZNETSOV, 2019 J. Phys.:Conf. Ser. 1390 012078

Ref: S. N. IABLOKOV & A. V.KUZNETSOV, Phys. Rev. D102, 096015 – Published 12November 2020

Page 25: Modified Fock-Schwinger method - Kyoto U

Modified Fock-Schwinger (MFS) method

Assume the following decomposition of 𝛿-function:

such that:

25

Page 26: Modified Fock-Schwinger method - Kyoto U

Modified Fock-Schwinger (MFS) method

26

Page 27: Modified Fock-Schwinger method - Kyoto U

Modified Fock-Schwinger (MFS) method

27

Page 28: Modified Fock-Schwinger method - Kyoto U

Modified Fock-Schwinger (MFS) method

28

Page 29: Modified Fock-Schwinger method - Kyoto U

Modified Fock-Schwinger (MFS) method

29

Page 30: Modified Fock-Schwinger method - Kyoto U

Application of MFS

30

Ξ πœ†Ξ πœ† βˆ’π‘š2 𝛿 πœŒπœ‡βˆ’ 2𝑖𝑒𝑄𝐹 𝜌

πœ‡βˆ’ 1 βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ 𝐺 𝜈

𝜌π‘₯, π‘₯β€² = 𝛿4 π‘₯ βˆ’ π‘₯β€² 𝛿 𝜈

πœ‡

𝐹 πœŒπœ‡=

0 0 0 00 0 𝐡 00 βˆ’π΅ 0 00 0 0 0 𝜌

πœ‡

Ξ πœ‡ = π‘–πœ•πœ‡ + π‘’π‘„π΄πœ‡(π‘₯)

π΄πœ‡ = (0,0,βˆ’π΅π‘₯, 0)

Vector charged boson in a constant magnetic field:

Page 31: Modified Fock-Schwinger method - Kyoto U

Application of MFS

31

Ξ πœ†Ξ πœ† βˆ’π‘š2 𝛿 πœŒπœ‡βˆ’ 2𝑖𝑒𝑄𝐹 𝜌

πœ‡βˆ’ 1 βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ 𝐺 𝜈

𝜌π‘₯, π‘₯β€² = 𝛿4 π‘₯ βˆ’ π‘₯β€² 𝛿 𝜈

πœ‡

A B C𝐹 πœŒπœ‡=

0 0 0 00 0 𝐡 00 βˆ’π΅ 0 00 0 0 0 𝜌

πœ‡

Ξ πœ‡ = π‘–πœ•πœ‡ + π‘’π‘„π΄πœ‡(π‘₯)

π΄πœ‡ = (0,0,βˆ’π΅π‘₯, 0)

A remarkable fact:

𝐴, 𝐡 = 0

Vector charged boson in a constant magnetic field:

Page 32: Modified Fock-Schwinger method - Kyoto U

Application of MFS

32

Ξ πœ†Ξ πœ† βˆ’π‘š2 𝛿 πœŒπœ‡βˆ’ 2𝑖𝑒𝑄𝐹 𝜌

πœ‡βˆ’ 1 βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ 𝐺 𝜈

𝜌π‘₯, π‘₯β€² = 𝛿4 π‘₯ βˆ’ π‘₯β€² 𝛿 𝜈

πœ‡

A B C

A remarkable fact:

𝐹 πœŒπœ‡=

0 0 0 00 0 𝐡 00 βˆ’π΅ 0 00 0 0 0 𝜌

πœ‡

Ξ πœ‡ = π‘–πœ•πœ‡ + π‘’π‘„π΄πœ‡(π‘₯)

π΄πœ‡ = (0,0,βˆ’π΅π‘₯, 0)

𝐴 + 𝐡, 𝐢 = 0

𝐴, 𝐡 = 0

Vector charged boson in a constant magnetic field:

Page 33: Modified Fock-Schwinger method - Kyoto U

According to the MFS method:

Application of MFS

33

𝐺 𝜈𝜌

π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ eβˆ’i𝜏𝐻+ 𝜏𝜈

πœŒπ›Ώ4 π‘₯ βˆ’ π‘₯β€²

A B C= Ξ πœ†Ξ πœ† βˆ’π‘š2 𝛿 πœŒπœ‡

= βˆ’2𝑖𝑒𝑄𝐹 πœŒπœ‡ = βˆ’ 1 βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ

Page 34: Modified Fock-Schwinger method - Kyoto U

According to the MFS method:

Application of MFS

34

𝐺 𝜈𝜌

π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ eβˆ’i𝜏 𝐴+𝐡+𝐢 + 𝜏𝜈

πœŒπ›Ώ4 π‘₯ βˆ’ π‘₯β€²

A B C= Ξ πœ†Ξ πœ† βˆ’π‘š2 𝛿 πœŒπœ‡

= βˆ’2𝑖𝑒𝑄𝐹 πœŒπœ‡ = βˆ’ 1 βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ

𝐴 + 𝐡, 𝐢 = 0

𝐴, 𝐡 = 0

Page 35: Modified Fock-Schwinger method - Kyoto U

According to the MFS method:

Application of MFS

35

𝐺 𝜈𝜌

π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ eβˆ’i𝜏 𝐴+𝐡+𝐢 + 𝜏𝜈

πœŒπ›Ώ4 π‘₯ βˆ’ π‘₯β€²

A B C= Ξ πœ†Ξ πœ† βˆ’π‘š2 𝛿 πœŒπœ‡

= βˆ’2𝑖𝑒𝑄𝐹 πœŒπœ‡ = βˆ’ 1 βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ

𝐴 + 𝐡, 𝐢 = 0

𝐴, 𝐡 = 0

eβˆ’i𝜏 𝐴+𝐡+𝐢

Separating the exponent…

Page 36: Modified Fock-Schwinger method - Kyoto U

According to the MFS method:

Application of MFS

36

𝐺 𝜈𝜌

π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ eβˆ’i𝜏 𝐴+𝐡+𝐢 + 𝜏𝜈

πœŒπ›Ώ4 π‘₯ βˆ’ π‘₯β€²

A B C= Ξ πœ†Ξ πœ† βˆ’π‘š2 𝛿 πœŒπœ‡

= βˆ’2𝑖𝑒𝑄𝐹 πœŒπœ‡ = βˆ’ 1 βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ

𝐴 + 𝐡, 𝐢 = 0

𝐴, 𝐡 = 0

eβˆ’i𝜏 𝐴+𝐡+𝐢 = eβˆ’i𝜏 𝐢eβˆ’i𝜏 𝐴+𝐡

Separating the exponent…

Page 37: Modified Fock-Schwinger method - Kyoto U

According to the MFS method:

Application of MFS

37

𝐺 𝜈𝜌

π‘₯, π‘₯β€² = βˆ’π‘– ΰΆ±βˆ’βˆž

0

π‘‘πœ eβˆ’i𝜏 𝐴+𝐡+𝐢 + 𝜏𝜈

πœŒπ›Ώ4 π‘₯ βˆ’ π‘₯β€²

A B C= Ξ πœ†Ξ πœ† βˆ’π‘š2 𝛿 πœŒπœ‡

= βˆ’2𝑖𝑒𝑄𝐹 πœŒπœ‡ = βˆ’ 1 βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ

𝐴 + 𝐡, 𝐢 = 0

𝐴, 𝐡 = 0

eβˆ’i𝜏 𝐴+𝐡+𝐢 = eβˆ’i𝜏 𝐢eβˆ’i𝜏 𝐴+𝐡 = eβˆ’i𝜏 𝐢eβˆ’i𝜏 𝐡eβˆ’i𝜏 𝐴

Separating the exponent…

Page 38: Modified Fock-Schwinger method - Kyoto U

Application of MFS

38

𝐺 πœˆπœ‡= βˆ’π‘– ΰΆ±

βˆ’βˆž

0

π‘‘πœ 𝛿4 π‘₯ βˆ’ π‘₯β€²e+i𝜏 1βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ π‘’βˆ’2πœπ‘’π‘„πΉ 𝜌

πœ‡

eβˆ’i𝜏 Ξ πœ†Ξ πœ†βˆ’π‘š2 𝛿 𝜈

πœ‡+ 𝜏

Page 39: Modified Fock-Schwinger method - Kyoto U

Application of MFS

39

𝐺 πœˆπœ‡= βˆ’π‘– ΰΆ±

βˆ’βˆž

0

π‘‘πœ 𝛿4 π‘₯ βˆ’ π‘₯β€²e+i𝜏 1βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ π‘’βˆ’2πœπ‘’π‘„πΉ 𝜌

πœ‡

eβˆ’i𝜏 Ξ πœ†Ξ πœ†βˆ’π‘š2 𝛿 𝜈

πœ‡+ 𝜏

The expression has a nested structure:

Page 40: Modified Fock-Schwinger method - Kyoto U

Application of MFS

40

𝐺 πœˆπœ‡= βˆ’π‘– ΰΆ±

βˆ’βˆž

0

π‘‘πœ 𝛿4 π‘₯ βˆ’ π‘₯β€²e+i𝜏 1βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ π‘’βˆ’2πœπ‘’π‘„πΉ 𝜌

πœ‡

eβˆ’i𝜏 Ξ πœ†Ξ πœ†βˆ’π‘š2 𝛿 𝜈

πœ‡+ 𝜏

Propagation of a scalar particle

The expression has a nested structure:

Page 41: Modified Fock-Schwinger method - Kyoto U

Application of MFS

41

𝐺 πœˆπœ‡= βˆ’π‘– ΰΆ±

βˆ’βˆž

0

π‘‘πœ 𝛿4 π‘₯ βˆ’ π‘₯β€²e+i𝜏 1βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ π‘’βˆ’2πœπ‘’π‘„πΉ 𝜌

πœ‡

eβˆ’i𝜏 Ξ πœ†Ξ πœ†βˆ’π‘š2 𝛿 𝜈

πœ‡+ 𝜏

Propagation of a scalar particle

Accounting for a spin

The expression has a nested structure:

Page 42: Modified Fock-Schwinger method - Kyoto U

Application of MFS

42

𝐺 πœˆπœ‡= βˆ’π‘– ΰΆ±

βˆ’βˆž

0

π‘‘πœ 𝛿4 π‘₯ βˆ’ π‘₯β€²e+i𝜏 1βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ π‘’βˆ’2πœπ‘’π‘„πΉ 𝜌

πœ‡

eβˆ’i𝜏 Ξ πœ†Ξ πœ†βˆ’π‘š2 𝛿 𝜈

πœ‡+ 𝜏

Propagation of a scalar particle

Accounting for a spin

Considering an arbitrary πœ‰-gauge

The expression has a nested structure:

Page 43: Modified Fock-Schwinger method - Kyoto U

Application of MFS

43

𝐺 πœˆπœ‡= βˆ’π‘– ΰΆ±

βˆ’βˆž

0

π‘‘πœ 𝛿4 π‘₯ βˆ’ π‘₯β€²e+i𝜏 1βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ π‘’βˆ’2πœπ‘’π‘„πΉ 𝜌

πœ‡

eβˆ’i𝜏 Ξ πœ†Ξ πœ†βˆ’π‘š2 𝛿 𝜈

πœ‡+ 𝜏

What about 𝛿-function?

Page 44: Modified Fock-Schwinger method - Kyoto U

Application of MFS

44

𝐺 πœˆπœ‡= βˆ’π‘– ΰΆ±

βˆ’βˆž

0

π‘‘πœ 𝛿4 π‘₯ βˆ’ π‘₯β€²e+i𝜏 1βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ π‘’βˆ’2πœπ‘’π‘„πΉ 𝜌

πœ‡

eβˆ’i𝜏 Ξ πœ†Ξ πœ†βˆ’π‘š2 𝛿 𝜈

πœ‡+ 𝜏

What about 𝛿-function?

𝛿4 𝑋 βˆ’ 𝑋′ =

𝑛=0

∞

ࢱ𝑑3𝑝βˆ₯,𝑦2πœ‹ 3

π‘’βˆ’π‘– 𝑝 π‘‹βˆ’π‘‹β€²

βˆ₯,𝑦𝑉𝑛 π‘₯ 𝑉𝑛(π‘₯β€²)

here, 𝑉𝑛 π‘₯ are simple harmonic oscillator eigenfunctions

Ξ πœ‡ = π‘–πœ•πœ‡ + π‘’π‘„π΄πœ‡(π‘₯)

π΄πœ‡ = (0,0,βˆ’π΅π‘₯, 0)

Page 45: Modified Fock-Schwinger method - Kyoto U

Application of MFS

45

𝐺 πœˆπœ‡= βˆ’π‘– ΰΆ±

βˆ’βˆž

0

π‘‘πœ 𝛿4 π‘₯ βˆ’ π‘₯β€²e+i𝜏 1βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ π‘’βˆ’2πœπ‘’π‘„πΉ 𝜌

πœ‡

eβˆ’i𝜏 Ξ πœ†Ξ πœ†βˆ’π‘š2 𝛿 𝜈

πœ‡+ 𝜏

What about 𝛿-function?

𝛿4 π‘₯ βˆ’ π‘₯β€² =

𝑛=0

∞

ࢱ𝑑3𝑝βˆ₯,𝑦2πœ‹ 3

π‘’βˆ’π‘– 𝑝 π‘₯βˆ’π‘₯β€²

βˆ₯,𝑦𝑉𝑛 π‘₯ 𝑉𝑛(π‘₯β€²)

here, 𝑉𝑛 π‘₯ are simple harmonic oscillator eigenfunctions

Ξ πœ†Ξ πœ† βˆ’π‘š2 π‘’βˆ’π‘– 𝑝 π‘₯βˆ’π‘₯β€²

βˆ₯,𝑦𝑉𝑛 π‘₯ = 𝑝βˆ₯2 βˆ’π‘š2 + 𝑄𝑒𝐡 2𝑛 + 1 𝑒

βˆ’π‘– 𝑝 π‘₯βˆ’π‘₯β€²βˆ₯,𝑦𝑉𝑛(π‘₯)

Ξ πœ‡ = π‘–πœ•πœ‡ + π‘’π‘„π΄πœ‡(π‘₯)

π΄πœ‡ = (0,0,βˆ’π΅π‘₯, 0)An example of simplification:

Page 46: Modified Fock-Schwinger method - Kyoto U

Application of MFS

46

𝐺 πœˆπœ‡= βˆ’π‘– ΰΆ±

βˆ’βˆž

0

π‘‘πœ 𝛿4 π‘₯ βˆ’ π‘₯β€²e+i𝜏 1βˆ’ ΰ΅—1 πœ‰ Ξ πœ‡Ξ πœŒ π‘’βˆ’2πœπ‘’π‘„πΉ 𝜌

πœ‡

eβˆ’i𝜏 Ξ πœ†Ξ πœ†βˆ’π‘š2 𝛿 𝜈

πœ‡+ 𝜏

What about 𝛿-function?

𝛿4 π‘₯ βˆ’ π‘₯β€² =

𝑛=0

∞

ࢱ𝑑3𝑝βˆ₯,𝑦2πœ‹ 3

π‘’βˆ’π‘– 𝑝 π‘₯βˆ’π‘₯β€²

βˆ₯,𝑦𝑉𝑛 π‘₯ 𝑉𝑛(π‘₯β€²)

here, 𝑉𝑛 π‘₯ are simple harmonic oscillator eigenfunctions

The rest of the calculations are boring straightforward…

Charged massive vector boson propagator in a constant magnetic field in arbitrary ΞΎ-gaugeobtained using the modified Fock-Schwinger method; S. N. Iablokov and A. V. KuznetsovPhys. Rev. D 102, 096015 – Published 12 November 2020

Page 47: Modified Fock-Schwinger method - Kyoto U

Application of MFS

47

Charged massive vector boson propagator in a constant magnetic field in arbitrary ΞΎ-gaugeobtained using the modified Fock-Schwinger method; S. N. Iablokov and A. V. KuznetsovPhys. Rev. D 102, 096015 – Published 12 November 2020

Page 48: Modified Fock-Schwinger method - Kyoto U

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

48

Page 49: Modified Fock-Schwinger method - Kyoto U

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

49

MFS simplifies calculations and provides additional representations of the propagator.

Page 50: Modified Fock-Schwinger method - Kyoto U

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

50

MFS simplifies calculations and provides additional representations of the propagator.

Drawback: MFS is as good as one’s ability to obtain/guess the form of the wave-equation’s solution.

Page 51: Modified Fock-Schwinger method - Kyoto U

Conclusions

MFS allows to obtain the solution of the propagator equation directly (almost) in momentum space.

51

MFS simplifies calculations and provides additional representations of the propagator.

Drawback: MFS is as good as one’s ability to obtain/guess the form of the wave-equation’s solution.

Can be applied for the constant electric field configuration, which is relevant for the Schwinger effect.

Page 52: Modified Fock-Schwinger method - Kyoto U

Thank you for your attention

52