Micro-Encapsulation of Advanced Solvents for Post- Combustion … · 2015. 9. 11. · Micro-Encapsulation of Advanced Solvents for Post-Combustion Carbon Capture September 9, 2015

Post on 23-Aug-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Micro-Encapsulation of Advanced Solvents for Post-Combustion Carbon Capture

September 9, 2015

200 µm

3rd Post Combustion Capture Conference

Joshuah K. Stolaroff

200 m

LLNL‐PRES‐555917This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE‐AC52‐07NA27344. Lawrence Livermore National Security, LLC

New fabrication techniques can enable new materials and processes to achieve low-cost carbon capture. p p

Nanoparticle Organic Hybrid materials

Precipitating carbonates

CO2-binding organic liquids (CO2BOLs) Ionic Liquids (Ils)

Hybrid materials (NOHMs)

Micro-encapsulationAdvanced

Manufacturing

Micro encapsulationAdditive ManufacturingNew MaterialsProcess Design

Process Process Innovations

Lower cost carbon capture

Some solvents with potential for 30—50% energy savings and specific challenges:savings and specific challenges:

1. Sodium carbonate solution: slow CO22absorption, precipitates solids.

2. Ionic Liquids: water intolerance, precipitate solids (PCIL’s)p p

NOHM hi h i it l 3. NOHMs: high viscosity, slow CO2 absorption.

4. CO2BOLs: poor heat transfer rates (high viscosity)(high viscosity).

Advanced solvents have some common advantages:• Lower energy of regeneration• Lower energy of regeneration• Low volatility• Tunability for innovative processes

and common problems:

• Tunability for innovative processes

• High viscosityW t i t l

…and common problems:

• Water intolerance• Phase changes

Sl h f f• Slow heat transfer or mass transfer• High solvent cost

→How can encapsulation help?

Microencapsulation: double emulsions are produced in a microfluidic device...

Control of capsule • Control of capsule diameter and shell thickness.

• Encapsulates ~100% of inner fluid

• Core fluid can also have solids

P d ti t • Production rate: 1-100 Hz

and then cured with UV …and then cured with UV light.

Micro-encapsulated Carbon Sorbents (MECS):Liquid solvents or slurries encased in thin, permeable polymer shells

• Multiple solvents, shell materials, and sizes produced

Microencapsulation enhances kinetics.

CO2 absorbs through h llshell

Surface area formed by capsule, not a tower

Embedded catalyst further enhances further enhances kinetics “Zn-Cyclen”

Microencapsulation enables mixed phases enables mixed phases and viscous solvents.

30 wt% Na2CO3 capsules exposed to CO2 precipitating Nacholite➞

Encapsulating slurry of glass bubbles⬇�

9

Process options same as for solids:solids:• Fluidized bed

M i B d• Moving Bed• Fixed bed

Thermally regenerable for Thermally regenerable for many cycles (80 tested).

Capsule Production Scale-up

• Bulk emulsion methods exist, but yield a distribution of capsule properties.

• Two microfluidic production methods being pursued.

Etched glass chips Tandem-Step chips Etched glass chips from Dolomite Microfluidics

Tandem Step chips developed at Harvard

Success with 1st generation chips:

12 channels producing capsules in parallel.

Scale-up alternative: Tandem Step EmulsificationTandem Step Emulsification

Tandem Step Emulsification (Oil in Water)

Capsule curing in the presence of amines

Traditional shell material: Semicosil 949UV, Wacker Chemie AG‐ Propriety silicone rubber blend (likely polydimethyl siloxane; PDMS)‐ UV curable (likely UV‐activated cross‐linking through hydrosilation chemistry) 

Hydrosilation:Hydrosilation:

Proposed alternatives Thiol‐ene Click Chemistry

Acrylate Chemistry

Some other manufacturing techniques under development at LLNL

Projection Microstereolithography (PµSL)A photochemical and optical technique

Direct Ink Writing (DIW)Utilizes unique flow and

gelling properties

development at LLNL

Electrophoretic Deposition (EPD)Electrophoretic Deposition (EPD)Electric fields transport nanoparticles

Some other manufacturing techniques under development at LLNL

Projection Microstereolithography (PµSL)A photochemical and optical technique

Direct Ink Writing (DIW)Utilizes flow andgelling properties

development at LLNL

200 µm

200 m

Electrophoretic Deposition (EPD)

Electrophoretic Deposition (EPD)Electric fields transport nanoparticles

5 m5 m

Core-shell Direct Ink Write

Printed tubes fill d i hfilled with carbonate solvent

Permeable packing material

f ti li d ith CO t l tfunctionalized with CO2 catalysts

→better surface area-to-volume and faster reaction in absorbers

Conclusion

Microencapsulation and other advanced manufacturing techniques can enable new solvents and sorbents, leading to more energy-efficient and

capital-efficient carbon capture system.

Project Team

Joshuah K Stolaroff John J Vericella Sarah E Baker Eric B Duoss Cheng Zhu William Joshuah K. Stolaroff, John J. Vericella, Sarah E. Baker, Eric B. Duoss, Cheng Zhu, William L. Smith, James S. Oakdale, Bill Bourcier, Christopher M. Spadaccini, and Roger D. Aines

John Kitchen David Weitz

Collaborators

David Heldebrant Alissa Park Joan Brennecke

Acknowledgements

Lynn BrickettAndy Aurelio

Questions

top related