LN3 LTI Systems v1 2015

Post on 27-Feb-2018

217 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 1/32çiloğlu  1

LTI SYSTEMS

CONVOLUTION AND IMPULSE RESPONSE

The Lengths of Input and Output Sequences

Two interpretations of its computation

LINEAR BUT TIME-VARYING SYTEMS

FINITE/INFINITE IMPULSE RESPONSE SYSTEMS (FIR, IIR)

PROPERTIES OF LTI SYSTEMS

  Convolution is commutative

  Convolution is associative

  Cascading LTI Systems

  Parallel LTI Systems

  BIBO Stability

  Causal LTI Systems

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 2/32çiloğlu  2

LTI System

T{.}

 y n x nT

 x n y n

IMPULSE RESPONSE AND CONVOLUTION

Linearity      1 2 1 2a x n b x n a x n b x n T T T  

Time-invariance      0 0 x n y n x n n y n n T T .

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 3/32çiloğlu  3

An input signal can be written as

[] ⋯ + [1][ + 1] + [0][] + [1][ 1] + ⋯ 

[][ ]=−  

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 4/32çiloğlu  4

Using the linearity and time-invariance of the system the output of the LTI system

can be written as

[] []ℎ[ ]=−  

ℎ[][ ]

=−

 

where ℎ[] is the “impulse response” of the LTI system. 

This operation is called convolution of

[], and

ℎ[].

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 5/32çiloğlu  5

Derivation [] [] 

{ [][ ]

=− } 

[][ ]=−  

[]ℎ[ ]

=− 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 6/32çiloğlu  6

Convolution is shown by a ′ ∗ ′,

[] [] ∗ ℎ[] 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 7/32çiloğlu  7

It is easy to show that

[]ℎ[ ]=− ℎ[][ ]=−  

i.e., [] ∗ ℎ[] ℎ[] ∗ [] 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 8/32çiloğlu  8

Note that

[] []ℎ[ ]

=− 

ℎ[][ ]=−   +  

[] ∗ ℎ[] 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 9/32çiloğlu  9

Ex:

[] ℎ[]⏟ [] + ℎ[ 1]⏟ [] or equivalently

[] [] + [ 1] + [ 2] 

 

 

[] 

 ……  

 

 

ℎ[] 

 …  …  

 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 10/32çiloğlu  10

Ex: The output can be considered as the superposition of responses to individual

samples of the input. 

The response to [2] 

The response to [0] 

The response to

[3] 

The complete response

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 11/32çiloğlu  11

To compute one output sample at a time:

For example, to get [3] 

1) multiply the two sequences [] and ℎ[3 ] 

2) Add the sample values of this product

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 12/32çiloğlu  12

Ex:

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 13/32çiloğlu  13

THE LENGTHS OF INPUT AND OUTPUT SEQUENCES

Suppose that the input signal and the impulse response have finite durations:

Input

[]  : length

 

Imp. Resp. ℎ[] : length  

Then the length of the output signal is + 1.

Output []  : length + 1 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 14/32çiloğlu  14

Ex:

Input

[]  : length is 6 samples

Imp. Resp. ℎ[] : length is 3 samples

Output [] : length is 8 samples 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 15/32çiloğlu  15

CONVOLUTION IN MATLAB

>> help conv

conv Convolution and polynomial multiplication.

C = conv(A, B) convolves vectors A and B.

The resulting vector is lengthMAX([LENGTH(A)+LENGTH(B)-1,LENGTH(A),LENGTH(B)]).

If A and B are vectors of polynomial coefficients,

convolving them is equivalent to multiplying the two

polynomials.

C = conv(A, B, SHAPE) returns a subsection of the

convolution with

size

specified by SHAPE:'full' - (default) returns the full convolution,

'same' - returns the central part of the convolution

that is the same size as A.

'valid' - returns only those parts of the convolution

that are computed without the zero-padded edges.

LENGTH(C)is MAX(LENGTH(A)-MAX(0,LENGTH(B)-1),0).

Class support for inputs A,B:

float: double, single

See also deconv, conv2, convn, filter and,

in the signal Processing Toolbox, xcorr, convmtx.

Overloaded methods:

cvx/conv

gf/conv

gpuArray/conv

Reference page in Help browser

doc conv

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 16/32çiloğlu  16

Exercise: Compare “conv” and “filter” commands

Exercise for enthusiastic readers: Study “deconv” command. 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 17/32çiloğlu  17

Play and experiment with code1_LN3.m

clear all close all 

h = [2 -3 1]; x = [1 0 0 0 -2]; 

% h = [2 -3 1 -1 4]; % x = rand(1,5); % uniformly distributed numbers from

[0,1] % x = 2*(rand(1,5)-0.5); % uniformly distributed numbers from

[-1,1]%

% x = rand(1,randi(7,1)) % x = rand(1,randi(7,1)) % uniformly distributed numbers from[0,1], signal length is also random y = conv(x,h) 

nh = 0:length(h)-1; nx = 0:length(x)-1; ny = 0:length(y)-1; 

mini = min([h x y]); 

maxi = max([h x y]); 

figure subplot(3,1,1); stem(nh,h,'linewidth',2); v = axis; v = [v(1)-1 length(y) mini maxi]; axis(v) subplot(3,1,2); stem(nx,x,'r','linewidth',2) v = axis; 

v = [v(1)-1 length(y) mini maxi]; axis(v) subplot(3,1,3); stem(ny,y,'k','linewidth',2) v = axis; v = [v(1)-1 length(y) mini maxi]; axis(v) 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 18/32çiloğlu  18

and also with code2_LN3.m 

clear all close all 

h = [2 -3 1 ] x = [1 0 0 0 -2] y = conv(h,x) yy = filter(h,1,x) yyy = filter(x,1,h) 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 19/32çiloğlu  19

LINEAR BUT TIME-VARYING SYTEMS

If the system is linear but time-varying, the derivation on the first page yields

[] []ℎ[]=−  

where ℎ[] is the response of the system to an impulse at time k  , i.e, [ ].

(time-varying impulse response)

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 20/32çiloğlu  20

LTV systems are used, for example, to model mobile communication channels.

In mobile communication channel impulse response changes due to the motion of

the transmitter and receiver, and also due to the change or moving objects in the

environment.

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 21/32çiloğlu  21

FINITE/INFINITE IMPULSE RESPONSE SYSTEMS 

If ℎ[] has a finite number of samples, i.e.,

ℎ[] 0 , < , > , <  

then the system is said to be a Finite Impulse Response (FIR) system, otherwise an

Infinite Impulse Response (IIR) system.

FIR

IIR

n

h n

n

h n

1 N 

  2 N 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 22/32çiloğlu  22

Ex:

FIR or IIR ?

[] 0.3 [] 2 [ 4] 

[] 0.7 [ 1] [] 

[] 0.4 [] 2 [ 4] + 5 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 23/32çiloğlu  23

PROPERTIES OF LTI SYSTEMS

CONVOLUTION IS COMMUTATIVE 

[] ∗ ℎ[] ℎ[] ∗ [] 

[] ∗ ℎ[] []ℎ[ ]=−  

Let  

[ ]ℎ[]=−  

ℎ[] ∗ [] 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 24/32çiloğlu  24

CONVOLUTION IS ASSOCIATIVE 

([] ∗ []) ∗ [] [] ∗ ([] ∗ []) 

Prove!

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 25/32çiloğlu  25

CASCADING LTI SYSTEMS 

[] ∗ ℎ[] 

[] ([] ∗ ℎ[]) ∗ ℎ[] 

[] ∗ (ℎ[] ∗ ℎ[]) 

[] ∗ (ℎ[] ∗ ℎ[]) 

([] ∗ ℎ[]) ∗ ℎ[] 

  If the systems are LTI, the order of cascade can be changed!

h1 h2  x n

h2 h1

 x n

 y n

n y

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 26/32çiloğlu  26

Ex: Consider the following two systems described by

[] [] + [ 1] + [ 2] 

and

[] [ ]=  

[] + [ 1] + [ 2] + ⋯ 

They are LTI (check!), so their order is arbitrary in their cascade connection.

Show that their impulse responses are

ℎ[] [] + [ 3] 

[] + [ 1] + [ 2] 

ℎ[] [] 

What is the impulse response of their cascade?

Can you write a recursive description for the second system?

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 27/32çiloğlu  27

Ex: Let two systems be described by

[] [ 2] 

and

[] [] 

Their impulse responses

ℎ[] [ 2] and

ℎ[] []  ‼! 

However, one of them is nonlinear so their order cannot be changed in their

cascade.

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 28/32çiloğlu  28

PARALLEL LTI SYSTEMS

is equivalent to

h1[n]+h2[n]  x n  y n

h2[n] 

h1[n] 

 x n  y n+

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 29/32çiloğlu  29

BIBO STABILITY 

An LTI system is BIBO stable iff

|ℎ[]|=−  

where  is a finite constant.

i.e., impulse response is absolutely summable.

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 30/32çiloğlu  30

Proof:

Sufficiency:

|[]| ℎ[][ ]

=−   |ℎ[]| [ ]⏟ ≤

=−  

|ℎ[]| 

=− 

so if ∑ |ℎ[]|=−   then |[]|  

Necessity: (by contradiction)

Assume that the impulse response is not absolutely summable, i.e. n

h n

 

|ℎ[]|=− → ∞ 

Also let

[] ℎ[]|ℎ[]|   ℎ[] ≠ 0

  0 ℎ[] 0 

so that [] is bounded.

Now consider

[0] ℎ[][]=− ℎ[] ℎ[]|ℎ[]|

=− |ℎ[]|

=− → ∞ 

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 31/32çiloğlu  31

FIR (LTI) SYSTEMS ARE ALWAYS STABLE

Why?

7/25/2019 LN3 LTI Systems v1 2015

http://slidepdf.com/reader/full/ln3-lti-systems-v1-2015 32/32

CAUSAL LTI SYSTEMS

An LTI system is causal iff

ℎ[] 0 < 0 

top related