Introduction to magnetismmagnetism.eu/esm/2009/slides/simon-slides-1.pdf · suppresses the corresponding symmetry elements. models in magnetism timisoara 31. ... Applications •

Post on 25-Oct-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Introduction to the physics of multiferroics

Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN,

F14050 Caen.

“Models in magnetism: from basics aspects to practical use”Timisoara september 2009

models in magnetism timisoara 2

SummaryIntroduction and definitionsThe example of YMnO3Origin of the coupling term Dzyaloshinskii-Moriya Importance of symmetryApplicationsSome examplesLandau theory and symmetriesThe example of MnWO4

Examples are taken in work of Natalia Bellido, Damien Saurel, Kiran Singh and Bohdan Kundys

models in magnetism timisoara 3

What is a multiferroic?Definitions are various: For me in this lecture:

A ferromagnetic and ferroelectric compound. (spontaneous magnetization in zero field and spontaneous polarization in zero field)

It was predicted by P. Curie in 1894 “Les conditions de symétrie nous permettent d’imaginer qu’un corps se polarise magnétiquement lorsqu’on lui applique un champ électrique”

Debye in 1926: magnetoélectricLandau in 1957

Dzyaloshinskii in 1959 predicts that Cr2 O3 magnetoelectric

Astrov et al. 1960 E induces M, Folen, Rado Stalker 1961, B induces P.

models in magnetism timisoara 4

One example: YMnO3

MnO5

Hexagonal : P63 cm

a

b

Mn3+ S=2 cY3+

ferroelectric

models in magnetism timisoara 5

Why this example

• Because is it quite simple in symmetry and interactions

• However, this is rather complex, and if you find it difficult, this is normal, I find it complex.

models in magnetism timisoara 6

Pc

T

5.5μC/cm2

900K

c

Experimental difficulty

C=ε0 εS/t

P=II(t)dt

models in magnetism timisoara 7

0 50 100 150 2004.4

4.6

4.8

5.0

5.2

5.4

χ (1

0-3 e

mu/

mol

)

T (K) 0 2 4 6 8 10 12 140.00

0.05

0.10

0.15 from T=10K to T=100K

M(μ

B/fu

)

μ Η(T)

Antiferromagnetism

Mn3+

L : alternate magnetization

models in magnetism timisoara 8

L = Σ

Si exp(2iπ

Qri )Order parameter

Neutron scattering

models in magnetism timisoara 9

0 20 40 60 80 100 120

16.5

17.0

17.5

18.0

ε

T(K)

YMnO3 - ε(T)

2L−∝ε

ε

= 1/ ε0

dP/dE dielectric constant

models in magnetism timisoara 10

Pc

T

5.5μC/cm2

900K

cTN

models in magnetism timisoara 11

0 20 40 60 80 100

0.000410

0.000415

0.000420

0.000425

0.000430

M(e

mu)

T(K)

Small ferromagnetic component along c induced by the ferroelectric component

L order parameterP non zero everywhere, secondaryM third order

Pc

T

5.5μC/cm2

TN

models in magnetism timisoara 12

Pailhes et al., 2009

They don’t vary in the same way.

models in magnetism timisoara 13

After Pailhes et al. Hybrid modes

models in magnetism timisoara 14

questions

• YMnO3 is ferromagnetic (?) below TN !– This was already published by Bertaut

models in magnetism timisoara 15

questions

• YMnO3 is ferromagnetic (?) below TN !• What is the origin of the coupling? Why

there is an effect on polarization? – Two steps

• The microscopic coupling (exchange, LS coupling)• The long range ordering (symmetry)

– Both are difficult

models in magnetism timisoara 16

Origin of the coupling term

1 Displacement of oxygen is responsible to the polarization

2 Origin of the antiferromagnetism?superexchange by oxygen

3 antiferromagnetism by superexchangechanges the energy and the polarization

4 It induces a ferromagnetic component.

models in magnetism timisoara 17

Superexchange explanation?

• Does superexchange enough to understand the coupling? – No, because of the symmetry. If you add the

three contributions, they cancel by symmetry.

models in magnetism timisoara 18

Cancel by symmetry

After I. A. Sergienko and E. Dagotto

models in magnetism timisoara 19

On the contrary, the Dzyaloshinskii-Moriya interaction— i.e., anisotropic exchangeinteraction Sn x Sn+1 — changes its sign under inversion.

models in magnetism timisoara 20

Dzyaloshinskii-Moriya interaction

• Of course, this expansion in term of LS coupling does not mean that this term in the dominant one, but an least, this is the first one you can think about.

models in magnetism timisoara 21

models in magnetism timisoara 22

Sn

Sn+1

Sn x Sn+1

Sn

Sn+1

Sn x Sn+1

Effect of inversion

models in magnetism timisoara 23

• The problem is the symmetry• The solution is the symmetry• The method in Landau theory

models in magnetism timisoara 24

YMnO3 symmetry

• Non ferroelectric P63/mmc (194)

• ferroelectric P63cm (185).

M=0

Mc can be non zero

models in magnetism timisoara 25

1 identity

2 symmetry by a plane

No in plane components

3 rotation axis 2 with translation

C axis component possible

4 combinations of two

models in magnetism timisoara 26

YMnO3 symmetry

Non ferroferro

models in magnetism timisoara 27

• Symmetry analysis shows that the experimental observation was the only possible one.

models in magnetism timisoara 28

models in magnetism timisoara 29

Symmetry restrictions

models in magnetism timisoara 30

• This is very limited• Solution: incommensurability

– An incommensurate modulation of the magnetism with a ferromagnetic component suppresses the corresponding symmetry elements

models in magnetism timisoara 31

models in magnetism timisoara 32

Applications• Magnetic memories that you can write with electric field• RAM (random acces memory) FRAM (ferroélectric, no battery), MRAM

(magnétic, no battery, difficult to write).• Multiferro: write with electric field, read with magnetic sensor.

models in magnetism timisoara 33

GMR

R

M

I

models in magnetism timisoara 34

R

M

I

Write multiferro

P

models in magnetism timisoara 35

One historical example: Boracites

models in magnetism timisoara 36

Ni3 B7 O13 I

models in magnetism timisoara 37

Other materials• Structure: perovskite: BiFeO3 PrMnO3

• Structure: hexagonal: MMnO3 M=Y, Ho, etc…• Boracites• Spiral magnetic order: TbMnO3 MnWO4

• Fe Langasites.

models in magnetism timisoara 38

models in magnetism timisoara 39

Tenurite CuO

models in magnetism timisoara 40

4 6 8 10 12 14

7.72

7.73

7.74Co3V2O8

T(K)

ε

Kagome staircase - Co3 V2 O8

4 6 8 10 12 140.0

0.1

0.2

0.3

0.4

0.5

0.6

δ=0

δ=1/3

δ=1/2

δ

T(K)

Ni3 V2 O8 [1]: S=1Co3 V2 O8 [1]: S=3/2 β-Cu3 V2 O8 [2]: S=1/2

models in magnetism timisoara 41

Eu0.75 Y0.25 MnO3

H=0

H

models in magnetism timisoara 42

CuCrO2

Complexincommensuratestructure

models in magnetism timisoara 43

CuCrO2

-10 -8 -6 -4 -2 0 2 4 6 8 10

-1

0

1

2

3

4

-10 -8 -6 -4 -2 0 2 4 6 8 10

13

14

15

16

17

18

19

20

21

(c)20K

Tran

sver

sal m

agne

tost

rictio

n, Δ

L/L*

106

H(T)

(b)

Pol

ariz

atio

n, P

(μC

/m2 )

H(T)

Time(Sec)

Bohdan Kundys, Maria Poienar, Antoine Maignan, Christine Martin, Charles Simon

( ) gLPEPPLFF AFM +−+= 2α

bdHTTaL N 2/))(( 22 +−−=

models in magnetism timisoara 44

FeVO4

6 Fe3+ 5/2 in a triclinic structure 1

models in magnetism timisoara 45

FeVO4

models in magnetism timisoara 46

FeCuO2

models in magnetism timisoara 47

A ferroic material

Free energy from “Landau”

Tc

M

Température

MHMcMcMcMcFF −+++++= ....44

33

2210

MHMbMaFF FMFM −++= 42

420

PEPPFF FEFE −++= 42

420

βα

Ferromagnet

Tc

P

Température

PEPcPcPcPcFF −+++++= ....44

33

2210

+Q

-QPr

Ferroelectric

-Q

+QPr

models in magnetism timisoara 49

T>Tc

T<Tc

MHMbMaFF FMFM −++= 42

420

a is linear in T-Tc

M2 = -a/b H

T

models in magnetism timisoara 50

Interactions and symmetries

• This example is too simple: the symmetry is hidden and the role of the interactions is not clear

models in magnetism timisoara 51

• We have already discussed in this school the possible origins of ferromagnetism

• Let us discuss briefly the possible origin of ferroelectricity:– A shift of one of the atoms from the

symmetrical position due electron electron repulsion

Free energy from “Landau”

Tc

M

Température

MHMcMcMcMcFF −+++++= ....44

33

2210

MHMbMaFF FMFM −++= 42

420

PEPPFF FEFE −++= 42

420

βα

Ferromagnet

Tc

P

Température

PEPcPcPcPcFF −+++++= ....44

33

2210

+Q

-QPr

Ferroelectric

-Q

+QPr

models in magnetism timisoara 53

A little more about Landau• Paraelectric I 4/mmm to

ferroelectric II at Tc.• F is formed by

successive invariants

From P. Toledano

models in magnetism timisoara 54

• Quadratic invariants Px2+Py2, Pz2

• Quartic invariants (Px2+Py2) 2, Pz4, Px4+Py4, (PxPy)2

• F=F0 +a/2(Px2+Py2)+a’/2 Pz2+…

• Minimization of F with respect to Px,Py,Pz• a or a’ changes sign first (assume a, a’>0)

models in magnetism timisoara 55

• Then, Pz2 = -a/b• Pz is the order parameter.

Tc

P

Température

PEPcPcPcPcFF −+++++= ....44

33

2210

+Q

-QPr

Ferroelectric

models in magnetism timisoara 56

Pz 4mm dimension 1Pxy 2mm dimension 2

Subgroups of 4/mmm

• Two possibilities:

models in magnetism timisoara 57

Secondary order parameterLet us call e the strain tensor

models in magnetism timisoara 58

Magnetic energyExample 4 atoms in Pca21

models in magnetism timisoara 59

• This is rather complex, because spins don’t transform with the same symmetry operations than the “real” vectors,

• S x S is also different.

models in magnetism timisoara 60

• One example: in a mirror

Real vector Axial vector S x S vector

models in magnetism timisoara 61

In addition

• Incommensurate modulations suppressesSymmetry elements.

I have no time to explain details

models in magnetism timisoara 62

MnWO4ferroelectric

models in magnetism timisoara 63

MnWO4sensitive to magnetic field

models in magnetism timisoara 64

AF1, AF2, AF3

Collinear 1/4,,1/2,1/2

-0.241,1/2,0.457

P along a

models in magnetism timisoara 65

• The symmetry analysis was made by P. Toledano, and we find all the observed phases as possible sub groups

models in magnetism timisoara 66

models in magnetism timisoara 67

Pr1/2 Ca1/2 MnO3CE type

Ferromagnetic coupling

models in magnetism timisoara 68

No centrosymmetry

From Khomskii et al.

models in magnetism timisoara 69

models in magnetism timisoara 70

models in magnetism timisoara 71

No ferroelectricity

Electric susceptibility

χ

= ε-1

YMnO3 - Landau

23

22

210 )( HcTLcTc +−+= εε

=+++= couplFEAFM FFFFF 0Free energy :

Minimization : 00 22 =++−⇒=∂∂ PHgPLEPPF γα

EHgL

P 221

γα ++=

++++= 2242

0 42HcLLbLaF EPPHcLLbLaF −++++=

242

222

42

0 α 22222

2242

0 22242HPLPgEPPHcLLbLaF γα ++−++++=

∼20 ∼1 ∼10-4

YMnO3 – Anomaly in ε(T)

221

HgL γαχ

++=

2

2

211)0,0(),0()(

αααεεε gL

gLLHLHT −≈−

+===−==Δ

models in magnetism timisoara 74

YMnO3 – ε(H)Er

Br

0.00

0.02

0.04

T=90KT=80KT=70K

T=60KT=50KT=40K

T=30KT=20K

T=10K

0.00

0.02

0.04

-10 -5 0 5 10

0.00

0.02

0.04

μ0H(T)-10 -5 0 5 10

ΔεH/ε0(%)

μ0H(T)-10 -5 0 5 10 15

μ0H(T)

0 20 40 60 800

1

2

3

coef

fient

me

x1012

(T-2)

T(K) Paramagnet

Δε~10-4

models in magnetism timisoara 75

YMnO3 –magnétodiélectric effect ε(H) in H2

2

2

22211

),0(),()(

αγ

αγα

εεε

HgLHgL

LHLHH

−≈+

−++

=

==−=Δ

221

HgL γαχ

++=

⎟⎟⎠

⎞⎜⎜⎝

⎛−−≈Δ

ααγε

2

2

2

21)( gLHH

⎟⎠⎞⎜

⎝⎛ −+= 2222 LLLL

fluctuations~χL

0 20 40 60 800

1

2

3

coef

fient

me

x1012

(T-2)

T(K)

γ

models in magnetism timisoara 76

0 20 40 60 800

1

2

3

coef

fient

me

x1012

(T-2)

T(K)

YMnO3 constante diélectrique

⎟⎟⎠

⎞⎜⎜⎝

⎛−

+−−+=NTT

HLgTc λαγ

αεε 12

22

22

10

models in magnetism timisoara 77

CuCrO2

-10 -8 -6 -4 -2 0 2 4 6 8 10-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

22K

21K

23K

24K

15K

10K

6K

27K

25K

100kHz

Δε'/ε

' H=0

(%)

H(T)

0 12 24 36 484.0x10-5

4.2x10-5

4.4x10-5

0

1

2

3

4

5TN

χ (e

mu.

g-1)

T(K)

-Δε'/ε' H

=0 (%

)

Co3 V2 O8

-10 -5 0 5 10-6

-3

0

3

6

M (μB/f.u.)

μ0H(T)

-6

-3

0

3

6

T=50K

T=20K

-6

-3

0

3

6

T=7K

-10 -5 0 5 10-0.10

-0.05

0.00

μ0H(T)

-0.15

-0.10

-0.05

0.00

-0.10

-0.05

0.00

ΔεΗ/ε0

(%)

-10 -5 0 5 10

0.3

0.4

0.5

dM/dH(μB/T·f.u.)

μ0H(T)

0.5

1.0

T=50K

T=20K

0

5

10

15

T=7K

T=7K

T=20K

T=50K

Δε∼χ

models in magnetism timisoara 79

Ca3 Co2 O6 – magnetization plateaux

Polyhèdra CoO6 :

triangular prism S=2

octahedra S= 0

Ferromagnet intrachain interac.

Triangular ising lattice

Antiferromagnetic interchain (TN =24K)

0 1 2 3 4 5 60

1

2

3

4

5

T=10K

M (μ

B/f.u

.)

μ0H(T)0 2 4 6 8 10

0

1

2

3

4

5

T=2K

M (μ

B/f.u

.)

μ0H(T)

ΔH=3.6T ΔH=1.2T

R-3cm

models in magnetism timisoara 80

Ca3 Co2 O6

0 1 2 3 4 5 60

1

2

3

4

5

M

(μB/

f.u.)

μ0H(T)

0 1 2 3 4 5 6

-1

0

Δε H

/εsa

t (%

)

μ0H(T)

T=10K

0 1 2 3 4 5 60.0

0.5

1.0

1.5

χ(μ B/

T·f.u

.)

μ0H(T)

Δε∼-χ

No polarization

models in magnetism timisoara 81

MnWO4A nice example

models in magnetism timisoara 82

P.G. Radaelli and L.C. Chapon, PRB, 76054428(2007)

models in magnetism timisoara 83

models in magnetism timisoara 84

models in magnetism timisoara 85

Conclusion• Spin orbit coupling is necessary to create coupling between ferromagnetism

and ferroelectricity• Incommensurability is very useful to help with symmetry• There is no ab initio calculation of the intensity of the coupling• There is more to understand in the coupling terms• Magnetic group theory is needed.

top related