Top Banner
Introduction to the physics of multiferroics Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. “Models in magnetism: from basics aspects to practical use” Timisoara september 2009
85

Introduction to magnetismmagnetism.eu/esm/2009/slides/simon-slides-1.pdf · suppresses the corresponding symmetry elements. models in magnetism timisoara 31. ... Applications •

Oct 25, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Introduction to the physics of multiferroics

    Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN,

    F14050 Caen.

    “Models in magnetism: from basics aspects to practical use”Timisoara september 2009

  • models in magnetism timisoara 2

    SummaryIntroduction and definitionsThe example of YMnO3Origin of the coupling term Dzyaloshinskii-Moriya Importance of symmetryApplicationsSome examplesLandau theory and symmetriesThe example of MnWO4

    Examples are taken in work of Natalia Bellido, Damien Saurel, Kiran Singh and Bohdan Kundys

  • models in magnetism timisoara 3

    What is a multiferroic?Definitions are various: For me in this lecture:

    A ferromagnetic and ferroelectric compound. (spontaneous magnetization in zero field and spontaneous polarization in zero field)

    It was predicted by P. Curie in 1894 “Les conditions de symétrie nous permettent d’imaginer qu’un corps se polarise magnétiquement lorsqu’on lui applique un champ électrique”

    Debye in 1926: magnetoélectricLandau in 1957

    Dzyaloshinskii in 1959 predicts that Cr2 O3 magnetoelectric

    Astrov et al. 1960 E induces M, Folen, Rado Stalker 1961, B induces P.

  • models in magnetism timisoara 4

    One example: YMnO3

    MnO5

    Hexagonal : P63 cm

    a

    b

    Mn3+ S=2 cY3+

    ferroelectric

  • models in magnetism timisoara 5

    Why this example

    • Because is it quite simple in symmetry and interactions

    • However, this is rather complex, and if you find it difficult, this is normal, I find it complex.

  • models in magnetism timisoara 6

    Pc

    T

    5.5μC/cm2

    900K

    c

    Experimental difficulty

    C=ε0 εS/t

    P=II(t)dt

  • models in magnetism timisoara 7

    0 50 100 150 2004.4

    4.6

    4.8

    5.0

    5.2

    5.4

    χ (1

    0-3 e

    mu/

    mol

    )

    T (K) 0 2 4 6 8 10 12 140.00

    0.05

    0.10

    0.15 from T=10K to T=100K

    M(μ

    B/fu

    )

    μ Η(T)

    Antiferromagnetism

    Mn3+

    L : alternate magnetization

  • models in magnetism timisoara 8

    L = Σ

    Si exp(2iπ

    Qri )Order parameter

    Neutron scattering

  • models in magnetism timisoara 9

    0 20 40 60 80 100 120

    16.5

    17.0

    17.5

    18.0

    ε

    T(K)

    YMnO3 - ε(T)

    2L−∝ε

    ε

    = 1/ ε0

    dP/dE dielectric constant

  • models in magnetism timisoara 10

    Pc

    T

    5.5μC/cm2

    900K

    cTN

  • models in magnetism timisoara 11

    0 20 40 60 80 100

    0.000410

    0.000415

    0.000420

    0.000425

    0.000430

    M(e

    mu)

    T(K)

    Small ferromagnetic component along c induced by the ferroelectric component

    L order parameterP non zero everywhere, secondaryM third order

    Pc

    T

    5.5μC/cm2

    TN

  • models in magnetism timisoara 12

    Pailhes et al., 2009

    They don’t vary in the same way.

  • models in magnetism timisoara 13

    After Pailhes et al. Hybrid modes

  • models in magnetism timisoara 14

    questions

    • YMnO3 is ferromagnetic (?) below TN !– This was already published by Bertaut

  • models in magnetism timisoara 15

    questions

    • YMnO3 is ferromagnetic (?) below TN !• What is the origin of the coupling? Why

    there is an effect on polarization? – Two steps

    • The microscopic coupling (exchange, LS coupling)• The long range ordering (symmetry)

    – Both are difficult

  • models in magnetism timisoara 16

    Origin of the coupling term

    1 Displacement of oxygen is responsible to the polarization

    2 Origin of the antiferromagnetism?superexchange by oxygen

    3 antiferromagnetism by superexchangechanges the energy and the polarization

    4 It induces a ferromagnetic component.

  • models in magnetism timisoara 17

    Superexchange explanation?

    • Does superexchange enough to understand the coupling? – No, because of the symmetry. If you add the

    three contributions, they cancel by symmetry.

  • models in magnetism timisoara 18

    Cancel by symmetry

    After I. A. Sergienko and E. Dagotto

  • models in magnetism timisoara 19

    On the contrary, the Dzyaloshinskii-Moriya interaction— i.e., anisotropic exchangeinteraction Sn x Sn+1 — changes its sign under inversion.

  • models in magnetism timisoara 20

    Dzyaloshinskii-Moriya interaction

    • Of course, this expansion in term of LS coupling does not mean that this term in the dominant one, but an least, this is the first one you can think about.

  • models in magnetism timisoara 21

  • models in magnetism timisoara 22

    Sn

    Sn+1

    Sn x Sn+1

    Sn

    Sn+1

    Sn x Sn+1

    Effect of inversion

  • models in magnetism timisoara 23

    • The problem is the symmetry• The solution is the symmetry• The method in Landau theory

  • models in magnetism timisoara 24

    YMnO3 symmetry

    • Non ferroelectric P63/mmc (194)

    • ferroelectric P63cm (185).

    M=0

    Mc can be non zero

  • models in magnetism timisoara 25

    1 identity

    2 symmetry by a plane

    No in plane components

    3 rotation axis 2 with translation

    C axis component possible

    4 combinations of two

  • models in magnetism timisoara 26

    YMnO3 symmetry

    Non ferroferro

  • models in magnetism timisoara 27

    • Symmetry analysis shows that the experimental observation was the only possible one.

  • models in magnetism timisoara 28

  • models in magnetism timisoara 29

    Symmetry restrictions

  • models in magnetism timisoara 30

    • This is very limited• Solution: incommensurability

    – An incommensurate modulation of the magnetism with a ferromagnetic component suppresses the corresponding symmetry elements

  • models in magnetism timisoara 31

  • models in magnetism timisoara 32

    Applications• Magnetic memories that you can write with electric field• RAM (random acces memory) FRAM (ferroélectric, no battery), MRAM

    (magnétic, no battery, difficult to write).• Multiferro: write with electric field, read with magnetic sensor.

  • models in magnetism timisoara 33

    GMR

    R

    M

    I

  • models in magnetism timisoara 34

    R

    M

    I

    Write multiferro

    P

  • models in magnetism timisoara 35

    One historical example: Boracites

  • models in magnetism timisoara 36

    Ni3 B7 O13 I

  • models in magnetism timisoara 37

    Other materials• Structure: perovskite: BiFeO3 PrMnO3• Structure: hexagonal: MMnO3 M=Y, Ho, etc…• Boracites• Spiral magnetic order: TbMnO3 MnWO4• Fe Langasites.

  • models in magnetism timisoara 38

  • models in magnetism timisoara 39

    Tenurite CuO

  • models in magnetism timisoara 40

    4 6 8 10 12 14

    7.72

    7.73

    7.74Co3V2O8

    T(K)

    ε

    Kagome staircase - Co3 V2 O8

    4 6 8 10 12 140.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    δ=0

    δ=1/3

    δ=1/2

    δ

    T(K)

    Ni3 V2 O8 [1]: S=1Co3 V2 O8 [1]: S=3/2 β-Cu3 V2 O8 [2]: S=1/2

  • models in magnetism timisoara 41

    Eu0.75 Y0.25 MnO3

    H=0

    H

  • models in magnetism timisoara 42

    CuCrO2

    Complexincommensuratestructure

  • models in magnetism timisoara 43

    CuCrO2

    -10 -8 -6 -4 -2 0 2 4 6 8 10

    -1

    0

    1

    2

    3

    4

    -10 -8 -6 -4 -2 0 2 4 6 8 10

    13

    14

    15

    16

    17

    18

    19

    20

    21

    (c)20K

    Tran

    sver

    sal m

    agne

    tost

    rictio

    n, Δ

    L/L*

    106

    H(T)

    (b)

    Pol

    ariz

    atio

    n, P

    (μC

    /m2 )

    H(T)

    Time(Sec)

    Bohdan Kundys, Maria Poienar, Antoine Maignan, Christine Martin, Charles Simon

    ( ) gLPEPPLFF AFM +−+= 2α

    bdHTTaL N 2/))((22 +−−=

  • models in magnetism timisoara 44

    FeVO4

    6 Fe3+ 5/2 in a triclinic structure 1

  • models in magnetism timisoara 45

    FeVO4

  • models in magnetism timisoara 46

    FeCuO2

  • models in magnetism timisoara 47

    A ferroic material

  • Free energy from “Landau”

    Tc

    M

    Température

    MHMcMcMcMcFF −+++++= ....443

    32

    210

    MHMbMaFF FMFM −++=42

    420

    PEPPFF FEFE −++=42

    420βα

    Ferromagnet

    Tc

    P

    Température

    PEPcPcPcPcFF −+++++= ....443

    32

    210

    +Q

    -QPr

    Ferroelectric

    -Q

    +QPr

  • models in magnetism timisoara 49

    T>Tc

    T

  • models in magnetism timisoara 50

    Interactions and symmetries

    • This example is too simple: the symmetry is hidden and the role of the interactions is not clear

  • models in magnetism timisoara 51

    • We have already discussed in this school the possible origins of ferromagnetism

    • Let us discuss briefly the possible origin of ferroelectricity:– A shift of one of the atoms from the

    symmetrical position due electron electron repulsion

  • Free energy from “Landau”

    Tc

    M

    Température

    MHMcMcMcMcFF −+++++= ....443

    32

    210

    MHMbMaFF FMFM −++=42

    420

    PEPPFF FEFE −++=42

    420βα

    Ferromagnet

    Tc

    P

    Température

    PEPcPcPcPcFF −+++++= ....443

    32

    210

    +Q

    -QPr

    Ferroelectric

    -Q

    +QPr

  • models in magnetism timisoara 53

    A little more about Landau• Paraelectric I 4/mmm to

    ferroelectric II at Tc.• F is formed by

    successive invariants

    From P. Toledano

  • models in magnetism timisoara 54

    • Quadratic invariants Px2+Py2, Pz2

    • Quartic invariants (Px2+Py2) 2, Pz4, Px4+Py4, (PxPy)2

    • F=F0 +a/2(Px2+Py2)+a’/2 Pz2+…

    • Minimization of F with respect to Px,Py,Pz• a or a’ changes sign first (assume a, a’>0)

  • models in magnetism timisoara 55

    • Then, Pz2 = -a/b• Pz is the order parameter.

    Tc

    P

    Température

    PEPcPcPcPcFF −+++++= ....443

    32

    210

    +Q

    -QPr

    Ferroelectric

  • models in magnetism timisoara 56

    Pz 4mm dimension 1Pxy 2mm dimension 2

    Subgroups of 4/mmm

    • Two possibilities:

  • models in magnetism timisoara 57

    Secondary order parameterLet us call e the strain tensor

  • models in magnetism timisoara 58

    Magnetic energyExample 4 atoms in Pca21

  • models in magnetism timisoara 59

    • This is rather complex, because spins don’t transform with the same symmetry operations than the “real” vectors,

    • S x S is also different.

  • models in magnetism timisoara 60

    • One example: in a mirror

    Real vector Axial vector S x S vector

  • models in magnetism timisoara 61

    In addition

    • Incommensurate modulations suppressesSymmetry elements.

    I have no time to explain details

  • models in magnetism timisoara 62

    MnWO4ferroelectric

  • models in magnetism timisoara 63

    MnWO4sensitive to magnetic field

  • models in magnetism timisoara 64

    AF1, AF2, AF3

    Collinear 1/4,,1/2,1/2

    -0.241,1/2,0.457

    P along a

  • models in magnetism timisoara 65

    • The symmetry analysis was made by P. Toledano, and we find all the observed phases as possible sub groups

  • models in magnetism timisoara 66

  • models in magnetism timisoara 67

    Pr1/2 Ca1/2 MnO3CE type

    Ferromagnetic coupling

  • models in magnetism timisoara 68

    No centrosymmetry

    From Khomskii et al.

  • models in magnetism timisoara 69

  • models in magnetism timisoara 70

  • models in magnetism timisoara 71

    No ferroelectricity

  • Electric susceptibility

    χ

    = ε-1

    YMnO3 - Landau

    23

    22

    210 )( HcTLcTc +−+= εε

    =+++= couplFEAFM FFFFF 0Free energy :

    Minimization : 00 22 =++−⇒=∂∂ PHgPLEPPF γα

    EHgL

    P 221

    γα ++=

    ++++= 2242

    0 42HcLLbLaF EPPHcLLbLaF −++++=

    242

    222

    42

    0 α2222

    222

    42

    0 22242HPLPgEPPHcLLbLaF γα ++−++++=

    ∼20 ∼1 ∼10-4

  • YMnO3 – Anomaly in ε(T)

    221

    HgL γαχ

    ++=

    2

    2

    211)0,0(),0()(

    αααεεε gL

    gLLHLHT −≈−

    +===−==Δ

  • models in magnetism timisoara 74

    YMnO3 – ε(H)Er

    Br

    0.00

    0.02

    0.04

    T=90KT=80KT=70K

    T=60KT=50KT=40K

    T=30KT=20K

    T=10K

    0.00

    0.02

    0.04

    -10 -5 0 5 10

    0.00

    0.02

    0.04

    μ0H(T)-10 -5 0 5 10

    ΔεH/ε0(%)

    μ0H(T)-10 -5 0 5 10 15

    μ0H(T)

    0 20 40 60 800

    1

    2

    3

    coef

    fient

    me

    x101

    2 (T-2)

    T(K) Paramagnet

    Δε~10-4

  • models in magnetism timisoara 75

    YMnO3 –magnétodiélectric effect ε(H) in H2

    2

    2

    22211

    ),0(),()(

    αγ

    αγα

    εεε

    HgLHgL

    LHLHH

    −≈+

    −++

    =

    ==−=Δ

    221

    HgL γαχ

    ++=

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−−≈Δ

    ααγε

    2

    2

    2

    21)( gLHH

    ⎟⎠⎞⎜

    ⎝⎛ −+= 2222 LLLL

    fluctuations~χL

    0 20 40 60 800

    1

    2

    3

    coef

    fient

    me

    x101

    2 (T-2)

    T(K)

    γ

  • models in magnetism timisoara 76

    0 20 40 60 800

    1

    2

    3

    coef

    fient

    me

    x101

    2 (T-2)

    T(K)

    YMnO3 constante diélectrique

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    +−−+=NTT

    HLgTc λαγ

    αεε 122

    22

    210

  • models in magnetism timisoara 77

    CuCrO2

    -10 -8 -6 -4 -2 0 2 4 6 8 10-4.0

    -3.5

    -3.0

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    22K

    21K

    23K

    24K

    15K

    10K

    6K

    27K

    25K

    100kHz

    Δε'/ε

    ' H=0 (

    %)

    H(T)

    0 12 24 36 484.0x10-5

    4.2x10-5

    4.4x10-5

    0

    1

    2

    3

    4

    5TN

    χ (e

    mu.

    g-1 )

    T(K)

    -Δε'/ε' H

    =0 (%

    )

  • Co3 V2 O8

    -10 -5 0 5 10-6

    -3

    0

    3

    6

    M (μB/f.u.)

    μ0H(T)

    -6

    -3

    0

    3

    6

    T=50K

    T=20K

    -6

    -3

    0

    3

    6

    T=7K

    -10 -5 0 5 10-0.10

    -0.05

    0.00

    μ0H(T)

    -0.15

    -0.10

    -0.05

    0.00

    -0.10

    -0.05

    0.00

    ΔεΗ/ε0

    (%)

    -10 -5 0 5 10

    0.3

    0.4

    0.5

    dM/dH(μB/T·f.u.)

    μ0H(T)

    0.5

    1.0

    T=50K

    T=20K

    0

    5

    10

    15

    T=7K

    T=7K

    T=20K

    T=50K

    Δε∼χ

  • models in magnetism timisoara 79

    Ca3 Co2 O6 – magnetization plateaux

    Polyhèdra CoO6 :

    triangular prism S=2

    octahedra S= 0

    Ferromagnet intrachain interac.

    Triangular ising lattice

    Antiferromagnetic interchain (TN =24K)

    0 1 2 3 4 5 60

    1

    2

    3

    4

    5

    T=10K

    M (μ

    B/f.u

    .)

    μ0H(T)0 2 4 6 8 10

    0

    1

    2

    3

    4

    5

    T=2K

    M (μ

    B/f.u

    .)

    μ0H(T)

    ΔH=3.6T ΔH=1.2T

    R-3cm

  • models in magnetism timisoara 80

    Ca3 Co2 O6

    0 1 2 3 4 5 60

    1

    2

    3

    4

    5

    M

    (μB/

    f.u.)

    μ0H(T)

    0 1 2 3 4 5 6

    -1

    0

    Δε H

    /εsa

    t (%

    )

    μ0H(T)

    T=10K

    0 1 2 3 4 5 60.0

    0.5

    1.0

    1.5

    χ(μ B

    /T·f.

    u.)

    μ0H(T)

    Δε∼-χ

    No polarization

  • models in magnetism timisoara 81

    MnWO4A nice example

  • models in magnetism timisoara 82

    P.G. Radaelli and L.C. Chapon, PRB, 76054428(2007)

  • models in magnetism timisoara 83

  • models in magnetism timisoara 84

  • models in magnetism timisoara 85

    Conclusion• Spin orbit coupling is necessary to create coupling between ferromagnetism

    and ferroelectricity• Incommensurability is very useful to help with symmetry• There is no ab initio calculation of the intensity of the coupling• There is more to understand in the coupling terms• Magnetic group theory is needed.

    Introduction to the physics of multiferroics�SummaryWhat is a multiferroic?Diapositive numéro 4Why this exampleDiapositive numéro 6Diapositive numéro 7Diapositive numéro 8Diapositive numéro 9Diapositive numéro 10Diapositive numéro 11Diapositive numéro 12Diapositive numéro 13questionsquestionsOrigin of the coupling termSuperexchange explanation?Cancel by symmetryDiapositive numéro 19Dzyaloshinskii-Moriya interactionDiapositive numéro 21Diapositive numéro 22Diapositive numéro 23YMnO3 symmetryDiapositive numéro 25YMnO3 symmetryDiapositive numéro 27Diapositive numéro 28Diapositive numéro 29Diapositive numéro 30Diapositive numéro 31ApplicationsDiapositive numéro 33Diapositive numéro 34Diapositive numéro 35Diapositive numéro 36Other materialsDiapositive numéro 38Diapositive numéro 39Diapositive numéro 40Diapositive numéro 41CuCrO2CuCrO2FeVO4FeVO4FeCuO2A ferroic materialFree energy from “Landau”Diapositive numéro 49Interactions and symmetriesDiapositive numéro 51Free energy from “Landau”A little more about LandauDiapositive numéro 54Diapositive numéro 55Diapositive numéro 56Secondary order parameterMagnetic energyDiapositive numéro 59Diapositive numéro 60In additionMnWO4�ferroelectricMnWO4�sensitive to magnetic fieldAF1, AF2, AF3Diapositive numéro 65Diapositive numéro 66Diapositive numéro 67Diapositive numéro 68Diapositive numéro 69Diapositive numéro 70Diapositive numéro 71YMnO3 - LandauYMnO3 – Anomaly in (T)Diapositive numéro 74YMnO3 –magnétodiélectric effect (H) in H2YMnO3 constante diélectriqueCuCrO2Co3V2O8Diapositive numéro 79Diapositive numéro 80MnWO4�A nice example Diapositive numéro 82Diapositive numéro 83Diapositive numéro 84Conclusion