GESTIONE INTEGRATA DELLE MICOTOSSINE IN PRE E POST …old.iss.it/binary/ogmm/cont/Logrieco_Antonio.pdf · GESTIONE INTEGRATA DELLE MICOTOSSINE IN PRE‐E POST‐RACCOLTO Antonio F.

Post on 01-Aug-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

GESTIONE INTEGRATA GESTIONE INTEGRATA DELLE MICOTOSSINE 

IN PRE‐ E POST‐RACCOLTO

Antonio F. Logrieco

Istituto di Scienze delle Produzioni AlimentariConsiglio Nazionale delle Ricerche,

ISPA‐CNR, Bari, Italy

V Congresso Nazionale: Le Micotossine nella filiera agro‐alimentare 28‐29‐30 settembre 2015

V Congresso Nazionale: Le Micotossine nella filiera agro‐alimentare 28‐29‐30 settembre 2015

Similar factors influence the development  of disease and resulting 

i l i  ( l i  mycotoxin accumulation (overlapping triangles)

HOST•Susceptibility 

h

ENVIRONMENT•Temperature

•Growth Stage•Flowering synchrony 

p•Moisture •Radiation

Diseaseand Mycotoxins

PATHOGENImportant differences in the relationships between host  PATHOGEN

•Species/population•Density/abundance •Aggressiveness

relationships between host plants, pathogen and 

environment may affect disease and toxin differently  •Aggressivenessdisease and toxin differently (offsetting the triangles)

SOURCES OF MYCOTOXIN EXPOSURE

Field fungiSt f i    

gStorage fungi . . .

DISTRIBUTIONSTORAGE PROCESSING CONSUMPTIONGROWING CROPS

MYCOTOXIN MANAGEMENT

Field fungiSt f i    

gStorage fungi . . .

DISTRIBUTIONSTORAGE PROCESSING CONSUMPTIONGROWING CROPS

PRE‐ POST‐HARVEST HARVEST

Ide tif h d• Identify hazards• Find critical pointsp• Establish limitsE t bli h it i• Establish monitoring

• Design corrective actionsg• Verify efficiency

d• Keep records

MYCOTOXIN MANAGEMENT ASPECTSMYCOTOXIN MANAGEMENT ASPECTS

PRE‐HARVEST POST‐HARVEST

l lComplex(too many factors) 

Simple

Good AgriculturalLimited control

Good AgriculturalPractice (GAP) limittoxin accumulation

Problems and side effects of corrective

toxin accumulation

No side effectsactions

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)( )

Resistant varieties

Crop rotation

Soil treatmentSoil treatment

In‐planta detoxification

Fungicide application

Biological controlBiological control

Weed and pest management

Agronomic measures

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)( )

Resistant varieties

Crop rotation

Soil treatment RESISTANT SUSCEPTIBLESoil treatment

In‐planta detoxification

RESISTANT SUSCEPTIBLE

Fungicide application

Biological controlBiological control

Weed and pest management

Agronomic measures

Resistant varieties

In resistant maizemost of the genes 

Infection withFusarium verticilloides

most of the genes provide a basal 

level of defence to the fungus prior to the fungus prior to 

infection

Induction of about 80

early genes

In susceptible maizemost of the PR genes 

Induction of about 240 late 

most of the PR genes are induced after

infection

9

4genes

Lanubile et al.

Resistant varieties

250

150

200

250

50

100

DON ppm

0

Sum

ey-3

3/81

.60/

/Kő

Wuh

an 6

Bbe

oka

Boz

ut /

MM

/NB

MM

/Sum

3Fr

onta

naM

M/S

um3

t//M

M/N

BP7

318

Ari

naFu

rore

Lud

wig

Ari

stos

Öth

alom

K

imon

Ritm

oW

90Z

11.1

Car

dos

P863

5C

ontr

aZ

ugol

yPe

ntiu

mJ

89.8

1249

Bisc

aySJ

981

1.53

FDK %

Sum

3

NobRSt

Sgv/

NB

//M

Sgv/

NB

//MR

StLSJS

r = 0.7548, P = 0.001

DON content in different wheat cultivarscompared to FHB resistant varieties and linescompared to FHB resistant varieties and lines

Mesterházy, 2014(Leslie and Logrieco Eds.)

Resistant varieties

/ear

)

120

140

160

180

Thrip

s (n

umbe

r/

40

60

80

100

120

0

20

kg) 120

140Mar Apr M

MAIZE HYBRIDS SELECTION AFFECTS 

Fum

onis

in (m

g/

40

60

80

100May SELECTION AFFECTS 

FUMONISIN RISK

0

20

(%) 40

Fusa

rium

ear

rot (

10

20

30

Hybrids

A B C

F

0

10

Munkvold, 2014 (Leslie and Logrieco Eds.)

Indirect effect on mycotoxin levels

Aflatoxins more prevalent in  Crops weakened by insect or other

Tolerance to drought stress

pcrops stressed by drought

p ydamage are more susceptible to

mold growth and aflatoxincontamination

Protection against corn borer

contamination

Optimum® AQUAmax® HybridsOptimum® AQUAmax® Hybrids

DuPont Pioneer Hi‐Bred

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)

LIMITED SOURCES OF RESISTANCE

NO GM SOLUTION APPROVED IN EU

( )

Resistant varietiesNO GM SOLUTION APPROVED IN EU

RESISTANT VARIETIES NOT ALWAYS HIGH‐YIELDINGCrop rotation

Soil treatmentSoil treatment

In‐planta detoxification

Fungicide application

Biological controlBiological control

Weed and pest management

Agronomic measures

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)( )

Resistant varieties

Crop rotation

Soil treatmentSoil treatment

In‐planta detoxification

Fungicide application

Biological controlBiological control

Weed and pest management

Agronomic measures

Crop rotationEffect of different previous crop on DON 

level in wheat plants  ?level in wheat plants  ?

Clark et al., 2009

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)

ECONOMIC CONTRAINTS

( )

Resistant varietiesECONOMIC CONTRAINTS

POLITICAL INCENTIVES

Crop rotation

Soil treatmentSOIL EROSION

Soil treatment

In‐planta detoxification

Fungicide application

Biological controlBiological control

Weed and pest management

Agronomic measures

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)( )

Resistant varieties

Crop rotation

Soil treatmentSoil treatment

In‐planta detoxification

Fungicide application

Biological controlBiological control

Weed and pest management

Agronomic measures

In‐planta detoxificationBioBio‐‐Degradation of Degradation of AflatoxinAflatoxin B1 by B1 by ActinomycetesActinomycetes

AFB1 degradation by cultures of Rhodococcus erythropolis ATCC 4277, Streptomyceslividans TK 24 and S. aureofaciens ATCC10762 after 24 h incubation at 30 °C and pH 6.0lividans TK 24 and S. aureofaciens ATCC10762 after 24 h incubation at 30 C and pH 6.0

Eshelli et al., 2015 

In‐planta detoxificationBiologicalBiological detoxificationdetoxification ofof deoxynivalenoldeoxynivalenol

De‐epoxydation: requires anaerobicditiconditions

Oxidation and epimerization: catalyzed by systems difficult toexpress  and assembly in plantsexpress  and assembly in plants

Use of intact microorganisms in feed additives

Mineralization: isolation of active pure cultures extremely difficult

Structure of deoxynivalenol (DON) with the designation of the ring system A‐C and targets for detoxification

Acetylation and glycosylation of C OH   ll  d t d  d 

pure cultures extremely difficult

C3‐OH: well understood and achievable in transgenic plants  Molecular markers associated with genes 

encoding plant glucosyltransferases that detoxify DON will help breeders develop new wheat 

Karlovsky, 2011

DON will help breeders develop new wheat varieties resistant against FHB

In planta detoxificationDeoxynivalenolDeoxynivalenol InactivatingInactivating UDPUDP GlucosyltransferaseGlucosyltransferase

In‐planta detoxificationDeoxynivalenolDeoxynivalenol‐‐InactivatingInactivating UDPUDP‐‐GlucosyltransferaseGlucosyltransferase

fromfrom barleybarley in in yeastyeast

Deoxynivalenol (DON) resistance phenotype Deoxynivalenol (DON)‐resistance phenotype conferred by expression of candidate barley UDP‐

glycosyltransferases (UGT) in yeastConversion of deoxynivalenol (DON) into DON‐3‐O‐glucoside (D3G) and release into the culture fluid by transformed yeasty y

Schweiger et al., 2010

In‐planta detoxificationZearalenoneZearalenone (ZEN) is detoxified by ZHD101, a (ZEN) is detoxified by ZHD101, a lactonohydrolaselactonohydrolase from from ClonostachysClonostachys rosearoseayy yy

Degradation of ZEN by protein extracts from transgenic rice plants 

Higa‐Nishiyama et al., 2005 

Degradation of ZEN by protein extracts from transgenic rice plants transformed with zhd101

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)( )

Resistant varieties

Crop rotation

Soil treatmentSoil treatment

In‐planta detoxification

Fungicide application

Biological controlBiological control

Weed and pest management

Agronomic measures

DON contamination in wheat plants untreated and treated with fungicideg

F i idF i id

FungicideFungicideUntreatedUntreated

Lower levels of

0.910.910 10 1

FungicideFungicide

0.060.06NdNd

0.0840.0840.0400.040

0.0400.040NdNd

UntreatedUntreatedLower levels ofDON in treated

plants

UntreatedUntreated FungicideFungicide

0.10.1 NdNd

6.66.6 4.44.4

FungicideFungicideUntreatedUntreated 14.6114.6116.0016.00

5.315.31NdNd

0,310,31 3,743,74 1.961.964.604.60

0,590,59NdNd

1-2 cm 2nd inter-node Milk ripening Vitreous ripening1 2 cm wheat head

2nd inter nodegrowth stage

Milk ripening Vitreous ripening

Moretti et al., 2014 

Effect of fungicide application on DONcontamination in wheat plantsp

S i   t l  2015Scarpino et al., 2015

Fusarium diseaded kernelsFusarium diseaded kernelswith different fungicide

treatments

Mesterházy, 2014

New products development…

New chemical classes of fungicides(e.g. SDHI and triazoles), more 

efficient against FHB species, withlow toxicological risk for humanslow toxicological risk for humansand environement (Syngenta)

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)( )

Resistant varieties

Crop rotation

Soil treatment

EXPENSIVE

Soil treatment

In‐planta detoxificationEXPENSIVE

POTENTIAL HARM TO BENEFICIAL INSECTS AND ENVIRONMENT

Fungicide application

Biological controlRESIDUES IN FOOD

HAZARD FOR THE HEALTH AND SAFETY OF WORKERS HANDLING FUNGICIDES

Biological control

Weed and pest managementOF WORKERS HANDLING FUNGICIDES

Agronomic measures

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)( )

Resistant varieties

Crop rotation

Soil treatmentSoil treatment

In‐planta detoxification

Fungicide application

Biological controlBiological control

Weed and pest management

Agronomic measures

Biological controlg

69‐80% AFLATOXINS CONTROL REDUCTION AFLASAFETM

  i t f f t ig i IN MAIZE WITH NON‐TOXIGENIC TREATED WITH AFLASAFE™ IN NIGERIA

a mixture of four atoxigenicAspergillus flavus strains

Biological control

Berries treated withAureobasidium

pullulans

Control berries infectedwith Aspergilluscarbonariuspullulans carbonarius

Sour Rot IncidenceAspergillus carbonarius

populations in grape berries Ochratoxin A content

Dimakopoulou et al., 2008

Treatment of maize stubble residues with biocontrol agents exposed to fieldconditions to reduce the inoculum of toxigenic Fusarium species

MaizeMaize stalksstalks treatedtreated withwith::•• bacterialbacterial strainsstrains ofof PseudomonasPseudomonas•• fungalfungal strainsstrains ofof ClonostachysClonostachys rosearosea

PlacedPlaced onon soilsoil toto fieldfield conditionsconditions

Samples of mize stalks• untreated, • after 3 months and 

AnalysedAnalysed byby TaqManTaqMan PCR PCR toto detectdetect::‐‐ FF. . graminearumgraminearum‐‐ FumonisinFumonisin producingproducing FusariumFusarium speciesspecies ((commonlycommonly

• after 6 months in field conditionsFumonisinFumonisin producingproducing FusariumFusarium speciesspecies ((commonlycommonlyF. F. verticillioidesverticillioides and and F. F. proliferatumproliferatum, in Italy), in Italy)

84% reduction after 3 months

88% reduction after 6 months

57% reduction after 3 months

82% reduction after 6 months

Clonostachys rosea can be considered a potentially useful antagonist in controlling fumonisins‐producing Fusarium species and F. graminearum

Environmental conditions have a strong influence on the capability of microbial antagonists to control the o o o o g o p y o o go o o odiseases in the field

Somma et al. 

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)( )

Resistant varieties

Crop rotation

Soil treatmentSoil treatment

In‐planta detoxificationEXPENSIVE

UNRELIABLE                               (variation in the application due 

Fungicide application

Biological control ( ppto environmental conditions)

LIMITED EFFICIENCY (survival)

Biological control

Weed and pest management

IMPACT ON ECOSYSTEM?Agronomic measures

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)( )

Resistant varieties

Crop rotation

Soil treatmentSoil treatment

In‐planta detoxification

Fungicide application

Biological controlBiological control

Weed and pest management

Agronomic measures

Bt corn

Bt corn hybrids (left) can reduce mycotoxin contamination in corn compared to non Bt corn hybrids (right) corn compared to non‐Bt corn hybrids (right) 

(Courtesy G. Munkvold)

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

PREPRE‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

GOOD AGRICULTURAL PRACTICE (GAP)( )

Resistant varieties

Crop rotation

Soil treatmentSoil treatment

In‐planta detoxification

Fungicide application

Biological controlBiological control

Weed and pest management

Agronomic measures

Agronomic measuresEffect of the density of previous maize crop residues on the soil surface on FHB incidence and severity and DON contamination in wheat kernels

AMOUNT OF RESIDUES

Blandino et al., 2010

Importance of different crop management practices for reducing the risks of mycotoxin contamination in maize

Fusarium ear rota Gibberella ear rotb Aspergillus ear rotc

Fumonisins DON, Zearalenone Aflatoxins

Hybrid selection ++ ++ ++

Insect control ++ + ++

Early planting ++ ++ +y p g

Irrigation management ++ + ++

Timely harvest ++ ++ ++

Crop rotation and tillage  + ++ +

Plant Density + + +

Fertilization + + +Fertilization + + +

Weed management +/? ? +/?

Biological control  ? ? +

Seed treatment ? ? ?

Fungicide application ? ? ?

++ = major effect; + = minor effect; ? = uncertain or insufficient evidence++ = major effect; + = minor effect; ? = uncertain or insufficient evidenceaCaused primarily by F. verticillioides, F. proliferatum, and F. subglutinansb Caused primarily by F. graminearum and F. culmorum (Gibberella zeae)a Caused primarily byA. flavus and A. parasiticus

Munkvold, 2014

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

SortingSorting

Storageg

Detoxification

Intake prevention

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

SortingSorting

Storageg

Detoxification

Intake prevention

SortingVisual inspectionVisual inspection

CleaningCleaning

Reduction of aflatoxins in maize by combining mechanical and optical sorting technologies

Total AFs reduction (%)( )

Separator – Aspirator – Sortex 65‐78

Separator – Aspirator – Concentrator ‐ Sortex 84‐76

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

Sorting CONTAMINATION NOT DETECTABLESorting

StorageDISPOSAL OF REFUSES

g

Detoxification

Intake prevention

What can farmers do with refuseunder low legal limits of

mycotoxin contamination?mycotoxin contamination?

Feed to livestock ?Burn for energy

Utilyze in a biogas facility

??

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

SortingSorting

Storageg

Detoxification

Intake prevention

Storage• aw for molds and yeast growth : 0.61 • lower limit for growth of mycotoxigenic molds: 0.78

Water activity (aWater activity (aww))

Storage

GPRS

Sensor

Wireless sensor k d i

Sensor Node

network devices used into pilot scale grain silos t   it i g 

Sensor Node

to monitoring environmental parameters

Ambient intelligence system Sensor Node 

Storage

easy‐to‐use interface

Software for monitoring parameter in silosSoftware for monitoring parameter in silos

S   d  fS   d  fSensor node for:Sensor node for:•Temperature and Relative Humidity•Carbon Dioxide, Temperature and RH Sensor Node

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

SortingSorting

Storageg

Detoxification

Intake prevention

Mycotoxin‐detoxifying agents... additives for mycotoxin decontamination of feeds

BBIODEGRADATIONIODEGRADATIONMODE OF ACTION

AADSORPTIONDSORPTION

BBIOPROTECTIONIOPROTECTION

Mycotoxin‐detoxifying agents

EFFICACY

... additives for mycotoxin decontamination of feeds

BBIODEGRADATIONIODEGRADATIONEFFICACY

AADSORPTIONDSORPTION

BBIOPROTECTIONIOPROTECTION

DetoxificationChemical detoxification of Chemical detoxification of deoxynivalenoldeoxynivalenol

Paulick et al., 2015

DetoxificationDegradation of Degradation of fumonisinfumonisin B1 by B1 by 

cinnamon essential oilcinnamon essential oilcinnamon essential oilcinnamon essential oil

Xing et al., 2014

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINS

POSTPOST‐‐HARVEST CONTROL HARVEST CONTROL OF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINSOF MYCOTOXINS

SortingSorting

Storageg

Detoxification

Intake prevention

Intake preventionPrediction models for Prediction models for FusariumFusarium head blight of wheat caused head blight of wheat caused 

by by FusariumFusarium graminearumgraminearum

De Wolf and Paul, 2014

Major challenges formycotoxin mitigation

• CONFLICT BETWEEN FOOD SAFETY AND FOOD SECURITYFOOD SECURITY

• PERCEPTION OF CHRONIC EFFECTS

• ACCESS TO SMALLHOLDER FAMILIES

top related