Evaluation of computational methods of paleostress analysis using fault-striation data

Post on 11-Sep-2021

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

E V A L U A T IO N O F C O M P U T A T IO N A L M E T H O D S O F

P A L E O S T R E S S A N A L Y S IS U S IN G F A U L T -S T R IA T IO N D A T A

A b s t ra c t o f

a t h e s i s p r e s e n t e d t o t h e F a c u l t y

o f th e S t a t e U n i v e r s i ty o f N e w Y o r k

a t A lb a n y

i n p a r t ia l fu l f i l l m e n t o f t h e r e q u i r e m e n t s

fo r th e d e g re e o f

M a s te r o f S c ie n c e

C o l l e g e o f S c ie n c e a n d M a th e m a t i c s

D e p a r tm e n t o f G e o lo g ic a l S c ie n c e s

S t e v e n H e n ry S c h im m r ic h

1 9 9 1

ii

A B S T R A C T

O v e r t h e p a s t 1 2 y e a r s , m a n y d i f f e r e n t c o m p u ta t io n a l m e th o d s o r v a r i a t i o n s o f e x i s t i n g

m e th o d s h a v e b e e n p ro p o s e d fo r d e t e rm in in g p a l e o s t r e s s t e n s o rs f ro m fa u l t p o p u la t i o n s a n d

th e i r s l i p d i r e c t i o n s . T h e s e m e th o d s a re a l l b a s e d u p o n w e l l -k n o w n re l a t i o n s h ip s b e tw e e n

s t r e s s a n d s h e a r a n d u se i t e ra t i v e , n o n - l i n e a r m a th e m a t i c a l a lg o r i t h m s w h ic h s e e k to m in im iz e

th e a n g l e s b e tw e e n t h e c a l c u l a t e d m a x im u m s h e a r s t r e s s d i r e c t i o n a n d th e o b s e rv e d m o v e m e n t

d i re c t io n s o n e a c h f a u l t p l a n e in a p o p u l a t io n . T h e s o l u t io n re t u r n e d i s th e b e s t - f i t p a l e o s t r e s s

te n s o r fo r th e p o p u la t i o n .

B y t a k i n g t h e C o u l o m b f a i l u r e c r i te r i o n i n t o a c c o u n t , s e v e r a l p a l e o s t r e s s a n a l y s i s

p r o g r a m s h a v e b e e n a b l e t o u s e l in e a r , r a t h e r th a n n o n - l i n e a r , m e t h o d s t o s o lv e fo r a p a l e o s t r e s s

t e n s o r . T h e a d v a n ta g e s o f u s in g l i n e a r e q u a t io n s i s th a t th e y a re le ss c o m p u ta t io n a l ly - in t e n s iv e

a n d a re fa r e a s ie r t o s o lv e .

A m a j o r p r o b l e m w i t h c o m p u t a t i o n a l m e t h o d s o f p a l e o s t r e s s a n a l y s i s i s th a t v e r y l i t t l e

w o rk h a s b e e n d o n e o n e v a l u a t in g th e i r e f f e c t i v e n e s s a n d /o r p o s s ib l e l im i t a t i o n s . I f t h e

t e c h n iq u e s r e tu r n re s u l t s c o n s i s t e n t w i th o t h e r m e t h o d s o f e s t im a t in g p a l e o s t r e s s d i re c t i o n s ,

o r w i th v a r io u s k in e m a t i c a n a ly s i s m e th o d s , t h e y a re o f t e n u se d b y g e o lo g i s t s . I f n o t , a n

a t t e m p t m a y b e m a d e to e x p la in w h y , b u t g e o lo g ic a l e x p la n a t io n s a re u s u a l ly so u g h t r a th e r th a n

c r i t i c i z in g th e p a le o s t r e s s a n a ly s i s m e th o d s . T h i s s tu d y i s a n a t t e m p t to fo rm u la te th e p ro b le m

a n d to b e g in s y s te m a t i c a l l y e x a m in in g i t .

F o r m y t h e s i s p r o j e c t , I o b t a i n e d s e v e r a l w o r k i n g v e r s i o n s o f p a l e o s t r e s s a n a l y s i s

c o m p u te r p ro g ra m s . A f t e r m u c h w o rk , I d e c id e d to te s t t w o o f t h e m e th o d s - - t h o s e d e v e lo p e d

b y A n g e l i e r a n d R e c h e s . A r t i f i c i a l fa u l t p o p u l a t i o n s w e r e c r e a t e d f o r t h e s e t e s t s w i t h a s l i p

v e c t o r c a l c u l a t i o n p r o g r a m w h i c h I w r o t e s p e c i f i c a l l y f o r t h a t p u r p o s e . T h e a r t i f i c i a l fa u l t

p o p u la t io n s w e r e c re a t e d u s i n g e x a c t l y th e s a m e i n i t i a l a s s u m p t io n s th a t t h e p a l e o s t r e s s

a n a ly s i s p ro g ra m s u s e d .

iii

A n a r t i f i c i a l fa u l t p o p u l a t i o n i s a s e t o f f a u l t o r i e n t a t i o n s a n d t h e i r a s s o c i a t e d s l i p

d i r e c t io n s c o n s i s te n t w i th a p re d e t e rm in e d s t r e s s f i e l d . F o r a l l o f t h e f a u l t p o p u la t i o n s c r e a t e d ,

th e m o s t c o m p re s s iv e p r in c ip a l s t r e s s a x i s w a s v e r t i c a l w i th a r e la t i v e m a g n i tu d e o f + 1 .0 a n d

th e l e a s t c o m p re s s iv e p r in c ip a l s t r e s s a x i s w a s o r i e n t e d n o r th - s o u th w i th a r e l a t i v e m a g n i tu d e

o f -1 .0 . E n t e r in g th e se p o p u la t i o n s i n t o a p a l e o s t r e s s a n a ly s i s p ro g ra m s h o u ld h a v e ,

th e o re t i c a l l y , r e tu rn e d th e s a m e o r i e n ta t i o n s fo r t h e p r i n c ip a l s t r e s s a x e s .

W i th th i s i n m in d , I c h o se to c re a t e s e v e ra l d i f f e r e n t ty p e s o f a r t i f i c i a l f a u l t p o p u la t i o n s

to t e s t p o s s ib le l im i t a t io n s in p a l e o s t r e s s a n a l y s i s . I u s e d ra n d o m ly - o r i e n te d fa u l t p o p u l a t io n s ,

s p e c ia l - c a s e fa u l t p o p u la t i o n s , a n d f a u l t p o p u la t i o n s w h ic h h a d d a t a a d d e d o r r e m o v e d f ro m

th e m .

T h e r e s u l t s o f th e se t e s t s a re th a t th e tw o p a le o s t r e s s a n a ly s i s p ro g ra m s I e x a m in e d m a y

w o rk s u f f i c i e n t ly w e l l f o r c e r t a in ty p e s o f w e l l - c o n s t r a in e d f a u l t p o p u la t i o n s , b u t o f t e n g iv e

l a r g e e r ro r s w h e n e x a m i n i n g s p e c i a l ty p e s o f f a u l t s e t s s u c h a s c o n j u g a t e f a u l t s , o r t h o r h o m b i c

s y m m e t ry f a u l t s , a n d f a u l t p o p u l a t io n s w h e re a l l o f t h e f a u l t s h a v e v e r y s im i l a r o r i e n t a t io n s .

T h e p a l e o s t r e s s a n a l y s i s p ro g ra m s m a y a l s o b e s e n s i t i v e t o m e a s u re m e n t e r ro r s a n d /o r

e x t r a n e o u s d a ta d e p e n d i n g u p o n s e v e r a l f a c t o r s , i n c lu d in g th e o r i e n t a t i o n s o f th e f a u l t s i n

q u e s t i o n .

In c o n c lu s io n , m u c h m o re w o rk i s c u r re n t ly n e e d e d to f u r th e r e x a m in e th i s t o p i c a n d

t o b e g i n t o f o r m u l a t e g e n e r a l g u i d e l i n e s f o r a p p l y i n g p a l e o s t r e s s a n a l y s i s m e t h o d s t o f a u l t

p o p u la t i o n s g a th e re d b y g e o lo g is t s in th e f i e ld .

E V A L U A T IO N O F C O M P U T A T IO N A L M E T H O D S O F

P A L E O S T R E S S A N A L Y S IS U S IN G F A U L T -S T R IA T IO N D A T A

A t h e s i s p r e s e n t e d t o t h e F a c u l t y

o f th e S t a t e U n i v e r s i ty o f N e w Y o r k

a t A lb a n y

i n p a r t ia l fu l f i l l m e n t o f t h e r e q u i r e m e n t s

fo r th e d e g re e o f

M a s te r o f S c ie n c e

C o l l e g e o f S c ie n c e a n d M a th e m a t i c s

D e p a r tm e n t o f G e o lo g ic a l S c ie n c e s

S t e v e n H e n ry S c h im m r ic h

1 9 9 1

v

A C K N O W L E D G E M E N T S

I o w e m y g re a t e s t d e b t t o m y th e s i s a d v i s o r , D r . W in th ro p D . M e a n s o f t h e S t a t e

U n iv e r s i ty o f N e w Y o r k a t A lb a n y . W i th o u t h i s c o n s ta n t a s s i s ta n c e , e n c o u ra g e m e n t , a n d

p a t i e n c e t h i s p ro j e c t w o u ld n o t h a v e b e e n p o s s ib l e . I g re a t l y b e n e f i t e d f ro m m y a s so c i a t i o n

w i t h h im .

I a m a l s o in d e b te d to th e fo l l o w in g p e o p le fo r t h e i r a s s i s ta n c e . . .

J a c q u e A n g e l i e r o f th e T e c to n iq u e Q u a n t i t a t i v e , U n iv e rs i t é P ie r r e e t M a r i e C u r i e a t

P a r i s fo r a l l o w in g m e to u s e h i s p a l e o s t r e s s a n a ly s i s p ro g ra m s a n d to C h r i s to p h e r B a r to n o f

L a m o n t - D o h e r t y G e o lo g ic a l O b s e rv a to ry fo r s u p p ly in g m e w i t h c o p ie s o f t h e m .

A rn a u d E t c h e c o p a r o f th e L a b o ra to i r e d e G é o lo g ie S t ru c tu ra le , U n iv e rs i té de s S c i e n c e s

e t T e c h n iq u e s d u L a n g u e d o c , M o n tp e l i e r , F ra n c e fo r a l l o w in g m e t o u s e h i s p a l e o s t r e s s

a n a l y s i s p ro g ra m s a n d to R ic h a rd P l u m b o f S c h l u m b e rg e r D o l l R e s e a rc h in R id g e f i e ld ,

C o n n e c t i c u t f o r s u p p ly in g m e w i t h c o p ie s o f t h e m .

K e n n e th H a rd c a s t l e o f th e D e p a r tm e n t o f G e o lo g y , U n iv e r s i t y o f M a s s a c h u s s e t s a t

A m h e r s t (n o w a t E m e ry a n d G a r re t t G ro u n d w a te r , M e re d i th , N e w H a m p s h i re ) fo r s u p p ly in g

m e w i th c o p i e s o f h i s p a l e o s t r e s s a n a l y s i s p ro g ra m s w h ic h u t i l i z e a lg o r i t h m s d e v e l o p e d b y

Z e 'e v R e c h e s o f t h e D e p a r t m e n t o f G e o lo g y , H e b re w U n iv e rs i t y , Je ru s a le m .

J o h n G e p h a r t o f th e In s t i t u t e fo r th e S t u d y o f C o n t in e n t s , C o rn e l l U n iv e r s i t y fo r

s u p p ly in g m e w i t h c o p ie s o f h i s p a le o s t r e s s a n a ly s i s p ro g ra m .

R i c h a r d A l l m e n d i n g e r o f t h e D e p a r t m e n t o f G e o l o g i c a l S c i e n c e s , C o r n e l l U n i v e r s i ty

fo r su p p l y i n g m e w i th p a l e o s t r e s s a n a l y s e s a n d f i e l d d a t a h e c o l l e c t e d f ro m th e C h i l e a n A n d e s .

S t e v e n W o j t a l o f t h e D e p a r tm e n t o f G e o lo g y , O b e r l i n C o l l e g e , O h io fo r s u p p ly in g m e

w i t h E n g l i s h t r a n s la t i o n s o f s e v e ra l F re n c h p a le o s t r e s s p a p e rs .

W i l l i a m K e l l y o f th e N e w Y o r k S t a t e G e o l o g i c a l S u r v e y i n A l b a n y f o r a l l o w i n g m e t o

ta k e s o m e t i m e o f f to f i n i s h w r i t i n g th i s th e s i s .

vi

T h e n u m e ro u s p e o p le , h e re a t S U N Y A lb a n y a n d e l s e w h e re , w h o g ra c io u s ly g a v e m e

p re p r in t s o f th e i r p a p e r s , e x p la in e d th e i r r e s e a rc h to m e , a n d to o k th e t im e to m a k e h e l p fu l

s u g g e s t io n s a n d c r i t i c i s m s o f m y w o rk .

L a s t , b u t c e r t a in ly n o t l e a s t , I w o u ld l i k e t o t h a n k D e b r a L e n a r d . H e r c o n s ta n t

e n c o u r a g e m e n t ( i . e . " W r i te y o u r d a m n t h e s i s a l r e a d y ! " ) k e p t m e g o i n g a t t i m e s w h e n I w o u l d

r a t h e r h a v e q u i t . S h e p r o v i d e d m e w i t h i n v a l u a b l e a s s i s t a n c e b y h e l p i n g m e t ra n s l a t e

p a le o s t r e s s p ro g ra m d o c u m e n ta t io n f ro m F re n c h in to E n g l i s h , b y b e in g in c re d ib ly su p p o r t i v e ,

a n d b y b e in g o n e o f t h e f e w p e o p le w h o a c tu a l ly l i s t e n e d to m e w h e n I t a l k e d a b o u t p a l e o s t r e s s

a n a ly s i s .

R e s e a rc h l e a d i n g to th i s t h e s i s w a s p a r t i a l l y s u p p o r t e d b y N a t io n a l S c i e n c e F o u n d a t io n

G r a n t E A R - 8 6 0 6 9 6 1 t o W i n t h r o p D . M e a n s , a t w o - y e a r t e a c h i n g a s s i s t a n t s h i p f r o m t h e S t a t e

U n iv e r s i ty o f N e w Y o r k a t A lb a n y , a n d b y o c c a s s io n a l lo a n s o f c a s h (w h ic h , u n fo r tu n a t e ly ,

h a v e y e t t o b e re p a id ) f r o m b o th p a re n ts a n d g ra n d p a re n ts .

I h a v e y e t t o s e e a n y p r o b le m , h o w e ve r c o m p l ic a te d , w h ic h , w h e n lo o k ed a t in th e r ig h t

w a y , d id n o t b e c o m e s t i l l m o re c o m p l ic a te d .

P o u l A n d e r s o n

(T h o rp e , 1 9 6 9 )

vii

T A B L E O F C O N T E N T S

P a g e

A b s t r a c t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i i

A c k n o w le d g e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

T a b le o f C o n te n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v i i

L i s t o f F ig u re s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

L i s t o f T a b le s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x x i

C H A P T E R 1 : IN T R O D U C T IO N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 .1 P u rp o s e o f th i s S tu d y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 .2 S c o p e o f th i s S tu d y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 .3 T e s t in g P ro c e d u re s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 .4 T h e s i s O rg a n iz a t io n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

C H A P T E R 2 : P A L E O S T R E S S A N A L Y S IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 .1 A n d e r s o n ia n F a u l t C la s s i f i c a t io n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 .2 B o t t ' s F o rm u la . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3

2 .3 G ra p h i c a l M e t h o d s o f F a u l t -S t r i a t io n P a l e o s t r e s s A n a ly s i s . . . . . . . . . . 1 6

2 .4 R ig h t -D ih e d r a M e t h o d s o f F a u l t -S t r i a t io n A n a ly s i s . . . . . . . . . . . . . . . . 2 4

C H A P T E R 3 : C O M P U T A T IO N A L P A L E O S T R E S S A N A L Y S IS O F F A U L T

P O P U L A T IO N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9

3 .1 E a r ly A t t e m p t s a t C o m p u ta t io n a l P a l e o s t r e s s A n a ly s i s . . . . . . . . . . . . . . 3 9

3 .2 E t c h e c o p a r 's M e t h o d o f P a l e o s t r e s s A n a l y s i s . . . . . . . . . . . . . . . . . . . . . . . 4 0

3 .3 M ic h a e l ' s M e t h o d o f P a l e o s t r e s s A n a ly s i s . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

3 .4 G e p h a r t a n d F o r s y th ' s M e t h o d o f P a l e o s t r e s s A n a ly s i s . . . . . . . . . . . . . . 4 3

3 .5 R e c e n t T r e n d s i n P a l e o s t r e s s A n a l y s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4

C H A P T E R 4 : P R O B L E M S IN P A L E O S T R E S S A N A L Y S IS . . . . . . . . . . . . . . . . . . . . . . 4 6

4 .1 M e a s u re m e n t E r ro r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6

viii

4 .2 D e te rm in in g F a u l t S l ip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0

4 .3 F a u l t M o rp h o lo g y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3

4 .4 T h e R e l a t i o n s h ip o f S h e a r S t re s s to F a u l t S l ip D i re c t io n s . . . . . . . . . . . . 5 5

4 .5 F a u l t i n g P h a s e D i f f e re n t i a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3

4 .6 D e te rm in in g a P a l e o s t r e s s T e n s o r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5

4 .7 D is c u s s io n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6

C H A P T E R 5 : G E N E R A T I N G A R T I F IC IA L F A U L T P O P U L A T I O N S . . . . . . . . . . . . . 6 9

5 .1 T h e o ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 9

5 .2 D e r iv in g B o t t ' s F o rm u la . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2

5 .3 P ro g ra m In p u t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 8

5 .4 P ro g ra m P ro c e d u re s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 9

5 .5 P ro g ra m O u tp u t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3

5 .6 C re a t in g F a u l t P o p u la t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4

C H A P T E R 6 : A N G E L IE R 'S M E T H O D O F P A L E O S T R E S S A N A L Y S IS . . . . . . . . . . 9 0

6 .1 P ro g ra m A s s u m p t io n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 0

6 .2 T h e o ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1

6 .3 P ro g ra m In p u t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 7

6 .4 P ro g ra m P ro c e d u re s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9

6 .5 P ro g ra m O u tp u t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9

6 .6 D is c u s s io n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 1

C H A P T E R 7 : R E C H E S ' M E T H O D O F P A L E O S T R E S S A N A L Y S IS . . . . . . . . . . . . . 1 0 2

7 .1 P ro g ra m A s s u m p t io n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 2

7 .2 T h e o ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 3

7 .3 P ro g ra m In p u t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 7

7 .4 P ro g ra m P ro c e d u re s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 9

7 .5 P ro g ra m O u tp u t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 0

ix

7 .6 D is c u s s io n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2

C H A P T E R 8 : P A L E O S T R E S S A N A L Y S IS T E S T D A T A . . . . . . . . . . . . . . . . . . . . . . . . 1 1 4

8 .1 C re a t in g th e A r t i f i c i a l F a u l t P o p u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 4

8 .2 R a n d o m F a u l t -S l ip P o p u la t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 5

8 .3 C re a t in g S p e c i a l -C a s e F a u l t P o p u l a t io n s . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 3

8 .4 A n d e r s o n i a n C o n ju g a t e F a u l t P o p u l a t io n s . . . . . . . . . . . . . . . . . . . . . . . . 1 3 3

8 .5 O r th o rh o m b ic F a u l t P o p u la t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 0

8 .6 R a d ia l S y m m e t ry F a u l t P o p u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 1

8 .7 F a u l t P o p u l a t i o n s o f a S i m i l a r O r i e n t a t i o n . . . . . . . . . . . . . . . . . . . . . . . 1 5 1

8 .8 F in a l F a u l t P o p u la t i o n T e s t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 3

C H A P T E R 9 : T E S T I N G P R O C E D U R E S A N D R E S U L T S . . . . . . . . . . . . . . . . . . . . . . . 1 7 6

9 .1 T e s t in g P ro c e d u re s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 6

9 .2 R a n d o m - P o l e F a u l t P o p u l a t i o n R e s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 6

9 .3 S p e c i a l -C a s e F a u l t P o p u l a t io n R e s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 3

9 .4 O th e r T e s t R e s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 7

C H A P T E R 1 0 : C O N C L U S IO N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 0

1 0 .1 W h a t d o th e R e s u l t s M e a n ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 0

1 0 .2 P ra c t i c a l P ro b le m s in E v a lu a t in g P a l e o s t r e s s A n a ly s i s P ro g ra m s . . . 3 0 1

1 0 .3 S u g g e s t io n s fo r F u tu re W o rk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 6

A P P E N D IX A : G L O S S A R Y O F S Y M B O L S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 8

A P P E N D IX B : A R T IF IC IA L F A U L T P O P U L A T IO N D A T A . . . . . . . . . . . . . . . . . . . . . 3 1 1

A P P E N D IX C : S L IP V E C T O R C A L C U L A T IO N P R O G R A M . . . . . . . . . . . . . . . . . . . . . 3 2 2

A P P E N D IX D : F A U L T P L A N E P L O T T IN G P R O G R A M . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 4

A P P E N D IX E : V E C T O R A N G L E C A L C U L A T IO N P R O G R A M . . . . . . . . . . . . . . . . . . 3 8 4

R e fe re n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 8

x

L IS T O F F IG U R E S

P a g e

2 -1 A n in f in i t e s im a l p r i s m < o p q rs t> s i t u a t e d w i th in a r i g h t -h a n d e d X Y Z

c o o rd in a t e s y s t e m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 - 2 T h e th r e e A n d e r s o n i a n c l a s s e s o f c o n ju g a t e f a u l t s e t s . . . . . . . . . . . . . . . . . . . . . . . . . 1 4

2 -3 A p lo t o f th e s h e a r s t r e s se s a n d n o rm a l s t r e s se s a c t i n g u p o n a p la n e . . . . . . . . . . . . . 1 8

2 - 4 S t e r e o g r a p h i c p r o j e c t i o n s h o w i n g 2 4 c o n j u g a t e n o r m a l fa u l t s a n d t h e i r

a s s o c i a t e d s l i p v e c to r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9

2 -5 S t e re o g ra p h ic p ro je c t io n s h o w in g th e re l a t i o n s h ip b e tw e e n a fa u l t p la n e ,

t h e n o rm a l a n d s l i p v e c to rs , a n d th e m -p la n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0

2 -6 S t e re o g ra p h i c p ro j e c t io n s h o w in g th e m -p la n e m e th o d o f lo c a t in g a

p r in c ip a l s t r a in a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2

2 - 7 A n a ly z in g a c o m m o n in t e r s e c t io n p o i n t (C IP ) o f m -p l a n e s . . . . . . . . . . . . . . . . . . . . 2 3

2 -8 S c h e m a t i c d i a g ra m a n d s t e r e o g ra p h i c p ro j e c t io n i l l u s t r a t i n g th e

re la t i o n s h ip b e tw e e n a n o rm a l f a u l t p la n e , i t s a s s o c ia t e d a u x i l i a ry p l a n e ,

t h e z o n e s o f c o m p re s s io n a n d d i l a t i o n , a n d th e a x e s o f c o m p re s s io n a n d

te n s io n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5

2 -9 S t e re o g ra p h ic p ro je c t io n s s h o w in g th e r e l a t i o n s h ip b e tw e e n a fa u l t p la n e ,

i t s a u x i l i a ry p l a n e , a n d i t s m o v e m e n t p la n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7

12 -1 0 S t e re o g ra p h i c p ro j e c t io n s s h o w in g h o w th e r e g io n c o n ta in in g F i s

c o n s t r a in e d b y n o rm a l f a u l t p o p u la t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8

2 -1 1 S t e re o g ra p h i c p ro j e c t io n s h o w in g 2 0 s l i p v e c to r s r e p re s e n t in g M v a lu e s

ra n g in g f ro m 0 .0 to 1 .0 o n a f a u l t p la n e w i th a n o rm a l v e c to r o r i e n te d a t

7 0 /0 3 0 d e g re e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0

2 -1 2 S t e re o g ra p h i c p ro j e c t io n s h o w in g th e r i g h t d ih e d ra d e f in e d b y L i s le (1 9 8 7 )

a s A a n d B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1

xi

2 - 1 3 S t e r e o g r a p h i c p r o j e c t i o n o f t h r e e f a u l t s w i t h s l i p v e c t o r s S a n d f a u l t

n o rm a l s N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2

1 32 -1 4 S t e re o g ra p h ic p ro je c t io n s h o w in g th e F a n d F f i e l d s c o n s t ru c t e d b y

s u p e r im p o s in g th e f a u l t d a t a f ro m f ig u re 2 -1 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3

2 -1 5 S t e re o g ra p h i c p ro j e c t io n s h o w in g th e r e g io n s c o n s t ru c t e d b y s u p e r im p o s in g

th e A a n d B d ih e d ra f ro m th e f a u l t d a t a i n f i g u re 2 -1 3 . . . . . . . . . . . . . . . . . . . . . . . . . 3 4

1 32 -1 6 S t e re o g ra p h ic p ro je c t io n s h o w in g th e F a n d F f i e l d s c o n s t ru c t e d b y

u t i l i z i n g L i s le ' s (1 9 8 7 ) c o n s t r a in t o n th e f a u l t d a t a f ro m f ig u re 2 -1 3 . . . . . . . . . . . . 3 6

1 32 -1 7 S t e re o g ra p h ic p ro je c t io n s h o w in g th e F a n d F r e g io n s d e r iv e d u s in g

L i s l e ' s (1 9 8 7 ) m e t h o d o n fo u r th r u s t f a u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7

1 32 -1 8 S t e re o g ra p h ic p ro je c t io n s h o w in g th e F a n d F r e g io n s d e r iv e d u s in g

L i s l e 's (1 9 8 7 ) m e th o d o n a c o n ju g a te s e t o f fo u r n o rm a l f a u l t s a n d a n

o r th o rh o m b ic s e t o f fo u r n o rm a l f a u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8

3 -1 N o r th e a s t q u a d ra n t o f a s t e r e o g ra p h i c p ro j e c t io n s h o w in g th e r e l a t i v e

m a g n i tu d e s o f s h e a r s t r e s s e s o n f a u l t p l a n e s re p re s e n t e d b y t h e i r p o l e s . . . . . . . . . 4 2

4 -1 G ra p h o f th e m a x im u m s t r i k e e r ro r o f a f a u l t p l a n e a s a fu n c t io n o f th e

d ip a n g le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 8

4 - 2 G ra p h o f th e m a x im u m t r e n d e r ro r o f a s l ic k e n l in e o n a f a u l t p l a n e a s a

f u n c t i o n o f t h e p i t c h o f t h e s l i c k e n l i n e a n d t h e d i p a n g l e o f t h e f a u l t . . . . . . . . . . . 4 9

4 -3 D ia g ra m d e m o n s t r a t i n g h o w th e n e t s l i p v e c to r o n a fa u l t p l a n e m a y b e th e

re s u l t o f s e v e r a l d i s t i n c t s l i p e v e n t s w i th d i f f e r in g s l i p d i r e c t i o n s . . . . . . . . . . . . . . 5 1

4 -4 C ro s s -s e c t io n a l v ie w o f a fa u l t p la n e s h o w in g h o w s t e p s m a y b e u se d a s

s e n se -o f - s l i p in d i c a to rs o n fa u l t s u r f a c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2

4 -5 D ia g ra m d e m o n s t r a t i n g th e d i f f e r e n c e b e t w e e n a f a u l t ' s s l i p p l a n e a n d t h e

a c tu a l f a u l t s u r f a c e w h ic h m a y n o t b e p la n a r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6

xii

4 -6 T w o fa u l t t y p e s w i th a ro t a t i o n a l c o m p o n e n t o f s l i p . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 8

4 -7 C ro s s -s e c t io n a l v ie w o f a fa u l t s u r f a c e p a ra l l e l t o sh e a r in g w i th a n

a s p e r i t y A c re a t in g a n a n g le N w i th th e f a u l t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 9

4 -8 A n u n d u la t i n g fa u l t p l a n e w i th th e m a x im u m s h e a r s t r e s s d i r e c t i o n m a k in g

a n a n g le " w i th th e l o n g a x i s o f th e u n d u la t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1

4 - 9 G r a p h o f t h e c h a n g e i n p h i (M ) a s a lp h a (" ) v a r i e s f ro m 0 ° t o 9 0 ° . . . . . . . . . . . . . . 6 4

4 -1 0 M o h r c i r c l e s d e m o n s t r a t i n g h o w tw o fa u l t s o f s l i g h t ly d i f f e r e n t

1o r ie n t a t io n s w i l l s l i p a t d i f f e r e n t t im e s a s F i n c re a s e s . . . . . . . . . . . . . . . . . . . . . . . . 6 7

5 - 1 R e l a t i o n s h i p b e t w e e n a p l a n e X Y Z s i t u a t e d w i t h i n a g e o g r a p h i c c o o r d i n a t e

1 2 3s y s t e m a n d t h e p r in c ip a l s t r e s s a x e s F , F , a n d F . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 0

5 -2 D e te rm in in g th e s h e a r s t r e s s a n d n o rm a l s t r e s s m a g n i tu d e s a c t i n g u p o n a

fa u l t p l a n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3

5 - 3 R e l a t i o n s h i p b e t w e e n a p l a n e X Y Z s i t u a t e d i n a g e o g r a p h i c c o o r d i n a t e

1 2 3s y s t e m , th e p r in c ip a l s t r e s s a x e s F , F , a n d F , a n d th e d i r e c t i o n

1 2 3c o s in e s l , l , a n d l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4

5 -4 S t e re o g ra p h ic p ro je c t io n s h o w in g th re e a rb i t r a r i l y o r i e n te d p r in c ip a l

s t r e s s e s in re l a t i o n to a n a rb i t r a r i l y o r i e n te d f a u l t p la n e . . . . . . . . . . . . . . . . . . . . . . . 8 0

5 -5 In te ra c t iv e s c re e n d i s p la y e d b y th e s l i p v e c to r c a l c u la t i o n p ro g ra m a s

th e u s e r e n t e r s th e in i t i a l d a t a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1

5 -6 S i m p l i f i e d f l o w c h a r t d e m o n s t r a t i n g th e m a th e m a t i c a l a lg o r i t h m u s e d b y

th e s l i p v e c to r c a l c u l a t i o n p ro g ra m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5

5 -7 G ra p h o f 2 1 M v a lu e s fo r e a c h s l i p v e c to r a s th e y ra n g e f ro m 0 .0 to 1 .0

v e rs u s th e p i t c h o f th e s l i p v e c to r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 7

5 -8 S t e re o g ra p h i c p ro j e c t io n o f 2 1 s l i p v e c to r s r e p re s e n t in g v a lu e s ra n g in g

f ro m 0 .0 to 1 .0 o n a f a u l t p l a n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8

xiii

6 -1 G e o m e t ry o f th e s t r e s se s o n a s t r i a t e d f a u l t p l a n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2

6 -2 D ia g ra m o f a f a u l t p l a n e l o o k in g d o w n th e p lu n g e o f th e n o rm a l v e c to r

a t t h e fo o tw a l l b lo c k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4

6 - 3 S te r e o g r a p h ic p ro j e c t io n s h o w in g a c o n ju g a t e s e t o f tw o n o rm a l fa u l t s . . . . . . . . 1 0 0

7 - 1 S te r e o g r a p h ic p ro j e c t io n s h o w in g a c o n ju g a t e s e t o f tw o n o rm a l fa u l t s . . . . . . . . 1 0 8

7 - 2 F ig u re s h o w in g th e g r a p h ic a l o u t p u t f ro m R e c h e s ' m e t h o d o f p a l e o s t r e s s

a n a ly s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1

8 -1 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 1 w h e re M = 0 .0 0 . . . . . . . . . . . 1 1 8

8 -2 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 1 w h e re M = 0 .2 5 . . . . . . . . . . . 1 1 9

8 -3 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 1 w h e re M = 0 .5 0 . . . . . . . . . . . 1 2 0

8 -4 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 1 w h e re M = 0 .7 5 . . . . . . . . . . . 1 2 1

8 -5 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 1 w h e re M = 1 .0 0 . . . . . . . . . . . 1 2 2

8 -6 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 2 w h e re M = 0 .0 0 . . . . . . . . . . . 1 2 3

8 -7 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 2 w h e re M = 0 .2 5 . . . . . . . . . . . 1 2 4

8 -8 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 2 w h e re M = 0 .5 0 . . . . . . . . . . . 1 2 5

8 -9 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 2 w h e re M = 0 .7 5 . . . . . . . . . . . 1 2 6

8 -1 0 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 2 w h e re M = 1 .0 0 . . . . . . . . . . . 1 2 7

8 -1 1 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 3 w h e re M = 0 .0 0 . . . . . . . . . . . 1 2 8

8 -1 2 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 3 w h e re M = 0 .2 5 . . . . . . . . . . . 1 2 9

8 -1 3 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 3 w h e re M = 0 .5 0 . . . . . . . . . . . 1 3 0

8 -1 4 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 3 w h e re M = 0 .7 5 . . . . . . . . . . . 1 3 1

8 -1 5 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R P -0 3 w h e re M = 1 .0 0 . . . . . . . . . . . 1 3 2

8 -1 6 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n A C -0 1 w h e re M = 0 .0 0 . . . . . . . . . . 1 3 5

xiv

8 -1 7 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n A C -0 1 w h e re M = 0 .2 5 . . . . . . . . . . 1 3 6

8 -1 8 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n A C -0 1 w h e re M = 0 .5 0 . . . . . . . . . . 1 3 7

8 -1 9 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n A C -0 1 w h e re M = 0 .7 5 . . . . . . . . . . 1 3 8

8 -2 0 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n A C -0 1 w h e re M = 1 .0 0 . . . . . . . . . . 1 3 9

8 -2 1 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n A C -0 2 w h e re M = 0 .0 0 . . . . . . . . . . 1 4 1

8 -2 2 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n A C -0 2 w h e re M = 0 .2 5 . . . . . . . . . . 1 4 2

8 -2 3 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n A C -0 2 w h e re M = 0 .5 0 . . . . . . . . . . 1 4 3

8 -2 4 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n A C -0 2 w h e re M = 0 .7 5 . . . . . . . . . . 1 4 4

8 -2 5 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n A C -0 2 w h e re M = 1 .0 0 . . . . . . . . . . 1 4 5

8 -2 6 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n O S -0 1 w h e re M = 0 .0 0 . . . . . . . . . . . 1 4 6

8 -2 7 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n O S -0 1 w h e re M = 0 .2 5 . . . . . . . . . . . 1 4 7

8 -2 8 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n O S -0 1 w h e re M = 0 .5 0 . . . . . . . . . . . 1 4 8

8 -2 9 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n O S -0 1 w h e re M = 0 .7 5 . . . . . . . . . . . 1 4 9

8 -3 0 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n O S -0 1 w h e re M = 1 .0 0 . . . . . . . . . . . 1 5 0

8 -3 1 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R S -0 1 w h e re M = 0 .0 0 . . . . . . . . . . . 1 5 3

8 -3 2 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R S -0 1 w h e re M = 0 .2 5 . . . . . . . . . . . 1 5 4

8 -3 3 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R S -0 1 w h e re M = 0 .5 0 . . . . . . . . . . . 1 5 5

8 -3 4 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R S -0 1 w h e re M = 0 .7 5 . . . . . . . . . . . 1 5 6

8 -3 5 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n R S -0 1 w h e re M = 1 .0 0 . . . . . . . . . . . 1 5 7

8 -3 6 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 1 w h e re M = 0 .0 0 . . . . . . . . . . . 1 5 8

8 -3 7 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 1 w h e re M = 0 .2 5 . . . . . . . . . . . 1 5 9

8 -3 8 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 1 w h e re M = 0 .5 0 . . . . . . . . . . . 1 6 0

xv

8 -3 9 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 1 w h e re M = 0 .7 5 . . . . . . . . . . . 1 6 1

8 -4 0 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 1 w h e re M = 1 .0 0 . . . . . . . . . . . 1 6 2

8 -4 1 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 2 w h e re M = 0 .0 0 . . . . . . . . . . . 1 6 3

8 -4 2 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 2 w h e re M = 0 .2 5 . . . . . . . . . . . 1 6 4

8 -4 3 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 2 w h e re M = 0 .5 0 . . . . . . . . . . . 1 6 5

8 -4 4 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 2 w h e re M = 0 .7 5 . . . . . . . . . . . 1 6 6

8 -4 5 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 2 w h e re M = 1 .0 0 . . . . . . . . . . . 1 6 7

8 -4 6 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 3 w h e re M = 0 .0 0 . . . . . . . . . . . 1 6 8

8 -4 7 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 3 w h e re M = 0 .2 5 . . . . . . . . . . . 1 6 9

8 -4 8 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 3 w h e re M = 0 .5 0 . . . . . . . . . . . 1 7 0

8 -4 9 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 3 w h e re M = 0 .7 5 . . . . . . . . . . . 1 7 1

8 -5 0 S t e re o g ra p h ic p ro je c t io n o f f a u l t p o p u la t i o n S O -0 3 w h e re M = 1 .0 0 . . . . . . . . . . . 1 7 2

8 -5 1 S t e re o g ra p h i c p ro j e c t io n o f A n g e l i e r ' s (1 9 7 9 ) f a u l t p o p u la t i o n F D -0 1 . . . . . . . . . 1 7 4

9 - 1 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 1 a t M = 0 .0 0 . . . . . . . . . . . . . . . . 1 7 7

9 - 2 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 1 a t M = 0 .2 5 . . . . . . . . . . . . . . . . 1 7 8

9 - 3 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 1 a t M = 0 .5 0 . . . . . . . . . . . . . . . . 1 7 9

9 - 4 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 1 a t M = 0 .7 5 . . . . . . . . . . . . . . . . 1 8 0

9 - 5 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 1 a t M = 1 .0 0 . . . . . . . . . . . . . . . . 1 8 1

9 - 6 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 2 a t M = 0 .0 0 . . . . . . . . . . . . . . . . 1 8 2

9 - 7 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 2 a t M = 0 .2 5 . . . . . . . . . . . . . . . . 1 8 3

9 - 8 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 2 a t M = 0 .5 0 . . . . . . . . . . . . . . . . 1 8 4

9 - 9 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 2 a t M = 0 .7 5 . . . . . . . . . . . . . . . . 1 8 5

xvi

9 - 1 0 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 2 a t M = 1 .0 0 . . . . . . . . . . . . . . . . 1 8 6

9 - 1 1 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 3 a t M = 0 .0 0 . . . . . . . . . . . . . . . . 1 8 7

9 - 1 2 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 3 a t M = 0 .2 5 . . . . . . . . . . . . . . . . 1 8 8

9 - 1 3 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 3 a t M = 0 .5 0 . . . . . . . . . . . . . . . . 1 8 9

9 - 1 4 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 3 a t M = 0 .7 5 . . . . . . . . . . . . . . . . 1 9 0

9 - 1 5 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 3 a t M = 1 .0 0 . . . . . . . . . . . . . . . . 1 9 1

9 - 1 6 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 1 a t M = 0 .0 0 . . . . . . . . . . . . . 1 9 2

9 - 1 7 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 1 a t M = 0 .2 5 . . . . . . . . . . . . . 1 9 3

9 - 1 8 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 1 a t M = 0 .5 0 . . . . . . . . . . . . . 1 9 4

9 - 1 9 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 1 a t M = 0 .7 5 . . . . . . . . . . . . . 1 9 5

9 - 2 0 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 1 a t M = 1 .0 0 . . . . . . . . . . . . . 1 9 6

9 - 2 1 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 2 a t M = 0 .0 0 . . . . . . . . . . . . . 1 9 7

9 - 2 2 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 2 a t M = 0 .2 5 . . . . . . . . . . . . . 1 9 8

9 - 2 3 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 2 a t M = 0 .5 0 . . . . . . . . . . . . . 1 9 9

9 - 2 4 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 2 a t M = 0 .7 5 . . . . . . . . . . . . . 2 0 0

9 - 2 5 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 2 a t M = 1 .0 0 . . . . . . . . . . . . . 2 0 1

9 - 2 6 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 3 a t M = 0 .0 0 . . . . . . . . . . . . . 2 0 2

9 - 2 7 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 3 a t M = 0 .2 5 . . . . . . . . . . . . . 2 0 3

9 - 2 8 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 3 a t M = 0 .5 0 . . . . . . . . . . . . . 2 0 4

9 - 2 9 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 3 a t M = 0 .7 5 . . . . . . . . . . . . . 2 0 5

9 - 3 0 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R P - 0 3 a t M = 1 .0 0 . . . . . . . . . . . . . 2 0 6

9 - 3 1 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 1 a t M = 0 .0 0 . . . . . . . . . . . . . . . 2 1 5

xvii

9 - 3 2 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 1 a t M = 0 .2 5 . . . . . . . . . . . . . . . 2 1 6

9 - 3 3 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 1 a t M = 0 .5 0 . . . . . . . . . . . . . . . 2 1 7

9 - 3 4 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 1 a t M = 0 .7 5 . . . . . . . . . . . . . . . 2 1 8

9 - 3 5 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 1 a t M = 1 .0 0 . . . . . . . . . . . . . . . 2 1 9

9 - 3 6 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 1 a t M = 0 .0 0 . . . . . . . . . . . . . 2 2 0

9 - 3 7 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 1 a t M = 0 .2 5 . . . . . . . . . . . . . 2 2 1

9 - 3 8 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 1 a t M = 0 .5 0 . . . . . . . . . . . . . 2 2 2

9 - 3 9 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 1 a t M = 0 .7 5 . . . . . . . . . . . . . 2 2 3

9 - 4 0 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 1 a t M = 1 .0 0 . . . . . . . . . . . . . 2 2 4

9 - 4 1 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 2 a t M = 0 .0 0 . . . . . . . . . . . . . . . 2 2 5

9 - 4 2 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 2 a t M = 0 .2 5 . . . . . . . . . . . . . . . 2 2 6

9 - 4 3 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 2 a t M = 0 .5 0 . . . . . . . . . . . . . . . 2 2 7

9 - 4 4 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 2 a t M = 0 .7 5 . . . . . . . . . . . . . . . 2 2 8

9 - 4 5 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 2 a t M = 1 .0 0 . . . . . . . . . . . . . . . 2 2 9

9 - 4 6 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 2 a t M = 0 .0 0 . . . . . . . . . . . . . 2 3 0

9 - 4 7 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 2 a t M = 0 .2 5 . . . . . . . . . . . . . 2 3 1

9 - 4 8 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 2 a t M = 0 .5 0 . . . . . . . . . . . . . 2 3 2

9 - 4 9 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 2 a t M = 0 .7 5 . . . . . . . . . . . . . 2 3 3

9 - 5 0 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n A C - 0 2 a t M = 1 .0 0 . . . . . . . . . . . . . 2 3 4

9 - 5 1 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n O S - 0 1 a t M = 0 .0 0 . . . . . . . . . . . . . . . 2 3 8

9 - 5 2 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n O S - 0 1 a t M = 0 .2 5 . . . . . . . . . . . . . . . 2 3 9

9 - 5 3 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n O S - 0 1 a t M = 0 .5 0 . . . . . . . . . . . . . . . 2 4 0

xviii

9 - 5 4 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n O S - 0 1 a t M = 0 .7 5 . . . . . . . . . . . . . . . . 2 4 1

9 - 5 5 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n O S - 0 1 a t M = 1 .0 0 . . . . . . . . . . . . . . . 2 4 2

9 - 5 6 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n O S - 0 1 a t M = 0 .0 0 . . . . . . . . . . . . . 2 4 3

9 - 5 7 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n O S - 0 1 a t M = 0 .2 5 . . . . . . . . . . . . . 2 4 4

9 - 5 8 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n O S - 0 1 a t M = 0 .5 0 . . . . . . . . . . . . . 2 4 5

9 - 5 9 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n O S - 0 1 a t M = 0 .7 5 . . . . . . . . . . . . . 2 4 6

9 - 6 0 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n O S - 0 1 a t M = 1 .0 0 . . . . . . . . . . . . . 2 4 7

9 - 6 1 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R S - 0 1 a t M = 0 .0 0 . . . . . . . . . . . . . . . 2 5 1

9 - 6 2 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R S - 0 1 a t M = 0 .2 5 . . . . . . . . . . . . . . . . 2 5 2

9 - 6 3 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R S - 0 1 a t M = 0 .5 0 . . . . . . . . . . . . . . . . 2 5 3

9 - 6 4 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R S - 0 1 a t M = 0 .7 5 . . . . . . . . . . . . . . . . 2 5 4

9 - 6 5 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R S - 0 1 a t M = 1 .0 0 . . . . . . . . . . . . . . . . 2 5 5

9 - 6 6 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R S - 0 1 a t M = 0 .0 0 . . . . . . . . . . . . . 2 5 6

9 - 6 7 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R S - 0 1 a t M = 0 .2 5 . . . . . . . . . . . . . 2 5 7

9 - 6 8 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R S - 0 1 a t M = 0 .5 0 . . . . . . . . . . . . . 2 5 8

9 - 6 9 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R S - 0 1 a t M = 0 .7 5 . . . . . . . . . . . . . 2 5 9

9 - 7 0 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n R S - 0 1 a t M = 1 .0 0 . . . . . . . . . . . . . 2 6 0

9 - 7 1 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 1 a t M = 0 .0 0 . . . . . . . . . . . . . . . 2 6 3

9 - 7 2 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 1 a t M = 0 .2 5 . . . . . . . . . . . . . . . 2 6 4

9 - 7 3 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 1 a t M = 0 .5 0 . . . . . . . . . . . . . . . 2 6 5

9 - 7 4 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 1 a t M = 0 .7 5 . . . . . . . . . . . . . . . 2 6 6

9 - 7 5 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 1 a t M = 1 .0 0 . . . . . . . . . . . . . . . 2 6 7

xix

9 - 7 6 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 1 a t M = 0 .0 0 . . . . . . . . . . . . . 2 6 8

9 - 7 7 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 1 a t M = 0 .2 5 . . . . . . . . . . . . . 2 6 9

9 - 7 8 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 1 a t M = 0 .5 0 . . . . . . . . . . . . . 2 7 0

9 - 7 9 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 1 a t M = 0 .7 5 . . . . . . . . . . . . . 2 7 1

9 - 8 0 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 1 a t M = 1 .0 0 . . . . . . . . . . . . . 2 7 2

9 - 8 1 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 2 a t M = 0 .0 0 . . . . . . . . . . . . . . . 2 7 5

9 - 8 2 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 2 a t M = 0 .2 5 . . . . . . . . . . . . . . . 2 7 6

9 - 8 3 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 2 a t M = 0 .5 0 . . . . . . . . . . . . . . . 2 7 7

9 - 8 4 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 2 a t M = 0 .7 5 . . . . . . . . . . . . . . . 2 7 8

9 - 8 5 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 2 a t M = 1 .0 0 . . . . . . . . . . . . . . . 2 7 9

9 - 8 6 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 2 a t M = 0 .0 0 . . . . . . . . . . . . . 2 8 0

9 - 8 7 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 2 a t M = 0 .2 5 . . . . . . . . . . . . . 2 8 1

9 - 8 8 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 2 a t M = 0 .5 0 . . . . . . . . . . . . . 2 8 2

9 - 8 9 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 2 a t M = 0 .7 5 . . . . . . . . . . . . . 2 8 3

9 - 9 0 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 2 a t M = 1 .0 0 . . . . . . . . . . . . . 2 8 4

9 - 9 1 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 3 a t M = 0 .0 0 . . . . . . . . . . . . . . . 2 8 5

9 - 9 2 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 3 a t M = 0 .2 5 . . . . . . . . . . . . . . . 2 8 6

9 - 9 3 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 3 a t M = 0 .5 0 . . . . . . . . . . . . . . . 2 8 7

9 - 9 4 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 3 a t M = 0 .7 5 . . . . . . . . . . . . . . . 2 8 8

9 - 9 5 R e c h e s ' m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 3 a t M = 1 .0 0 . . . . . . . . . . . . . . . 2 8 9

9 - 9 6 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 3 a t M = 0 .0 0 . . . . . . . . . . . . . 2 9 0

9 - 9 7 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 3 a t M = 0 .2 5 . . . . . . . . . . . . . 2 9 1

xx

9 - 9 8 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 3 a t M = 0 .5 0 . . . . . . . . . . . . . 2 9 2

9 - 9 9 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 3 a t M = 0 .7 5 . . . . . . . . . . . . . 2 9 3

9 - 1 0 0 A n g e l i e r ' s m e t h o d r e s u l t s fo r fa u l t p o p u l a t i o n S O - 0 3 a t M = 1 .0 0 . . . . . . . . . . . . . 2 9 4

9 -1 0 1 R e c h e s ' m e th o d re s u l t s fo r f a u l t p o p u la t i o n F D -0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 8

9 -1 0 2 A n g e l i e r ' s m e th o d re s u l t s fo r f a u l t p o p u la t i o n F D -0 1 . . . . . . . . . . . . . . . . . . . . . . . . 2 9 9

xxi

L IS T O F T A B L E S

P a g e

5 - 1 T a b le o f d a t a g e n e r a t e d b y t h e c a l c u l a t io n o f 2 1 s l i p v e c t o r s . . . . . . . . . . . . . . . . . . . 8 6

8 - 1 T a b l e o f d a t a l i s t i n g A n g e l i e r ' s ( 1 9 7 9 ) p o p u l a t i o n o f 3 8 n o r m a l fa u l t s . . . . . . . . . . 1 7 5

9 -1 R e c h e s ' a n d A n g e l i e r ' s r e s u l t s fo r f a u l t p o p u la t i o n R P - 0 1 . . . . . . . . . . . . . . . . . . . . 2 1 0

9 -2 R e c h e s ' a n d A n g e l i e r ' s r e s u l t s fo r f a u l t p o p u la t i o n R P - 0 2 . . . . . . . . . . . . . . . . . . . . 2 1 1

9 -3 R e c h e s ' a n d A n g e l i e r ' s r e s u l t s fo r f a u l t p o p u la t i o n R P - 0 3 . . . . . . . . . . . . . . . . . . . . 2 1 2

9 -4 R e c h e s ' a n d A n g e l i e r ' s r e s u l t s fo r f a u l t p o p u la t i o n A C -0 1 . . . . . . . . . . . . . . . . . . . . 2 3 5

9 -5 R e c h e s ' a n d A n g e l i e r ' s r e s u l t s fo r f a u l t p o p u la t i o n A C -0 2 . . . . . . . . . . . . . . . . . . . . 2 3 6

9 -6 R e c h e s ' a n d A n g e l i e r ' s r e s u l t s fo r f a u l t p o p u la t i o n O S - 0 1 . . . . . . . . . . . . . . . . . . . . 2 4 8

9 -7 R e c h e s ' a n d A n g e l i e r ' s r e s u l t s fo r f a u l t p o p u la t i o n R S - 0 1 . . . . . . . . . . . . . . . . . . . . 2 6 1

9 -8 R e c h e s ' a n d A n g e l i e r ' s r e s u l t s fo r f a u l t p o p u la t i o n S O -0 1 . . . . . . . . . . . . . . . . . . . . 2 7 3

9 -9 R e c h e s ' a n d A n g e l i e r ' s r e s u l t s fo r f a u l t p o p u la t i o n S O -0 2 . . . . . . . . . . . . . . . . . . . . 2 9 5

9 -1 0 R e c h e s ' a n d A n g e l i e r ' s r e s u l t s fo r f a u l t p o p u la t i o n S O -0 3 . . . . . . . . . . . . . . . . . . . . 2 9 6

1

C H A P T E R 1

IN T R O D U C T IO N

A n u m e r ic a l a l g o r i t h m fo r p a l e o s t re s s a n a l y s i s u s i n g f a u l t p o p u l a t io n s w a s f i r s t

p ro p o s e d b y C a re y a n d B ru n ie r (1 9 7 4 ) s ix t e e n y e a r s a g o (A n g e l i e r a n d G o g u e l , 1 9 7 9 ;

E tc h e c o p a r , e t . a l . , 1 9 8 1 ; A n g e l i e r , e t . a l . , 1 9 8 2 ; C é lé r i e r , 1 9 8 8 ; A n g e l i e r , 1 9 8 9 ) . S in c e th a t

t im e , s e v e r a l d i f f e r e n t c o m p u ta t io n a l m e th o d s h a v e b e e n p ro p o s e d (C a re y a n d B ru n ie r , 1 9 7 4 ;

A rm i j o a n d C is te rn a s , 1 9 7 8 ; A n g e l i e r , 1 9 7 9 ; E tc h e c o p a r , e t . a l . , 1 9 8 1 ; A n g e l i e r , e t . a l . , 1 9 8 2 ;

V a s s e u r , e t . a l . , 1 9 8 3 ; A n g e l i e r , 1 9 8 4 ; G e p h a r t a n d F o r s y t h , 1 9 8 4 ; M ic h a e l , 1 9 8 4 ; R e c h e s ,

1 9 8 7 ; A n g e l i e r , 1 9 8 9 ) , e a c h h a v i n g d i s t i n c t a d v a n t a g e s o v e r th e p r e c e d i n g o n e s . T h e s e

n u m e r i c a l m e th o d s a re a l l b a s e d u p o n th e t h e o r e t i c a l r e l a t i o n sh ip s b e tw e e n s t r e s s a n d sh e a r

d e s c r i b e d b y W a l l a c e ( 1 9 5 1 ) a n d B o t t ( 1 9 5 9 ) a n d u s e i t e r a t i v e m e t h o d s t o s e e k a b e s t - f i t

b e tw e e n t h e o b s e rv e d s l i p d i r e c t i o n s o f fa u l t s a n d th e d i r e c t i o n s o f m a x im u m s h e a r s t r e s s o n

e a c h fa u l t p la n e fo r d i f fe re n t p a le o s t r e s s t e n s o rs (E tc h e c o p a r , e t . a l . , 1 9 8 1 ; A n g e l i e r , 1 9 8 4 ;

G e p h a r t a n d F o r s y t h , 1 9 8 4 ; M i c h a e l , 1 9 8 4 ; R e c h e s , 1 9 8 7 ; A n g e l i e r , 1 9 8 9 ) .

P a l e o s t r e s s a n a ly s i s p ro g ra m s r e q u i r e a n i n i t i a l d a t a s e t o f f a u l t s a s su m e d , o r k n o w n ,

t o h a v e b e e n a c t i v a t e d d u r i n g a s i n g l e t e c t o n i c e v e n t w i t h i n a h o m o g e n e o u s s t r e s s f i e l d . A f a u l t

d a tu m c o n s i s t s o f t h e f a u l t ' s o r i e n t a t i o n , s l i p d i re c t i o n , a n d s e n s e o f s l i p . T h i s f a u l t p o p u la t i o n

1 2 3d a ta i s u s e d t o c a l c u l a t e t h e o r i e n t a t io n o f th e th r e e p r in c ip a l s t r e s s a x e s F , F , a n d F a n d a

v a lu e s ig n i fy i n g s o m e r a t io o f th e i r r e l a t iv e m a g n i tu d e s , c o m m o n ly d e n o t e d a s M ( A n g e l i e r ,

1 9 7 9 ; M i c h a e l , 1 9 8 4 ) .

1 .1 P u r p o se o f th is S tu d y

P a l e o s t r e s s a n a l y s i s t e c h n i q u e s h a v e r e c e n t l y b e e n a p p l i e d b y m a n y g e o l o g i s t s t o

2

reg ion a l f a u l t p o p u la t i o n s (A n g e l i e r a n d M e c h le r , 1 9 7 7 ; A n g e l i e r , 1 9 7 9 ; A n g e l i e r a n d G o g u e l ,

1 9 7 9 ; A y d in , 1 9 8 0 ; E tc h e c o p a r , e t . a l . , 1 9 8 1 ; A n g e l i e r , e t . a l . , 1 9 8 2 ; A n g e l i e r , 1 9 8 4 ;

M i c h a e l , 1 9 8 4 ; A le k s a n d ro w s k i , 1 9 8 5 ; A n g e l i e r , e t . a l . , 1 9 8 5 ; F r i z z e l l a n d Z o b a c k , 1 9 8 7 ;

H a n c o c k , e t . a l . , 1 9 8 7 ; Ju l i e n a n d C o rn e t , 1 9 8 7 ; L i s le , 1 9 8 7 ; P f i f f n e r a n d B u rk h a rd , 1 9 8 7 ;

R e c h e s , 1 9 8 7 ; S a s s i a n d C a re y -G a i lh a rd i s , 1 9 8 7 ; C a p u to a n d C a p u to , 1 9 8 8 ; C é l é r i e r , 1 9 8 8 ;

L a r ro q u e a n d L a u re n t , 1 9 8 8 ; L i s le , 1 9 8 8 ; A n g e l i e r , 1 9 8 9 ; H a rd c a s t l e , 1 9 8 9 ; H a t z o r a n d

R e c h e s , 1 9 8 9 ; M a n n i n g a n d d e B o e r , 1 9 8 9 ; W a l l b r e c h e r a n d F r i tz , 1 9 8 9 ; U m h o e f e r , 1 9 9 0 ) in

o r d e r to d e r i v e r e g i o n a l p a l e o s t r e s s t e n s o r s . A c l o s e e x a m i n a t i o n o f p u b l i s h e d s t u d i e s i n d i c a t e

t h a t n u m e r i c a l p a l e o s t r e s s a n a l y s i s t e c h n i q u e s a r e c o m m o n l y a p p l i e d t o f a u l t p o p u l a t i o n s o n l y

w h e n th e r e s u l t s a r e c o n s i s te n t w i th o th e r m e th o d s o f e s t im a t in g p a l e o s t r e s se s (F r iz z e l l a n d

Z o b a c k , 1 9 8 7 ; H a n c o c k , e t . a l . , 1 9 8 7 ; P f i f f n e r a n d B u r k h a r d , 1 9 8 7 ; L a r r o q u e a n d L a u r e n t ,

1 9 8 8 ; H a rd c a s t l e , 1 9 8 9 ; M a n n in g a n d d e B o e r , 1 9 8 9 ; W a l lb re c h e r a n d F r i t z , 1 9 8 9 ; H a t z o r

a n d R e c h e s , 1 9 9 0 ) . U n f o r t u n a t e l y , v e r y l i t t l e w o r k h a s b e e n p u b l i s h e d o n t h e p o s s i b l e

l im i ta t ion s o f i n d iv id u a l p a le o s t r e s s a n a ly s i s p ro g ra m s c u r r e n t l y in u s e (A n g e l i e r , e t . a l . , 1 9 8 2 ;

A n g e l i e r , 1 9 8 4 ; C é lé r i e r , 1 9 8 8 ) a n d I a m n o t a w a re o f a n y p u b l i s h e d p a p e rs p ro v i d i n g a

d e ta i l e d s tu d y o f th e l im i t a t i o n s o f p a le o s t r e s s a n a ly s i s p ro g ra m s in g e n e ra l . T h i s im p l i e s th a t

s o m e re s e a rc h e r s m a y b e a p p ly in g p a l e o s t r e s s a n a ly s i s t o r e g io n a l f a u l t p o p u la t i o n s w i th o u t

h a v in g a c l e a r id e a o f h o w a p p ro p r i a t e th e a p p l i c a t i o n o f s u c h t e c h n iq u e s t o t h e i r d a ta s e t s m a y

b e (E d e lm a n , 1 9 8 9 ) a l t h o u g h , s in c e w o rk o n th i s t h e s i s h a s s t a r t e d , s e v e r a l r e s e a rc h e r s h a v e

b e g u n to e x a m in e th i s im p o r t a n t t o p ic (P e rs h in g , 1 9 8 9 ; P o l l a rd , 1 9 9 0 ) .

M y s tu d y i s a n a t t e m p t to c o r re c t th i s p ro b le m b y sy s te m a tic a l ly e x a m in in g tw o w id e ly -

u s e d p a le o s t r e s s a n a ly s i s p ro g ra m s a n d d e m o n s t r a t i n g th a t t h e y b o th p o s s e s s im p o r t a n t

l im i t a t io n s . G e o lo g i s t s s h o u ld b e m a d e a w a r e o f t h e s e l im i t a t io n s b e fo r e t h e y u s e p a l e o s t r e s s

a n a ly s i s t e c h n iq u e s to d e te rm in e a p o s s ib le p a le o s t r e s s t e n so r f ro m f i e ld d a ta .

3

1 .2 S c o p e o f th is S tu d y

T h e tw o p a l e o s t r e s s a n a l y s i s p r o g r a m s I c h o s e to e x a m in e fo r th i s s t u d y w e r e t h o s e

d e v e lo p e d b y A n g e l i e r ( A n g e l i e r , 1 9 7 9 ; A n g e l i e r , 1 9 8 9 ) a n d R e c h e s (R e c h e s , 1 9 8 7 ) . T h e s e

p r o g r a m s w e r e c h o s e n fo r t e s t in g b e c a u s e t h e l i t e r a t u re i n d i c a t e d th a t t h e y a re t h e m o s t

c o m m o n ly u s e d p a le o s t r e s s a n a ly s i s p ro g ra m s (A n g e l i e r , 1 9 7 9 ; A n g e l i e r , e t . a l . , 1 9 8 2 ;

A n g e l i e r , 1 9 8 4 ; A n g e l i e r , e t . a l . , 1 9 8 5 ; P f i f f n e r a n d B u r k h a r d , 1 9 8 7 ; R e c h e s , 1 9 8 7 ; A n g e l i e r ,

1 9 8 9 ; H a r d c a s t l e , 1 9 8 9 ; H a tz o r a n d R e c h e s , 1 9 9 0 ) . I h a v e a l s o b e g u n e x a m in in g o th e r

p a le o s t r e s s a n a ly s i s p ro g ra m s i n c lu d in g t h o s e d e v e lo p e d b y E tc h e c o p a r (E tc h e c o p a r , e t . a l . ,

1 9 8 1 ) , M ic h a e l (M ic h a e l , 1 9 8 4 ) , G e p h a r t (G e p h a r t a n d F o r sy th , 1 9 8 4 ) , a n d L i s le (L i s le , , 1 9 8 8 )

a l th o u g h th e r e s u l t s f ro m th o s e p ro g ra m s a r e t o o p re l im in a ry to b e in c lu d e d h e re a n d w i l l b e

a d d r e s s e d i n a f u t u r e p a p e r .

T o e v a lu a t e t h e u s e f u l n e s s o f t h e p a l e o s t r e s s a n a l y s i s p ro g ra m s t e s t e d , I w i l l a d d r e s s

th e fo l l o w in g th re e q u e s t i o n s in th i s th e s i s .

1 . D o th e tw o p a l e o s t r e s s a n a ly s i s p ro g ra m s c h o s e n fo r t e s t i n g h a v e s ig n i f i c a n t

l im i t a t io n s ?

2 . I f s o , w h a t e x a c t ly a re t h o s e l im i t a t io n s ?

3 . H o w d o e s t h i s i n f o r m a t i o n p e r t a i n t o t h e g e o l o g i s t a p p l y i n g p a l e o s t r e s s a n a l y s i s

t e c h n iq u e s ?

S e v e ra l r e s e a rc h e r s h a v e s h o w n th a t e a c h o f t h e p a le o s t r e s s a n a ly s i s p ro g ra m s I t e s t e d

w i l l y i e l d g e o l o g ic a l ly - re a s o n a b l e , o r e x p e c t e d , r e s u l t s fo r c e r t a i n f a u l t p o p u l a t i o n s ( A n g e l i e r ,

1 9 7 9 ; A n g e l i e r , e t . a l . , 1 9 8 2 ; A n g e l i e r , 1 9 8 4 ; A n g e l i e r , e t . a l . , 1 9 8 5 ; P f i f fn e r a n d B u rk h a rd ,

1 9 8 7 ; R e c h e s , 1 9 8 7 ; A n g e l i e r , 1 9 8 9 ; H a rd c a s t l e , 1 9 8 9 ; H a tz o r a n d R e c h e s , 1 9 9 0 ) . I

s p e c i f i c a l l y s e t o u t to f in d s i t u a t io n s in w h i c h th e m e t h o d s w o u ld n o t y i e l d th e e x p e c t e d re s u l t s .

4

In t h i s w a y , I h o p e d to d i s c o v e r a n d e v a lu a t e a n y w e a k n e s s e s in h e r e n t in t h e s e p r o g r a m s .

T h e h y p o t h e s i s I w i s h t o p r o v e i n t h i s t h e s i s i s t h a t c o m p u ta t io n a l m e th o d s o f

p a le o s tre ss a n a ly s is h a v e se v era l s ig n i f ic a n t l im i ta t io n s th a t g e o lo g is t s m u s t b e a w a r e o f w h e n

u s in g th e se te ch n iq u e s to d e r iv e a re g io n a l p a le o s tre ss te n so r f ro m n a tu ra l fa u l t p o p u la t io n s .

1 .3 T e st in g P r o c e d u r e s

A l l o f th e p a le o s t r e s s a n a ly s i s p ro g ra m s t e s t e d m a k e th re e v e ry im p o r t a n t in i t i a l

a s s u m p t io n s .

1 . T h e f a u l t a n d s l i p o r i e n t a t i o n s w h ic h c o m p r i s e th e d a t a s e t a r e a s so c i a t e d w i th a

u n i q u e , h o m o g e n e o u s r e g i o n a l p a l e o s t r e s s t e n s o r .

2 . T h e f a u l t s e a c h b e h a v e in d e p e n d e n t ly o f o n e a n o th e r a n d d o n o t in t e r a c t m e c h a n i c a l ly .

3 . T h e m o v e m e n t v e c to r fo r e a c h f a u l t p l a n e c o r re s p o n d s to th e d i r e c t i o n o f m a x im u m

s h e a r s t r e s s w i th in th a t p la n e .

A r t i f i c i a l f a u l t p o p u l a t i o n s c o n s i s te n t w i th a k n o w n s t r e s s t e n s o r w e re d e r iv e d u s in g

th e se th re e s im p l i fy in g a s s u m p t io n s . T h e s e a r t i f i c i a l f a u l t p o p u la t i o n d a ta s e t s w e re th e n u se d

to t e s t t h e p a l e o s t r e s s a n a l y s i s p r o g r a m s in f o u r d i f f e r e n t w a y s .

1 . T h e a c c u r a c y o f e a c h p a l e o s t r e s s a n a l y s i s p r o g r a m w a s te s te d b y c re a t i n g r a n d o m f a u l t -

s l i p p o p u l a t i o n s c o n s i s t e n t w i t h a c h o s e n s t r e s s t e n s o r . T h e o r i e n t a t i o n s o f th e f a u l t

p l a n e s w e re r a n d o m ly c h o s e n a n d th e i r s l i p d i r e c t i o n s w e re c o in c id e n t w i th th e

d i r e c t i o n o f m a x im u m s h e a r s t r e s s w i th in e a c h p l a n e . T h e s e fa u l t p o p u la t i o n s w e r e

u s e d a s i n p u t fo r th e p a l e o s t r e s s a n a l y s i s p r o g r a m s a n d t h e r e s u l t s w e r e c o m p a r e d t o

5

th e o r ig in a l s t r e s s t e n s o r u n d e r w h ic h th e f a u l t - s l i p d a t a w e re c r e a t e d .

2 . T h e b e h a v i o r o f e a c h p a l e o s t r e s s a n a l y s i s p r o g r a m w h e n a p p l i e d t o s p e c i a l - c a s e f a u l t

p o p u la t i o n s w a s te s te d b y u s in g th e fo l l o w in g fa u l t p o p u la t i o n s a s so c i a t e d w i th a

k n o w n s t r e s s t e n s o r .

A . S i m p l e A n d e r s o n i a n c o n j u g a t e f a u l t s e t s ( A n d e r s o n , 1 9 5 1 ) .

B . O r th o rh o m b ic , o r rh o m b o h e d ra l , f a u l t p o p u la t i o n s (A y d in a n d R e c h e s , 1 9 8 2 ;

K r a n t z , 1 9 8 6 ; K r a n t z , 1 9 8 9 ) .

C . F a u l t p o p u la t i o n s w h e re a l l f a u l t s h a v e a p p ro x im a te ly th e s a m e o r i e n t a t i o n .

D . F a u l t p o p u la t i o n s w h e re s o m e o r a l l o f th e f a u l t s h a v e a p p ro x im a te ly th e s a m e

o r ie n t a t io n a s t h e p r in c ip a l s t r e s s p l a n e s .

3 . T h e s t a b i l i t y o f t h e c a lc u la t e d p a le o s t r e s s t e n so rs to in su f f i c i e n t d a t a , e x t r a n e o u s d a t a ,

a n d m e a s u re m e n t e r ro r s w a s te s te d b y a p p ly in g th e fo l l o w in g p ro c ed u re s a n d n o t in g th e

e f fe c t u p o n t h e c a l c u l a t e d p a l e o s t r e s s t e n s o r .

A . R a n d o m ly re m o v in g o n e o r m o re f a u l t p l a n e s f ro m a fa u l t p o p u la t i o n .

B . R a n d o m l y a d d i n g o n e o r m o r e f a u l t p l a n e s , w i t h r a n d o m l y c h o s e n s l i p

d i r e c t io n s , t o th e f a u l t p o p u la t i o n .

C . G i v i n g a ± 5 ° v a r i a b i l i t y t o t h e o r i e n t a t i o n s o f th e f a u l t p l a n e n o r m a l a n d s l i p

v e c t o r s .

4 . F i n a l ly , t h e p ro g ra m s w e re c o m p a re d to o n e a n o th e r , u s in g b o th n a tu ra l a n d a r t i f i c i a l

f a u l t p o p u l a t i o n s , t o s e e h o w c o n s i s t e n t t h e r e s u l t s w e r e g i v e n t h e s a m e i n i t i a l d a t a

s e t s . S i n c e o n e a s s u m p t io n s h a re d b y a l l o f t h e p a l e o s t r e s s a n a ly s i s p ro g ra m s i s t h a t

6

th e re e x i s t s a u n iq u e r e g io n a l p a l e o s t r e s s t e n s o r fo r a n y g iv e n f a u l t p o p u la t i o n a r i s in g

f ro m a s in g l e t e c t o n ic e v e n t , i n c o n s i s te n c i e s b e tw e e n th e o u tp u t o f t h e v a r io u s

p ro g ra m s w o u ld in d ic a te th e i r u n re l i a b i l i t y g iv e n c e r t a in in i t i a l d a ta s e t s .

1 .4 T h e s is O r g a n iz a t io n

I h a v e o rg a n i z e d t h i s t h e s i s i n to fo u r m a in s e c t io n s . C h a p t e r s 2 a n d 3 in t ro d u c e t h e

c o n c e p t o f p a l e o s t r e s s a n a ly s i s a s i t i s a p p l i e d t o f a u l t p o p u la t i o n s a n d g iv e a r e v i e w o f

p r e v i o u s w o r k . T h e s e c o n d s e c t i o n c o n s i s t s o f c h a p t e r 4 w h i c h d i s c u s s e s p r o b l e m s i n h e r e n t in

p a l e o s t r e s s a n a l y s i s , c h a p t e r 5 w h i c h d e s c r i b e s t h e p r o g r a m a n d m e t h o d o l o g y u s e d t o g e n e r a t e

a r t i f i c i a l fa u l t p o p u l a t i o n s , a n d c h a p t e r s 6 a n d 7 w h i c h d e s c r i b e t h e t w o p a l e o s t r e s s a n a l y s i s

p ro g ra m s t e s te d . T h e th i rd s e c t io n , c o n s i s t i n g o f c h a p te r s 8 a n d 9 , i s th e m a in b o d y o f th e

th e s i s a n d d e t a i l s t h e p ro c e d u r e s u se d to t e s t t h e p a l e o s t r e s s a n a ly s i s p ro g ra m s a n d p re s e n t s t h e

re s u l t s o f th o s e te s t s . F in a l ly , c h a p t e r 1 0 p re s e n t s t h e c o n c l u s io n s o f th i s s tu d y a n d s u g g e s t io n s

fo r fu r t h e r w o rk .

7

C H A P T E R 2

P A L E O S T R E S S A N A L Y S IS

P a le o s t r e s s a n a ly s i s r e fe r s to v a r io u s m e th o d s w h ic h a t t e m p t to d e te rm in e a re g io n a l

s t r e s s t e n s o r c o n s i s te n t w i th e x i s t i n g g e o l o g ic s t ru c tu re s . S e v e r a l d i f f e r e n t t e c h n i q u e s fo r

e s t im a t in g s t r e s s t e n s o rs h a v e b e e n p ro p o s e d . P r in c ip a l s t r e s s d i r e c t i o n s a n d r e l a t i v e

m a g n i tu d e s h a v e b e e n d e t e rm in e d f ro m fa u lt p o p u la t io n s (A n g e l i e r a n d M e c h l e r , 1 9 7 7 ;

A n g e l i e r , 1 9 7 9 ; A n g e l i e r a n d G o g u e l , 1 9 7 9 ; A y d in , 1 9 8 0 ; E tc h e c o p a r , e t . a l . , 1 9 8 1 ; A n g e l i e r ,

e t . a l . , 1 9 8 2 ; A n g e l i e r , 1 9 8 4 ; M ic h a e l , 1 9 8 4 ; A le s a n d ro w s k i , 1 9 8 5 ; A n g e l i e r , e t . a l . , 1 9 8 5 ;

F r i z z e l l a n d Z o b a c k , 1 9 8 7 ; H a n c o c k , e t . a t . , 1 9 8 7 ; L i s le , 1 9 8 7 ; P f i f fn e r a n d B u rk h a rd , 1 9 8 7 ;

R e c h e s , 1 9 8 7 ; S a s s i a n d C a re y -G a i lh a rd i s , 1 9 8 7 ; C a p u to a n d C a p u to , 1 9 8 8 ; C é l é r i e r , 1 9 8 8 ;

L a r ro q u e a n d L a u re n t , 1 9 8 8 ; L i s le , 1 9 8 8 ; A n g e l i e r , 1 9 8 9 ; H a rd c a s t l e , 1 9 8 9 ; M a n n in g a n d d e

B o e r , 1 9 8 9 ; M c B r id e , 1 9 8 9 ; W a l lb re c h e r a n d F r i t z , 1 9 8 9 ; H a t z o r a n d R e c h e s , 1 9 9 0 ;

U m h o e fe r , 1 9 9 0 ) , e a r th q u a ke fo c a l m e c h a n ism d a t a ( M c K e n z i e , 1 9 6 9 ; E l l s w o r th a n d

Z h o n g h u a i , 1 9 8 0 ; V a s s e u r , e t . a l . , 1 9 8 3 ; G e p h a r t a n d F o r s y th , 1 9 8 4 ; Ju l i e n a n d C o rn e t , 1 9 8 7 ;

P f i f fn e r a n d B u r k h a rd , 1 9 8 7 ; W a h l s t r o m , 1 9 8 7 ; M ic h a e l , 1 9 8 7 a ; M ic h a e l , 1 9 8 7 b ; J o n e s ,

1 9 8 8 ) , b o r e h o le e l o n g a t io n d a t a ( Z o b a c k a n d Z o b a c k , 1 9 8 0 ; P l u m b a n d C o x , 1 9 8 6 ; S u t e r ,

1 9 8 6 ; H a n s e n a n d M o u n t , 1 9 9 0 ) , j o i n t se t s (P r ic e , 1 9 6 6 ; E n g e ld e r a n d G e i s e r , 1 9 8 0 ;

E n g e ld e r , 1 9 8 2 ; H a n c o c k , 1 9 8 5 ; H a n c o c k , e t . a l . , 1 9 8 7 ) , d i k e se t s (B e rg e r , 1 9 7 1 ; M u l l e r a n d

P o l la rd , 1 9 7 7 ; D a v id s o n a n d P a rk , 1 9 7 8 ; B o r ra d a i l e , 1 9 8 6 ; R ic e , 1 9 8 6 ; L i s le , 1 9 8 9 ; M a n n in g

a n d d e B o e r , 1 9 8 9 ; H a n s e n a n d M o u n t , 1 9 9 0 ) , c a lc it e e - tw in s (S p a n g , 1 9 7 2 ; S p a n g a n d V a n

D e r L e e , 1 9 7 5 ; L a u re n t , e t . a l . , 1 9 8 1 ; P f i f fn e r a n d B u rk h a rd , 1 9 8 7 ; L a r ro q u e a n d L a u re n t ,

1 9 8 8 ) , v a r io u s m ic r o s tr u c tu r a l f e a t u r es (F r i e d m a n , 1 9 6 4 ; S c o t t , e t . a l . , 1 9 6 5 ; C a r t e r a n d

R a le ig h , 1 9 6 9 ; S p a n g a n d V a n D e r L e e , 1 9 7 5 ; W h i t e , 1 9 7 9 ; P lu m b , e t . a l . , 1 9 8 4 ; P ê c h e r , e t .

a l . , 1 9 8 5 ; L e s p in a s s e a n d P ê c h e r , 1 9 8 6 ; K o w a l l i s , e t . a l . , 1 9 8 7 ; J a n g , e t . a l . , 1 9 8 9 ; L a u b a c h ,

1 9 8 9 ; S h e p a rd , 1 9 9 0 ) , fo ld s (D ie te r i c h a n d C a r t e r , 1 9 6 9 ; M ic h a e l , 1 9 8 4 ) , s ty lo l i t e s

8

(A r t h a u d a n d M a t t a e u r , 1 9 6 9 ; B u c h n e r , 1 9 8 1 ; H a n c o c k , e t . a l . , 1 9 8 7 ) , kin k b a n d s (G a y a n d

W e i s s , 1 9 7 4 ) , a n d f r a c tu r e m a r k in g s o n jo in t su r fa c e s (B a h a t a n d R a b in o v ic h , 1 9 8 8 ) .

F a u l t - s t r i a t io n p a l e o s t r e s s a n a l y s i s , t h e t o p i c o f t h i s t h e s i s , i s th e s u b s e t o f p a l e o s t r e s s

a n a ly s i s w h ic h a t t e m p ts to e s t im a te th e r e l a t i v e m a g n i t u d e s a n d o r i e n ta t i o n s o f th e t h re e

1 2 3p r in c ip a l s t r e s s e s F , F , a n d F ( m o s t c o m p re s s iv e to l e a s t c o m p re s s iv e r e s p e c t iv e ly ) f ro m

fa u l t p o p u l a t io n s a n d th e i r a s s o c i a t e d s l i p d i r e c t i o n s .

2 .1 A n d er so n ia n F a u lt C la ss i f ic a t io n

T o d e te rm in e th e s t r e s s t e n so r a s s o c ia t e d w i th a d i s p la c e m e n t a l o n g a f a u l t i n a g iv e n

s l i p d i r e c t i o n , s o m e h y p o t h e s i s m u s t b e m a d e a b o u t th e f a i l u r e m e c h a n i s m s in v o lv e d . T h e f i r s t ,

a n d s im p le s t , h y p o th e s i s i s t h a t f a i l u re o c c u r re d w i th in in t a c t i s o t ro p i c ro c k . I n A n d e r s o n 's

c l a s s i c w o rk o n f a u l t i n g ( A n d e r s o n , 1 9 5 1 , p . 7 ) , C o u lo m b 's f a i l u re c r i t e r io n (C o u lo m b , 1 7 7 6 ;

1 2H a n d i n , 1 9 6 9 ) w a s u s e d to p re d i c t t h e o r i e n t a t io n s o f t h e t h r e e p r in c ip a l s t r e s s a x e s F , F , a n d

3F r e s u l t in g in th e t h re e c o m m o n ty p e s o f c o n j u g a t e f a u l t s y s te m s - - t h ru s t , n o rm a l , a n d

w re n c h .

A n d e rs o n b e g a n b y e x a m in in g a n in f in i t e s im a l p r i s m (o r a t l e a s t o n e sm a l l e n o u g h s u c h

t h a t th e s t r e s s e s p r e s e n t a r e h o m o g e n e o u s t h r o u g h o u t i t s v o l u m e ) s i tu a t e d w i t h i n a r ig h t -

1 2 3h a n d e d X Y Z c o o r d i n a t e s y s t e m w h e re F , F , a n d F a r e p a ra l l e l t h e X , Y , a n d Z d i r e c t i o n s

re s p e c t iv e ly ( f i g u re 2 -1 ) . I f f a c e A i s a s su m e d to b e o f u n i t a r e a a n d 2 i s d e f i n e d a s t h e a n g l e

b e tw e e n p l a n e A a n d t h e X -a x i s , t h i s w o u ld i m p ly a n a re a o f s in (2) fo r f a c e < o p r t> a n d a n a re a

o f c o s (2) fo r f a c e < p q r s > . I f t h e s y s t e m i s in e q u i l i b r iu m , th e n a s im p le fo rc e b a l a n c e s h o w s

nt h a t t h e fo r c e a c t i n g n o r m a l to p l a n e A ( w h ic h i s e q u iv a l e n t to t h e n o r m a l s t r e s s F u p o n th e

p l a n e ) i s

9

F ig u r e 2 - 1 - A n i n f i n i t e s i m a l p r i s m < o p q r s t > s i t u a t e d w i t h i n a r ig h t - h a n d e d X Y Z c o o r d i n a t e

1 2 3s y s t e m . T h e th r e e p r in c ip a l s t r e s s e s F , F , a n d F p a r a l l e l t h e X , Y , a n d Z - a x e s r e s p e c t i v e l y

a n d 2 d e f in e s th e a n g le b e tw e e n p la n e A a n d t h e X -a x is . P l a n e A i s d e f in e d to b e o f u n i t a re a .

10

n 1 3F = F s in (2) s in (2) + F c o s (2) c o s (2) (1 )

sa n d th e s h e a r s t r e s s F , w h ic h i s fo u n d b y re s o lv in g th e fo rc e s p a ra l l e l t o th e d i r e c t i o n < o q > ,

i s

s 1 3F = F s in (2) c o s (2) - F s in (2) c o s (2) (2 )

w h ic h c a n b e r e d u c e d u s in g th e t r i g o n o m e t r i c i d e n t i t y 2 s in (2) c o s (2) = s i n ( 22) to y i e l d

s 1 3F = [ (F - F ) / 2 ] s i n ( 22) (3 )

I t i s c l e a r , fo r a n y g i v e n m a g n i tu d e s o f p r in c ip a l s t r e s s e s p re s e n t , t h a t t h e s h e a r s t r e s s

w i l l b e g r e a t e s t w h e n s i n ( 22) = ± 1 , o r 2 = ± 4 5 ° . T h e re a r e th u s tw o p l a n e s a t a n y p o in t a c r o s s

w h ic h th e s h e a r s t r e s s m a g n i tu d e s a re a t a m a x im u m .

A n d e r s o n n o te d , h o w e v e r , t h a t i n n a tu ra l a n d a r t i f i c i a l c o n ju g a t e f a u l t s , a n a c u t e a n d

1a n o b tu s e a n g le a r e p re s e n t w i th th e a c u t e a n g l e b i s e c te d b y F a n d th e o b tu se a n g le b i s e c te d

3b y F ( i . e . t h e p r in c ip a l s t r e s s a x e s a r e n o t o r ie n t e d a t 4 5 ° f ro m t h e f a u l t p l a n e s a s e q u a t io n (3 )

p re d i c t s ) . T h i s p r in c ip a l i s o c c a s io n a l l y r e f e r re d to a s H a r tm a n n 's R u le (H a r tm a n n , 1 8 9 6 ;

D e n n i s , 1 9 8 7 , p . 2 3 8 ) a f t e r th e F r e n c h m e t a l l u r g i s t w h o f i r s t f o r m u l a t e d i t . T h e s o l u t i o n t o t h i s

d i s c r e p a n c y b e t w e e n t h e o r y a n d o b s e r v a t i o n i s to t a k e i n t o a c c o u n t th e C o u l o m b f a i l u r e

c r i t e r io n

s 0 nF = C + :F (4 )

0w h e re C i s a c o n s ta n t d e n o t in g th e c o h e s io n o f th e f a u l t s u r f a c e a n d : i s t h e c o e f f i c i e n t o f

11

in te rn a l f r i c t i o n (C o u lo m b , 1 7 7 6 ; H a n d in , 1 9 6 9 ) . T h i s i s n e e d e d be c a u se f r i c t i o n e x i s t s o n re a l

f a u l t s u r fa c e s . S u b s t i t u t i n g i n t h e n o r m a l s t re s s f r o m e q u a t i o n ( 1 ) re s u l t s in

s 0 1 3F = C + : [F s i n ( 2) + F c o s ( 2) ] (5 )2 2

1 1 3 1 3 3 1 3 1a n d s u b s t i t u t in g th e id e n t i t i e s F / [ (F + F ) / 2 ] + [ (F - F ) / 2 ] a n d F / [ (F + F ) / 2 ] - [ (F -

3F ) / 2 ] i n to e q u a t io n (5 ) a n d re d u c in g i t t h ro u g h s u i t a b l e a lg e b ra i c m a n ip u la t i o n s a n d th e tw o

t r ig o n o m e t r ic i d e n t i t i e s [ s i n (2) + c o s (2) ] = 1 a n d [c o s (2) - s i n (2) ] = c o s ( 22) y i e ld s2 2 2 2

s 0 1 3 1 3F = C + : [ ( (F + F ) / 2 ) - ( (F - F ) / 2 ) c o s ( 22) ] (6 )

o r

1 3 0 1 3 1 3[ (F - F ) / 2 ] s i n ( 22) = C + : [ ( (F + F ) / 2 ) ( (F - F ) / 2 ) c o s ( 22) ] (7 )

T h e p ro b le m i s n o w t o f i n d t h e p la n e s a lo n g w h ic h th e s h e a r in g s t r e s s (w h ic h d r iv e s

s l i p ) w i l l m o s t l i k e ly o v e rc o m e th e n o rm a l s t r e s s (w h ic h a c t s t o r e t a rd s l i p ) . S in c e th e s h e a r

s t r e s s m a y h a v e b o th p o s i t i v e a n d n e g a t iv e v a lu e s , t h e p ro b le m re d u c e s to f i n d in g th e a n g le s

fo r w h ic h

1 3 1 3 1 3[ (F - F ) / 2 ] s i n ( 22) + : [ ( (F + F ) / 2 ) ( (F - F ) / 2 ) c o s ( 22) ] (8 )

i s a t a m a x im u m , a n d

1 3 1 3 1 3[ (F - F ) / 2 ] s i n ( 22) - : [ ( (F + F ) / 2 ) ( (F - F ) / 2 ) c o s ( 22) ] (9 )

12

i s a t a m in im u m . D i f f e r e n t i a t i n g th e s e tw o e q u a t io n s w i th r e s p e c t to 2 a n d se t t i n g th e m e q u a l

to z e ro y ie ld s

1 3 1 3[ (F - F ) / 2 ] c o s ( 22) ± : [ (F - F ) / 2 ] s i n ( 22) = 0 (1 0 )

w h i c h r e d u c e s t o

c o s ( 22) ± :s i n ( 22) = 0 (1 1 )

o r , a l t e r n a t i v e l y

t a n ( 22) = ± ( 1 / : ) (1 2 )

S i n c e t h e c o e f f i c i e n t o f f r i c t i o n i n m o s t r o c k s h a s b e e n e x p e r i m e n t a l l y d e t e r m i n e d t o

ra n g e f ro m 0 .5 to 1 .0 (B y e r l e e , 1 9 6 8 ; H a n d in , 1 9 6 9 ; J a e g e r a n d C o o k , 1 9 7 9 , p . 5 9 ; B ra c e a n d

K o h l s t e d t , 1 9 8 0 ) , 2 w i l l b e l e s s t h a n 4 5 ° a n d th e a n g l e b e tw e e n c o n ju g a t e f a u l t s w i l l b e l e s s

1 3t h a n 9 0 ° w h e re b i s e c te d b y F a n d g re a t e r th a n 9 0 ° w h e re b i s e c te d b y F .

A n d e r s o n r e a s o n e d th a t i n n a tu ra l f a u l t s o n e o f th e p r in c ip a l s t r e s s o r i e n t a t i o n s w i l l b e

v e r t ic a l s i n c e t h e s u r fa c e o f t h e e a r t h m a y b e t h o u g h t o f a s a f re e s u r f a c e u n a b l e t o s u p p o r t

s h e a r s t r e s se s . T h e o th e r tw o p r in c ip a l s t r e s se s a re t h u s r e q u i r e d to b e h o r i z o n t a l . A s su m in g

t h a t th e r e l a t i v e m a g n i t u d e s o f t h e p r i n c i p a l s t r e s s e s m u s t c h a n g e f o r f a u l t in g t o o c c u r , t h e r e

a r e t h r e e p o s s i b l e r e l a t i o n s h i p s b e t w e e n t h e m a g n i t u d e s o f th e h o r i z o n t a l p r i n c i p a l s t re s s e s - -

t h e y a r e e i th e r b o th in c re a s in g in m a g n i tu d e , b o th d e c re a s in g in m a g n i tu d e , o r o n e i s i n c re a s in g

w h i l e t h e o th e r i s d e c re a s in g (A n d e r s o n , 1 9 5 1 , p . 1 3 ) . T h e s e c o r re s p o n d , r e s p e c t iv e ly , t o th e

t h r e e c o m m o n t y p e s o f c o n j u g a t e f a u l t s y s t e m s - - r e v e r s e f a u l t s , n o r m a l

13

fa u l t s , a n d w re n c h f a u l t s ( f i g u re 2 -2 ) . T h e s u c c e s s o f A n d e r s o n 's m e th o d i s w i tn e s se d b y th e

fa c t t h a t i t i s s t i l l u s e d to d a y a s a f i r s t a p p r o x i m a t io n fo r d e t e r m in i n g t h e p r in c ip a l s t r e s s

o r i e n t a t i o n s f ro m c o n ju g a t e f a u l t s e t s (D a v i s , 1 9 8 4 , p . 3 0 6 ; R a g a n , 1 9 8 5 , p . 1 3 5 ; S u p p e , 1 9 8 5 ,

p . 2 9 2 ; R o w la n d , 1 9 8 6 , p . 1 3 4 ; D e n n i s , 1 9 8 7 , p . 2 3 6 ; M a r s h a k a n d M i t r a , 1 9 8 8 , p . 2 6 1 ;

S p e n c e r , 1 9 8 8 , p . 1 9 9 ) . C a re m u s t b e u s e d , h o w e v e r , s in c e c o n ju g a t e f a u l t s e t s e x i s t w h ic h d o

n o t f i t t h e A n d e r s o n ia n c l a s s i f i c a t i o n ( O e r t e l , 1 9 6 5 ; A y d in , 1 9 7 7 ; A y d in a n d R e c h e s , 1 9 8 2 ;

R e c h e s a n d D i e t e r i c h , 1 9 8 3 ; K r a n t z , 1 9 8 8 ; K r a n t z , 1 9 8 9 ) .

2 .2 B o tt ' s F o r m u la

T h e n e x t im p o r ta n t s te p s i n p a l e o s t r e s s a n a l y s i s w e re t h e d e t e rm in a t i o n o f t h e

r e l a t i o n s h i p o f s h e a r s t r e s s e s t o t h e o r i e n t a t i o n o f f a u l t p l a n e s a n d t h e i r a s s o c i a t e d s l i p

d i r e c t io n s (W a l l a c e , 1 9 5 1 ) a n d th e r e la t i o n s h ip o f th e p r in c ip a l s t r e s s m a g n i tu d e s a n d

o r i e n t a t i o n s t o t h e r e s u l t in g d i r e c t i o n s o f m a x i m u m s h e a r s t re s s w i t h i n f a u l t p l a n e s ( B o t t ,

1 9 5 9 ) . T h e s e s t e p s w e re m o t iv a t e d b y th e f a c t t h a t ro c k in i t s n a tu ra l s t a t e i s r a r e ly in t a c t a n d

i s o t ro p ic (A n d e rs o n 's a s s u m p t io n ) . T h e u p p e r 5 t o 1 0 k i lo m e te r s o f th e e a r th 's c ru s t i s r i d d l e d

w i th p r e e x i s t i n g fa u l t p l a n e s , j o i n t s , a n d b e d d in g s u r fa c e s w i th s l id i n g o f t e n o c c u r r in g o n t h e s e

p la n a r d i s c o n t in u i t i e s lo n g b e fo re a s t a t e o f s t r e s s h ig h e n o u g h to c a u s e f r a c t u r e in a n in ta c t

v o lu m e o f ro c k i s r e a c h e d ( W a l l a c e , 1 9 5 1 ; B o t t , 1 9 5 9 ; J a e g e r , 1 9 6 0 ; D o n a th , 1 9 6 4 ; H a n d in ,

1 9 6 9 ; M c K e n z i e , 1 9 6 9 ) .

W a l l a c e (1 9 5 1 ) , u s in g s te r e o g ra p h i c p ro j e c t io n s , p lo t t e d s h e a r s t r e s s m a g n i tu d e s fo r

v a r io u s o r i e n t a t i o n s o f p l a n e s w i th in a s t r e s s s y s te m a n d th e d i r e c t i o n s o f m a x im u m s h e a r in g

s t r e s s in th o s e sa m e p l a n e s . W a l l a c e ' s m a jo r c o n t r ib u t io n , h o w e v e r , w a s to s h o w h o w a b o d y

h a s a t e n d e n c y t o s h e a r in a p la n e w h ic h r e p re s e n t s a c o m p ro m is e b e t w e e n e x p e r i e n c i n g a lo w

n o rm a l s t r e s s a n d a h ig h s h e a r s t r e s s a n d th a t t h i s p l a n e w i l l a lw a y s b e o r i e n t e d a t l e s s t h a n 4 5 °

1f ro m th e F d i r e c t i o n . T h i s m a y b e s h o w n b y s o l v i n g f o r t h e m i n i m u m o f t h e n o r m a l

14

F ig u r e 2 - 2 - T h e th re e A n d e rs o n ia n c la s s e s o f c o n ju g a te fa u l t s e t s . A . C o n j u g a t e t h r u s t f a u l t s

1 3 1w i t h h o r i z o n t a l F a n d v e r t ic a l F . B . C o n j u g a t e n o r m a l fa u l t s w i t h v e r t ic a l F a n d h o r i z o n ta l

3 1 3 2F . C . C o n ju g a t e w re n c h f a u l t s w i th F a n d F b o t h h o r i z o n t a l . In a l l t h r e e c a s e s F p a r a l l e l s

th e in te r s e c t i o n l i n e o f t h e tw o fa u l t p la n e s .

15

s t r e s s / s h e a r s t r e s s d i f f e re n c e in th e fo l l o w in g w a y

n sd [F - F ] / d2 = 0 (1 3 )

n sw h i c h , u p o n s u b s t i t u t i o n o f t h e s t a n d a r d f o r m u l a s f o r F a n d F (M e a n s , 1 9 7 6 , p . 7 2 ) b e c o m e s

1 3 1 3 1 3d [ ( (F + F ) / 2 ) + ( (F - F ) / 2 ) c o s ( 22) - ( (F - F ) / 2 ) s i n ( 22) ] / d2 = 0 (1 4 )

w h ic h , a f t e r d i f f e r e n t i a t i o n , y i e ld s

1 3(F - F ) [ - s i n ( 22) - c o s ( 22) ] = 0 (1 5 )

1 3w h i c h i m p l i e s t a n ( 22) = - 1 o r 2 = 6 7 .5 f o r a n y v a l u e s o f F a n d F ( f i g u r e 2 - 3 ) .

W a l l a c e 's w o rk l a i d t h e g ro u n d w o rk fo r B o t t (1 9 5 9 ) w h o d e r iv e d a fo rm u la r e l a t i n g th e

d i r e c t i o n o f m a x i m u m s h e a r s t r e s s w i t h i n t h e f a u l t p l a n e t o t h e f a u l t p l a n e 's o r i e n t a t i o n w i t h

re s p e c t to th e p r in c ip a l s t r e s s a x e s a n d th e r e l a t i v e m a g n i tu d e s o f t h e s e s t r e s se s w h ic h m a y b e

re p re s e n te d a s fo l l o w s

1 2 2 2 1 32 = t a n [ ( l l - M l + M l ) / ( l l ) ] (1 6 )-1 2 3

w h e re 2 i s t h e p i t c h a n g l e b e tw e e n t h e m a x im u m s h e a r s t r e s s d i r e c t i o n a n d th e s t r i k e o f th e

1 2 3f a u l t p la n e , l , l , a n d l a re th e t h re e d i r e c t i o n c o s in e s o f th e n o rm a l v e c to r to th e f a u l t p la n e ,

a n d M i s d e f i n e d a s ( A n g e l i e r , 1 9 7 9 ; M i c h a e l , 1 9 8 4 )

2 3 1 3M = [ (F - F ) / (F - F ) ] (1 7 )

16

w h ic h r a n g e s f ro m 0 .0 to 0 .1 a n d re p re s e n ts th e r e l a t i v e m a g n i tu d e s o f t h e th re e p r in c ip a l

s t r e s s e s ( i . e . d e s c r ib e s th e s h a p e o f th e s t r e s s e l l i p s o i d ) . O th e r s im i l a r p r in c ip a l s t r e s s

m a g n i tu d e r a t i o s h a v e b e e n d e f in e d , i n c lu d in g th e t e n s o r a s p e c t r a t i o * (C é l é r i e r , 1 9 8 8 )

1 2 1 3* = [ (F - F ) / (F - F ) ] (1 8 )

w h e re * a l s o r a n g e s f ro m 1 .0 t o 0 .0 ( i . e . * = 1 - M ) a n d th e p a ra m e te r R (c a l l e d C b y

A le k s a n d ro w s k i , 1 9 8 5 ) , w h ic h h a s b e e n d e f i n e d (A rm i j o a n d C is te rn a s , 1 9 7 8 ; E tc h e c o p a r , e t .

a l . , 1 9 8 1 ) a s

z x y xR = [ (F - F ) / (F - F ) ] (1 9 )

x y z 1 2 3R m a y h a v e v a lu e s f ro m -4 t o +4 s i n c e F , F , a n d F m a y c o r re s p o n d to F , F , a n d F

i n a n y o r d e r a l t h o u g h s o m e c o n f u s i o n h a s r e s u l t e d d u e t o t h e u s e o f th e s y m b o l R w i t h

d e f in i t i o n s d i f f e r e n t th a n th e o r ig in a l o n e o f A rm i jo a n d C i s te rn a s (L i s le , 1 9 8 7 ; G e p h a r t a n d

F o r s t y t h , 1 9 8 4 ; L a r ro q u e a n d L a u r e n t , 1 9 8 8 ) . A n i m p o r t a n t im p l i c a t i o n o f B o t t 's f o r m u l a i s

t h a t t h e s l i p d i re c t i o n o f a fa u l t p la n e i s d e p e n d e n t u p o n th e r e l a t i v e m a g n i tu d e s o f th e t h re e

1 2 3p r in c ip a l s t r e s s e s F , F , a n d F ( e x p re s se d b y M ) a n d n o t s im p ly th e i r o r i e n ta t i o n s . A

c o m p l e t e d e r i v a t i o n o f B o t t 's f o r m u l a a n d i t s a p p l i c a t i o n i n g e n e r a t i n g a r t i f i c i a l fa u l t

p o p u la t i o n s i s g iv e n in c h a p t e r 4 .

2 .3 G r a p h ica l M e th o d s o f F a u l t -S tr ia t io n P a leo st r e ss A n a ly s i s

O n e o f th e s im p le s t g r a p h ic a l m e t h o d s o f p a l e o s t r e s s a n a l y s i s u s i n g f a u l t - s t r ia t io n d a ta ,

i s t o p l o t t h e f a u l t p l a n e s o n a S c h m i d t o r W ü l f f s t e r e o g r a p h i c p r o j e c t i o n a l o n g w i t h t h e i r

17

F ig u r e 2 - 3 - A p lo t o f th e s h e a r s t r e s se s a n d n o rm a l s t r e s se s a c t i n g u p o n a p la n e p a r a l l e l t o th e

2 1F d i r e c t i o n v e r s u s th e i n c l in a t io n a n g le o f th e p la n e 's n o rm a l f r o m th e F o r i e n t a t i o n . T h e

u p p e r c u rv e re p re s e n t s th e n o r m a l s t r e s s e s a n d th e lo w e r c u r v e r e p re s e n t s t h e s h e a r s t r e s s e s .

I t m a y b e s e e n b y in sp e c t io n th a t t h e n o rm a l s t r e s s / s h e a r s t r e s s d i f f e re n c e i s a t a m in im u m a t

6 7 .5 ° (d e n o te d b y th e d a s h e d l i n e ) .

18

1a s s o c ia t e d s l i p d i r e c t i o n s . I f t h e f a u l t p o p u la t i o n fo rm s a c o n ju g a te s e t , t h e F a x i s i s a s s u m e d

3 2to b i s e c t t h e a c u te a n g le o f t h e c o n ju g a te s e t , F t h e o b tu s e a n g le , a n d F i s l o c a t e d a t t h e

in t e r s e c t i o n o f t h e fa u l t p la n e s - - a s s u m in g , o f c o u rs e , th a t t h e s e p la c e m e n ts a re c o n s i s te n t w i th

th e s l i p d i r e c t i o n s o n th e f a u l t p la n e s p r e s e n t ( f i g u re 2 -4 ) . T h e d ra w b a c k o f th i s m e th o d i s t h a t

i t w i l l o n ly w o rk o n th e s im p le s t o f c o n ju g a t e f a u l t s e t s (R a g a n , 1 9 8 5 , p . 1 3 5 ; S u p p e , 1 9 8 5 , p .

2 9 2 ; R o w l a n d , 1 9 8 6 , p . 1 3 4 ; M a r s h a k a n d M i t ra , 1 9 8 8 , p . 2 6 1 ) .

A s o m e w h a t d i f f e re n t t y p e o f g ra p h ic a l p a le o s t r e s s a n a ly s i s w a s d e v e lo p e d f r o m a

p o s tu l a t e d d i r e c t r e l a t io n s h i p b e tw e e n t h e r e g i o n a l s t r a i n e l l i p s o i d a n d th e r e g io n a l s t r e s s

e l l i p s o id a s so c i a t e d w i th a f a u l t p o p u la t i o n . A r th a u d 's m e th o d (A r th a u d , 1 9 6 9 ) , a n d th e

m o d i f i c a t i o n o f th a t m e th o d b y A le k s a n d ro w s k i (A le k s a n d r o w s k i , 1 9 8 5 ) , u s e d m o v e m e n t

1 2 3p l a n e s t o d e t e r m i n e t h e o r i e n t a t i o n s o f F , F , a n d F .

A n M -p la n e , o r m o v e m e n t p l a n e , a s so c i a t e d w i th a f a u l t i s t h e p l a n e c o n t a in in g th e

fa u l t ' s n o rm a l a n d s l i p v e c to rs ( f i g u re 2 -5 ) . O n e o f t h e im p o r t a n t p ro p e r t i e s o f m -p la n e s i s t h a t

t h e s e p la n e s c o n ta in a t l e a s t o n e o f t h e p r in c ip a l s t r a i n a x e s . A s su m in g a f a u l t p o p u la t i o n

c o n s i s t i n g o f r a n d o m ly -d i s t r i b u t e d , p re e x i s t i n g p la n e s a c t i v a t e d d u r in g o n e t e c t o n ic e v e n t , t h e

fo l lo w in g s t e p s a l l o w o n e to u s e m -p la n e s to g ra p h ic a l ly lo c a t e th e p r in c ip a l s t r a in a x e s

( A r t h a u d , 1 9 6 9 ; A l e k s a n d r o w s k i , 1 9 8 5 ) :

1 . P l o t t h e f a u l t p l a n e n o r m a l a n d s l i p v e c t o r s o n a s t e r e o n e t .

2 . J o i n e a c h p o l e a n d i t s a s s o c i a t e d s l i p v e c t o r w i t h a g r e a t c i r c l e . T h e s e g r e a t c i r c l e s a r e

th e m -p l a n e s .

3 . P lo t th e p o l e s (BM -p o le s ) to t h e m -p l a n e s .

A l l o f th e m -p la n e s s h o u ld in te r s e c t a t o n e , tw o , o r th re e g e n e ra l l y d i f fu se p o in t s w h ic h

a r e t h e n o r m a l s o f t h e s a m e n u m b e r o f m u t u a l l y p e r p e n d i c u l a r g r e a t c i r c l e s o f BM -

19

F ig u r e 2 - 4 - L o w e r -h e m i s p h e r e s t e r e o g r a p h i c p r o j e c t i o n s h o w i n g 2 4 c o n j u g a t e n o r m a l fa u l t s

a n d th e i r a s so c i a t e d s l i p v e c to r s ( s m a l l c i r c l e s o n f a u l t p l a n e s ) . In th i s s im p le f a u l t p o p u la t i o n ,

1 2 3 1t h e F , F , a n d F a x e s m a y b e a s s i g n e d b y i n s p e c t i o n - - F b i s e c t in g th e a c u te a n g l e o f th e

3 2c o n ju g a te fa u l t s e t , F b i s e c t in g th e o b tu s e a n g le , a n d F a t t h e in t e r s e c t io n o f t h e f a u l t p l a n e s .

20

F ig u r e 2 - 5 - L o w e r -h e m is p h e re s t e re o g ra p h ic p ro je c t io n s h o w in g th e re l a t i o n s h ip b e tw e e n

a f a u l t p l a n e , t h e n o rm a l a n d s l i p v e c to r s , a n d th e m -p la n e . T h e m -p la n e i s t h e p l a n e

p e rp e n d ic u la r to th e f a u l t a lo n g w h ic h m o v e m e n t t a k e s p la c e .

21

p o le s ( i . e . i f m - p l a n e s i n t e r s e c t , t h e i r BM -p o le s l i e o n a g re a t c i r c l e ) . In t e r s e c t io n p o in t s o f

th e m -p la n e s c o r re s p o n d to a n o r t h o g o n a l s y s te m o f X , Y , a n d Z a x e s w h e re X i s t h e a x i s o f

m a x im u m e x te n s io n , Y in th e i n t e rm e d ia te a x i s , a n d Z i s t h e a x i s o f m a x im u m s h o r t e n in g .

T h e s e a re t h e p r in c ip a l s t r a i n a x e s a n d a re a s s ig n e d a c c o r d in g to th e m o v e m e n t d i r e c t i o n s o f

t h e f a u l t s p r e s e n t a n d o r i e n t a t i o n o f a n y s t y l o l i t e s o r t e n s i o n f ra c t u r e s p r e s e n t ( f i g u r e 2 - 6 ) .

T h is t e c h n iq u e i s k n o w n a s A r th a u d 's m e th o d ( A r th a u d , 1 9 6 9 ) a n d h e c o n te n d e d th a t

g i v e n t h e s t r a i n e l l ip s o id a s s o c i a t e d w i t h a f a u l t p o p u l a t i o n , i t w a s p o s s i b l e t o p l a c e c o n s t r a i n t s

u p o n t h e s t r e s s e l l ip s o i d . A s e r i o u s l i m i t a t i o n i n t h i s m e t h o d i s th a t i t c a n b e s u c c e s s f u l l y

a p p l i e d o n l y t o p o p u la t io n s o r ig i n a t in g i n r a d i a l s t re s s f i e l d s ( i . e . o n e d e f in e d b y a M v a lu e o f

2 3 2 10 .0 w h e re F = F o r a M v a lu e o f 1 .0 w h e re F = F ) a n d th e o n ly a x i s o f d e fo rm a t io n

o b ta i n a b l e f ro m s u c h p o p u l a t io n s c o r re s p o n d s t o th e r e v o l u t io n a x i s o f a p ro la te o r o b l a t e s t re s s

e l l ip s o i d ( C a r e y , 1 9 7 6 ; A l e k s a n d r o w s k i , 1 9 8 5 ) .

A l e k s a n d r o w s k i (1 9 8 5 ) m o d i f ie d A r t h a u d 's m e t h o d t o m a k e i t a p p l i c a b l e f o r a g e n e r a l ,

t r i a x i a l s t r e s s f i e l d ( i . e . a s t r e s s f i e l d i n w h i c h t h e t h r e e p r i n c i p a l s t r e s s m a g n i t u d e s a r e

u n e q u a l ) . T h e p ro c e d u r e i s t h e s a m e a s in A r th a u d 's m e th o d ( s te p s 1 6 3 a b o v e ) e x c e p t th a t t h e

f in a l r e s u l t c o n s i s t s o f m o r e t h a n th r e e c o m m o n in t e r s e c t io n p o i n t s o f m -p l a n e s . E a c h o f th e s e

c o m m o n in t e r s e c t io n p o in t s m u s t t h e n b e s e p a ra t e ly a n a ly z e d t o a s c e r t a in w h e th e r o r n o t th e

s l i p v e c to rs c o r re s p o n d in g to t h e m -p la n e s l i e o n a g re a t c i r c l e a n d a t f a i r l y l a r g e a n g u la r

d i s ta n c e s f ro m o n e a n o th e r ; t h e i n t e r s e c t io n p o in t o f th i s g re a t c i r c l e w i th th e g i rd l e o f

a s so c i a t e d BM - p o l e s i s o n e o f t h e t h r e e p r i n c i p a l s t r e s s a x e s . T h e p l a n e p e r p e n d i c u l a r to t h i s

p r in c ip a l s t r e s s a x i s w h ic h p a s s e s th ro u g h th e c o m m o n in t e r s e c t io n po in t c o n ta in s th e o th e r tw o

p r i n c i p a l s t r e s s e s ( f i g u re 2 -7 ) . I f a n o th e r c o m m o n in te r s e c t io n p o in t c a n b e fo u n d w h ic h

s a t i s f i e s th e se c o n d i t i o n s , t h e t h re e p r in c ip a l s t r e s s a x e s m a y b e l o c a t e d w i th v a ry in g d e g re e s

o f p re c i s io n (A le k s a n d ro w s k i , 1 9 8 5 ; M a rs h a k a n d M i t r a , 1 9 8 8 , p . 2 6 3 ) . A M v a lu e m a y th e n

a l s o b e c a l c u l a t e d f ro m t h e o r i e n t a t i o n o f a n y o n e o f t h e s l i p v e c t o r s a n d i t s a s s o c i a t e d f a u l t

22

F ig u r e 2 - 6 - L o w e r h e m is p h e re s te r e o g ra p h i c p ro j e c t io n d e m o n s t r a t i n g th e m -p la n e m e th o d

o f lo c a t in g a p r in c ip a l s t r a i n a x i s . F o u r f a u l t p l a n e s a re u s e d , t h e i r p o l e s (BF 1 6 BF 4 ) a n d s l i p

v e c t o r s (S 1 6 S 4 ) a r e c o n n e c t e d b y g r e a t c i rc l e s (m -p l a n e s ) a n d th e p o l e s t o th e m -p l a n e s (BM 1

6 BM 4 ) a r e s h o w n t o fo r m a g i r d l e . T h e i n t e r s e c t i o n o f t h e m - p l a n e s ( w h i c h i s a l s o t h e p o l e

o f th e g i r d l e ) i s o n e o f t h e t h r e e p r i n c i p a l s t ra i n a x e s ( f i g u r e m o d i f ie d f ro m A r t h a u d , 1 9 6 9 ) .

23

F ig u r e 2 - 7 - A n a l y z i n g a c o m m o n i n t e r s e c t i o n p o i n t ( C I P ) o f m - p l a n e s ( s o l i d g r e a t c i r c l e s ) .

T h e p o l e s (BM -p o le s ) t o t h e m -p la n e s (c i r c l e s ) d e f in e a g re a t c i r c l e d e n o t e d b y G C P ( lo n g

d a s h e d / s h o r t d a s h e d l i n e ) a n d th e p o l e o f t h e G C P i s t h e C IP . A g re a t c i r c l e m a y b e d r a w n

t h r o u g h th e s l i p v e c t o r s (x s y m b o l s ) o f e a c h o f t h e m -p la n e s a n d i s d e n o t e d b y G C F ( s h o r t

d a s h e d l in e ) . T h e in t e r s e c t io n o f t h e G C P a n d G C F i s a p r in c ip a l s t r e s s a x i s F . T h e p l a n e

p e rp e n d i c u l a r to F , t h ro u g h th e C IP , a n d d e n o te d b y FP ( lo n g d a sh e d l i n e ) c o n ta in s th e o th e r

tw o p r i n c ip a l s t r e s s a x e s ( f i g u re m o d i f ie d f ro m A le k s a n d ro w s k i , 1 9 8 5 ) .

24

p l a n e u s i n g B o t t 's f o r m u l a ( e q u a t i o n 1 5 ) .

2 .4 R ig h t - D ih e d r a M e th o d s o f F a u l t -S tr ia t io n A n a ly s i s

A n o th e r g ra p h i c a l m e th o d o f p a l e o s t r e s s a n a ly s i s h a s b e e n d e v e lo p e d b y a d a p t in g th e

c o n s t ru c t io n t e c h n i q u e s o f f a u l t -p l a n e s o lu t io n s f ro m s e i s m ic d a t a t o s t r i a t e d f a u l t p o p u la t i o n s

( M c K e n z i e , 1 9 6 9 ; A n g e l i e r a n d M e c h l e r , 1 9 7 7 ; L i s l e , 1 9 8 7 ; L i s l e , 1 9 8 8 ) . T h e r e l a t i o n s h i p

b e t w e e n t h e f a u l t p l a n e s o l u t i o n s a n d t h e p r i n c i p a l s t r e s s a x e s w a s f i r s t s h o w n b y M c K e n z i e

1(1 9 6 9 ) , w h o r ig o ro u s ly d e m o n s t r a t e d t h a t th e m o s t c o m p r e s s iv e p r in c ip a l s t r e s s F m u s t l i e

w i th in th e q u a d ra n t c o n ta in in g t h e a x i s o f c o m p re s s io n P fo r f a u l t p l a n e s o lu t io n s o f s h a l lo w

e a r t h q u a k e s a s s u m e d to h a v e o c c u r r e d a lo n g p re e x is t i n g p la n a r d i s c o n t i n u i t i e s .

F a u l t -p l a n e s o l u t io n s a r e c o n s t ru c t e d f ro m s t r i a t e d fa u l t s o r f ro m th e s e i s m ic f i r s t

m o t io n s o f e a r th q u a k e s a n d sh o w th e r e l a t i o n s h ip b e tw e e n a f a u l t a n d i t s c o r re s p o n d in g

a u x i l i a ry p la n e , t h e z o n e s o f c o m p re s s io n a n d d i l a t i o n , a n d th e a x e s o f c o m p re s s io n a n d te n s io n

( f ig u re 2 -8 ) . T h e a u x i l i a ry p l a n e i s t h e p l a n e w h ic h i s p e rp e n d i c u l a r to b o th th e f a u l t p l a n e a n d

t h e s l i p d i r e c t i o n a n d , a l o n g w i th t h e f a u l t p l a n e , d e f in e s tw o c o m p re s s io n a l a n d t w o

e x t e n s io n a l r i g h t d ih e d ra (C o x a n d H a r t , 1 9 8 6 , p . 1 9 7 ) . B y c o n s t ru c t in g fa u l t p l a n e s o lu t io n s

fo r e a c h d a t u m o f a p o p u la t i o n o f f a u l t s , t h e o v e r l a p p in g q u a d ra n t s c o n t a in in g th e c o m p re s s io n

1a x i s P w i l l a c t to c o n s t r a i n t h e l o c a t i o n o f F . T h i s t e c h n iq u e h a s b e e n c a l l e d

th e r i g h t -d ih e d ra m e th o d ( la m é th o d e d e s d ièd re s d ro i t s ) b y A n g e l i e r ( A n g e l i e r a n d M e c h l e r ,

1 9 7 7 ) a n d w a s l a t e r m o d i f i e d b y L i s l e (L i s l e , 1 9 8 7 ; L i s l e , 1 9 8 8 ) w h o a d d e d a n a d d i t i o n a l

1c o n s t r a i n t u p o n t h e l o c a t i o n o f F .

T o u t i l i z e t h e s e m e t h o d s , c o n s i d e r a f a u l t p l a n e w i t h a n o r m a l v e c t o r N , a s l i p v e c to r

S , a n d a v e c t o r O a t r i g h t a n g le s to b o th N a n d S . T h re e o r th o g o n a l p l a n e s m a y b e d e f in e d b y

th e s e v e c t o r s - - t h e f a u l t p l a n e w h i c h c o n t a i n s S a n d O , t h e a u x i l i a ry p la n e w h ic h c o n t a in s

25

F ig u r e 2 - 8 - S c h e m a t i c d i a g ra m a n d lo w e r -h e m is p h e re s te r e o g ra p h i c p ro j e c t io n i l l u s t r a t i n g

th e r e l a t i o n s h ip b e tw e e n a n o rm a l f a u l t p la n e d ip p in g a t 4 5 ° a n d i t s a s s o c ia t e d a u x i l i a ry p l a n e ,

t h e z o n e s o f c o m p re s s io n a n d d i l a t i o n , a n d th e a x e s o f c o m p re s s io n a n d t e n s io n in a f a u l t p l a n e

s o lu t i o n .

26

N a n d O , a n d t h e m o v e m e n t p l a n e ( t h e m -p l a n e o f A le k s a n d r o w s k i , 1 9 8 5 ) w h i c h c o n t a i n s N a n d

S ( f i g u re 2 -9 ) . T h e fo u r r i g h t d ih e d ra o f A n g e l i e r a n d M e c h le r ' s m e th o d (A n g e l i e r a n d

M e c h l e r , 1 9 7 7 ) a re b o u n d e d b y t h e f a u l t p l a n e a n d t h e a u x i l i a ry p la n e . B y k n o w in g th e

d i r e c t io n , a n d s e n se , o f s l i p o n th e f a u l t p la n e , tw o d ih e d ra m a y b e d e f in e d a s c o m p re s s io n a l

r e g io n s a n d tw o d ih e d ra a s e x te n s io n a l r e g io n s . I f t h e a s su m p t io n i s m a d e th a t t h e

1 3c o m p re s s io n a l r e g io n s c o n t a in F a n d th a t th e e x te n s io n a l re g io n s c o n t a in F (M c K e n z i e ,

1 9 6 9 ) , t h e p o s i t i o n o f th e p a l e o s t r e s s a x e s m a y th u s b e c o n s t r a i n e d f o r e a c h fa u l t d a tu m .

1 3 1 3S u p e r im p o s in g th e F a n d F r e g i o n s f o r s e v e r a l f a u l t s , t h e p o s s i b l e p o s i t i o n s f o r F a n d F m a y

b e c o n s t r a in e d e v e n fu r t h e r ( f ig u re 2 -1 0 ) .

1 3L i s l e ( 1 9 8 7 ) , i n t r o d u c e d a n o t h e r c o n s t r a i n t u p o n t h e o r i e n t a t i o n s o f F a n d F b y

c o n s i d e r i n g h o w t h e o r i e n t a t i o n o f th e s l i p v e c t o r S c h a n g e s a s th e s t r e s s r a t i o M ( e q u a t io n 1 7 )

c h a n g e s . I f th e n o r m a l v e c t o r N o f a f a u l t p l a n e h a s d i r e c t i o n c o s in e s o f l , m , a n d n w i th re s p e c t

1 2 3t o th e F , F , a n d F a x e s r e s p e c t i v e l y , i t c a n b e s h o w n ( J a e g e r , 1 9 6 9 , p . 1 8 ) t h a t th e v e c t o r O

h a s d i r e c t i o n c o s in e s p ro p o r t i o n a l to

3 2m n (F - F ) ,

1 3n l (F - F ) , a n d (2 0 )

2 1lm (F - F ) .

2W h e n th e s t r e s s r a t i o M i s e q u a l to 0 .0 ( t h e c a s e o f a x ia l c o m p re s s io n ) , F i s e q u a l to

3F a n d th e f i r s t d i r e c t i o n c o s in e in e q u a t io n (2 0 ) r e d u c e s t o z e r o . T h i s im p l i e s th a t t h e v e c t o r

1 1O h a s n o c o m p o n e n t p a ra l l e l t o th e F a x i s , a n d F i s t h u s p a ra l l e l t o th e m o v e m e n t p l a n e . T h e

1p r o j e c t i o n o f F o n t o t h e f a u l t p l a n e w i l l t h e n b e c o i n c i d e n t w i t h t h e s l i p v e c t o r S . W h e n th e

2 1s t r e s s ra t i o i s e q u a l t o 1 .0 ( th e c a s e o f a x ia l e x te n s io n ) , F i s e q u a l to F a n d th e t h i rd

27

F ig u r e 2 - 9 - L o w e r -h e m is p h e re s t e re o g ra p h ic p ro je c t io n s h o w in g th e re l a t i o n s h ip b e tw e e n

a f a u l t p l a n e w i t h a n o r m a l v e c t o r N , i t s a s s o c i a t e d a u x i l i a r y p l a n e w i t h a n o r m a l v e c t o r S ( t h e

f a u l t 's s l i p v e c t o r ) , a n d i t s a s s o c i a t e d m o v e m e n t p l a n e ( m - p l a n e ) w i t h a n o r m a l v e c t o r O .

28

F ig u r e 2 -1 0 - L o w e r -h e m is p h e re s te re og ra ph ic p ro je c t io n s s h o w in g h o w th e r e g io n c o n ta in in g

1F i s c o n s t r a i n e d b y n o r m a l fa u l t p o p u l a t i o n s c o n s i s t i n g o f A . o n e p la n e , B . tw o p la n e s , a n d

C . th re e p la n e s .

29

d i r e c t i o n c o s i n e i n e q u a t i o n ( 2 0 ) re d u c e s t o z e r o . T h i s i m p l i e s t h a t th e v e c t o r O h a s n o

3 3c o m p o n e n t p a ra l l e l t o th e F d i r e c t i o n , a n d F i s t h u s p a ra l l e l t o th e m o v e m e n t p l a n e . T h e

3p r o j e c t i o n o f F o n t o t h e f a u l t p l a n e w i l l t h e n b e c o i n c i d e n t w i t h t h e s l i p v e c t o r S . S w i l l b e

w i t h i n t h e a c u t e a n g l e b e t w e e n t h e s e t w o e x t r e m e p o s i t i o n s f o r i n t e r m e d i a t e v a l u e s o f M

( f i g u r e 2 - 1 1 ) . G i v e n t h i s c o n s t r a i n t u p o n t h e p o s i t i o n o f S , i t c a n b e in fe r r e d th a t t h e

1 3p r o j e c t i o n s o f F a n d F l i e o n o p p o s i t e s i d e s o f S a n d a re b o th 9 0 ° o r l e s s f ro m S . O r , i n th re e

1 3d im e n s io n s , F a n d F w i l l b e w i th in s e p a r a t e r i g h t d ih e d ra b o u n d e d b y th e f a u l t ' s a u x i l i a ry a n d

m o v e m e n t p la n e s . L i s l e (1 9 8 7 ) a rb i t r a r i l y l a b e l l e d t h e se d i h e d ra A a n d B fo r c o n v e n ie n c e

1 3( f i g u r e 2 - 1 2 ) a n d , i f F i s k n o w n to l i e i n th e A d ih e d ro n , th e n F m u s t l i e i n t h e B a n d v i c e

v e rs a .

T o u s e L i s le ' s m e th o d , a u x i l i a r y a n d m o v e m e n t p l a n e s a re u s e d to c re a t e A a n d B

d i h e d ra fo r e a c h f a u l t . S u p e r im p o s in g th e s e d ih e d ra , r e g io n s a r e o b ta in e d w h ic h m a y b e

l a b e l l e d a c c o r d in g to w h ic h d ih e d ra i t f a l l s i n to fo r e a c h f a u l t . T h u s , i n a p o p u la t i o n o f fo u r

s u p e r i m p o s e d f a u l t s , t h e r e g i o n d e s i g n a t e d A B A A l ie s i n t h e A d i h e d r o n w i t h r e s p e c t to f a u l t

1 , i n th e B d ih e d ro n w i th r e s p e c t t o f a u l t 2 , a n d i n t h e A d i h e d ra w i th r e sp e c t t o f a u l t s 3 a n d 4 .

A s a n e x a m p le , c o n s id e r t h e d a t a s e t o f t h re e f a u l t s r e p re s e n te d in f i g u re 2 -1 3 . U s in g

1 3A n g e l i e r a n d M e c h le r ' s (1 9 7 7 ) m e th o d , f a i r l y l a rg e F a n d F r e g io n s m a y b e c o n s t ru c te d

( f ig u re 2 -1 4 ) . L i s le ' s (1 9 8 7 ) m e th o d b e g in s b y s u p e r im p o s in g th e A a n d B d ih e d ra ( f i g u re 2 -1 5 )

1 3a n d c o m p a r in g t h e m t o t h e F a n d F r e g i o n s o f A n g e l i e r a n d M e c h l e r 's ( 1 9 7 7 ) m e t h o d - -

1 3k e e p i n g i n m i n d t h a t F a n d F m u s t b e i n s e p a ra t e A a n d B d ih e d ra fo r e a c h fa u l t d a tu m . T h e

1F r e g io n in f i g u re 2 -1 4 c o n s i s t s o f th e A A A , A B A , A B B , B A A , B A B , B B A , a n d B B B a re a s o f

1 3f i g u r e 2 - 1 5 . T h e p r e s e n c e o f F i n a r e a B A B i s c o m p a t ib l e w i th F b e in g in A B A . T h e s a m e

1m a y b e s a id fo r A A A , A B A , B A B , B B A , a n d B B B in th e F r e g io n a n d A A A , A A B ,

30

F ig u r e 2 -1 1 - L o w e r -h e m i s p h e r e s t e r e o g r a p h i c p r o j e c t i o n s h o w i n g 2 0 s l i p v e c t o r s

re p re s e n t in g M v a lu e s r a n g in g f ro m 0 .0 to 1 .0 o n a f a u l t p la n e w i th a n o rm a l v e c to r o r i e n te d

1 2 3a t 7 0 /0 3 0 d e g re e s . T h e F , F , a n d F a x e s c o r re s p o n d to th e n o r th , u p , a n d e a s t d i r e c t i o n s

1 3r e s p e c t i v e l y . T h e d a s h e d l i n e s r e p r e s e n t th e p r o j e c t i o n s o f F a n d F o n to th e f a u l t p l a n e

( f ig u re m o d i f ie d f ro m S c h im m ri c h , 1 9 9 0 ) .

31

F ig u r e 2 -1 2 - L o w e r -h e m is p h e re s t e re o g ra p h ic p ro je c t io n s h o w in g th e r i g h t d ih e d ra d e f in e d

b y L i s l e (1 9 8 7 ) a s A ( s t i p p l e d ) a n d B (u n s t ip p l e d ) . T h e s e r i g h t d ih e d ra a re b o u n d e d b y t h e

fa u l t ' s a u x i l i a r y a n d m o v e m e n t p l a n e s . T h e p o l e t o th e f a u l t p l a n e i s N , t h e p o le t o th e

m o v e m e n t p l a n e i s O , a n d t h e p o l e t o th e a u x i l i a r y p l a n e i s S ( t h e fa u l t ' s s l i p v e c to r ) .

32

F ig u r e 2 -1 3 - L o w e r -h e m is p h e re s te r e o g r a p h ic p ro j e c t io n o f t h r e e f a u l t s w i th s l ip v e c t o r s S

1 3a n d f a u l t n o r m a l s N . T h e F /F a n d A / B d i h e d r a a r e d e f i n e d f o r e a c h f a u l t d a t u m ( f i g u r e

m o d i f ie d f ro m L is le , 1 9 8 7 ) .

33

1 3F ig u r e 2 -1 4 - L o w e r -h e m i s p h e r e s t e re o g ra p h ic p ro je c t io n s h o w in g th e F a n d F f i e l d s

c o n s t ru c te d b y s u p e r im p o s in g t h e f a u l t d a t a f ro m f ig u re 2 -1 3 . T h i s i s t h e A n g e l i e r a n d M e c h le r

(1 9 7 7 ) m e th o d ( f i g u re m o d i f ie d f ro m L is le , 1 9 8 7 ) .

34

F ig u r e 2 -1 5 - L o w e r -h e m is p h e re s t e re o g ra p h ic p ro je c t io n s h o w in g th e r e g io n s c o n s t ru c te d

b y s u p e r im p o s in g th e A a n d B d ih e d ra f ro m th e f a u l t d a t a i n f i g u re 2 -1 3 . T h i s i s L i s le ' s (1 9 8 7 )

c o n s t r a in t ( f i g u re m o d i f ie d f ro m L is le , 1 9 8 7 ) .

35

3 1A B A , B A B , a n d B B B in th e F r e g io n . T h e B A A a n d A B B a re a s in th e F r e g i o n , h o w e v e r ,

3h a v e n o c o u n te rp a r t s in th e F r e g i o n ( A B B o r B A A ) a n d m a y b e e l i m i n a t e d a s a r e a s o f p o s s i b l e

1 3F d i r e c t i o n s . F o r th e s a m e re a so n , B B A m a y b e e l im in a te d a s a n a re a c o n ta in in g th e F

1 3d i r e c t i o n . T h e r e s u l t in g s o l u t i o n ( f i g u r e 2 - 1 6 ) h a s n o t i c e a b l y s m a l l e r F a n d F r e g io n s .

I t i s e a s y to s e e t h a t fo r th e se m e th o d s to g iv e s a t i s f a c t o r y r e su l t s , o n e m u s t h a v e a

1 3p o p u la t i o n o f f a u l t s s u f f i c i e n t ly s c a t t e re d to c o n s t r a in th e F a n d F r e g io n s to s m a l l a re a s . A

p o p u l a t i o n o f f a u l t s w h e r e a l l o f th e f a u l t s h a v e s i m i l a r o r i e n t a t i o n s w i l l y i e l d n o m o r e

in fo rm a t io n th a n a n y s u b s e t o f th a t p o p u la t i o n ( f ig u re 2 -1 7 ) . T h e s e m e th o d s w i l l a l s o n o t

p e r fo rm v e ry w e l l w h e n d e a l in g w i th c e r t a i n ty p e s o f s y m m e t r i c a l f a u l t p o p u la t i o n s s u c h a s

c o n ju g a t e s e ts (A n d e r s o n , 1 9 5 1 ) o r o r th o rh o m b ic s e t s (A y d in a n d R e c h e s , 1 9 8 2 ; K ra n t z , 1 9 8 6 ;

K ra n tz , 1 9 8 9 ) o f fa u l t s ( f i g u re 2 -1 8 ) .

T h e g ra p h ic a l m e th o d s o f p a l e o s t r e s s a n a ly s i s d e v e lo p e d b y A n g e l i e r a n d M e c h le r

( 1 9 7 7 ) a n d L i s l e ( 1 9 8 7 ) a r e e x t r e m e l y c u m b e r s o m e t o d o o n a s t e r e o n e t w h e n d e a l i n g w i t h m o r e

th a n a h a n d fu l o f f a u l t p l a n e s . F o r th i s r e a so n , th e se m e th o d s a re u s u a l ly p e r fo rm e d

n u m e r i c a l ly b y a c o m p u te r p ro g ra m (A n g e l ie r a n d M e c h l e r , 1 9 7 7 ; L i s le , 1 9 8 8 ) . I t s h o u ld b e

k e p t in m i n d , h o w e v e r , t h a t e v e n t h o u g h t h e s e m e t h o d s a r e a d a p t e d f o r a c o m p u t e r , t h e y a r e

s t i l l e s se n t i a l l y c o n s id e re d g ra p h i c a l m e th o d s a n d n o t c o m p u ta t i o n a l m e th o d s .

36

1 3F i g u r e 2 - 1 6 - L o w e r -h e m is p h e re s t e re o g ra p h ic p ro je c t io n s h o w in g th e F a n d F f i e ld s

c o n s t r u c t e d b y u t i l i z i n g L i s l e ' s ( 1 9 8 7 ) c o n s t r a i n t o n t h e f a u l t d a t a f ro m f ig u r e 2 - 1 3 . E v e n w i t h

a s m a l l p o p u la t i o n o f t h re e f a u l t s , t h e re i s a n o t i c e a b le im p ro v e m e n t o v e r A n g e l i e r a n d

M e c h le r ' s (1 9 7 7 ) m e th o d ( f i g u re m o d i f ie d f ro m L is le , 1 9 8 7 ) .

37

1 3F ig u r e 2 -1 7 - L o w e r -h e m is p h e re s t e re o g ra p h ic p ro je c t io n s h o w i n g t h e F a n d F r e g io n s

d e r i v e d u s in g L is le 's (1 9 8 7 ) m e th o d o n fo u r t h ru s t f a u l t s a l l h a v in g a s im i l a r o r i e n ta t i o n .

38

1 3F ig u r e 2 -1 8 - L o w e r -h e m is p h e re s t e r e o g r a p h i c p ro je c t io n s h o w in g th e F a n d F r e g io n s

d e r iv e d u s in g L i s le ' s (1 9 8 7 ) m e th o d o n A . a c o n ju g a t e s e t o f fo u r n o rm a l f a u l t s a n d B . a n

o r t h o rh o m b ic s e t o f fo u r n o rm a l f a u l t s .

39

C H A P T E R 3

C O M P U T A T IO N A L P A L E O S T R E S S A N A L Y S IS O F F A U L T P O P U L A T IO N S

G iv e n th e a s s u m p t io n th a t f a u l t s w i l l s l i p i n t h e d i r e c t i o n o f th e i r m a x im u m re s o lv e d

s h e a r s t r e s s , d e te rm in in g th e d i r e c t i o n a n d s e n s e o f s l i p o n a p o p u la t i o n o f f a u l t p l a n e s o f

k n o w n o r i e n t a t i o n s f o r a g i v e n s t r e s s t e n s o r F i s a t r i v i a l m a t t e r (B o t t , 1 9 5 9 ) . T h e in v e r s e o f

t h i s p r o b l e m - - f in d i n g a s t r e s s t e n s o r F s a t i s fy in g k n o w n s l i p d i r e c t i o n s a n d o r i e n t a t i o n s fo r

a p o p u l a t i o n o f fa u l t s - - i s m u c h m o r e d i f f i c u l t . T h i s i s t e r m e d t h e " i n v e r s e p r o b l e m " a n d i t s

s o lu t i o n i s th e g o a l o f co m p u ta t io n a l m e th o d s o f p a le o s t r e s s a n a ly s i s (E tc h e c o p a r , e t . a l . , 1 9 8 1 ;

A m i j o , e t . a l . , 1 9 8 2 ; A n g e l i e r , 1 9 8 9 ) .

A l l p a le o s t r e s s a n a ly s i s m e th o d s a s su m e th a t tw o i t e m s o f in fo rm a t io n a re k n o w n fo r

e a c h fa u l t - - t h e fa u l t p la n e 's o r i e n ta t i o n in a g e o g ra p h ic c o o rd in a te s y s te m a n d th e fa u l t ' s

d i r e c t i o n a n d s e n s e o f s l i p . I n a d d i t i o n , tw o v e ry im p o r t a n t fu n d a m e n ta l a s su m p t io n s a r e m a d e

b y a l l o f th e m e th o d s - - t h a t t h e d i r e c t i o n o f s l i p o n a fa u l t p l a n e i s a lw a y s p a ra l l e l t o th e

d i r e c t io n o f r e s o lv e d s h e a r s t r e s s o n th a t p l a n e a n d t h a t a l l o f th e f a u l t s a r e a c t i v a t e d w i th in a

u n iq u e , s t a t i c s t r e s s f i e ld .

3 .1 E a r ly A tt e m p ts a t C o m p u ta t io n a l P a leo s t r e ss A n a ly s i s

In 1 9 7 4 , C a re y a n d B ru n ie r m a d e t h e f i r s t a t t e m p t a t fo rm u la t in g a n d s o lv in g th e

m a th e m a t i c s d e f i n in g th e in v e rs e p ro b le m (A rm i j o , e t . a l . , 1 9 8 2 ; C é l é r i e r , 1 9 8 8 ; A n g e l i e r ,

1 9 8 9 ) . T w o y e a r s l a t e r , C a re y (1 9 7 6 ) d e v e lo p e d th e f i r s t p a l e o s t r e s s a n a ly s i s p ro g ra m w h ic h

s o u g h t to m in im iz e t h e a n g u la r d e v ia t i o n s be tw e e n m e a su re d f a u l t s t r i a t i o n s a n d th e c a lc u la t e d

s h e a r s t re s s d i r e c t i o n s o n e a c h f a u l t p l a n e f o r a c h o s e n p a l e o s t r e s s t e n s o r F . A n g e l i e r a l so

d e v e lo p e d a s im i l a r m e th o d a t a p p ro x im a te ly th e s a m e t im e (1 9 7 5 ) . S in c e t h e n , A n g e l i e r h a s

40

d e v e l o p e d s e v e ra l s u c c e s s iv e m e th o d s , e a c h p o s se s s in g s l i g h t im p ro v e m e n t s i n th e

m a th e m a t i c a l a lg o r i th m s u s e d to p e r f o rm th e a n a ly s e s (c h a p te r 6 ) .

A n i m p o r t a n t c h a r a c t e r i s t i c ( s o m e w o u ld s a y a p r o b l e m ) o f m e t h o d s o f p a l e o s t r e s s

a n a l y s i s s u c h a s A n g e l i e r ' s i s t h a t t h e y s e t u p n o n - l i n e a r i t e r a t i v e e q u a t io n s a n d th u s h a v e

e x t r e m e ly c o m p le x m a th e m a t i c a l s o lu t io n s . T h e se e q u a t io n s a re t e rm e d n o n - l i n e a r b e c a u s e ,

fo r e a c h s te p i n t h e i t e r a t i o n , t h e o u tp u t v a r i a b l e i s c h a n g e d ( ju s t a s i t i s i n a l i n e a r e q u a t io n )

a n d t h i s n e w o u t p u t v a r i a b l e w i l l r e s u l t i n d i f fe r e n t i n p u t v a r i a b l e s ( w h i c h d o e s n o t h a p p e n i n

a l i n e a r e q u a t i o n ) .

3 .2 E tc h ec o p a r 's M e th o d o f P a leo st r e ss A n a ly s i s

In 1 9 8 1 , E tc h e c o p a r (E tc h e c o p a r , e t . a l . , 1 9 8 1 ) d e v e l o p e d a m e t h o d o f p a l e o s t r e s s

a n a l y s i s s i m i l a r t o t h a t b e i n g d e v e l o p e d a t a p p r o x i m a t e l y th e s a m e t i m e b y A n g e l i e r ( A n g e l i e r ,

1 9 7 9 ; A n g e l i e r , e t . a l . , 1 9 8 2 ) . T h i s m e th o d w a s s im i l a r to A n g e l i e r ' s i n th a t i t s o u g h t t o

m in im iz e t h e a n g u l a r d e v ia t i o n o f th e m a x im u m s h e a r s t r e s s d i r e c t i o n s f ro m th e s l i p d i r e c t i o n s

f o r a c h o s e n p a l e o s t r e s s t e n s o r F o n e a c h f a u l t p l a n e i n t h e p o p u l a t i o n e x a m i n e d . T h e o n l y

s u b s t a n t i a l d i f f e r e n c e w a s t h e u s e b y E tc h e c o p a r o f a s l i g h t ly d i f f e r e n t i t e r a t i v e a lg o r i t h m fo r

p e r f o rm in g th e n o n - l in e a r l e a s t - s q u a re s in v e rs io n .

A f t e r c o r re s p o n d in g w i t h A r n a u d E t c h e c o p a r o f th e U n iv e rs i t é d e s S c ie n c e s e t

T e c h n i q u e s d u L a n g u e d o c i n M o n tp e l l i e r , F r a n c e , I o b ta in e d a c o p y o f h i s p ro g ra m th o u g h

R ic h a rd P lu m b o f S c h lu m b e r g e r D o l l R e s e a rc h in R id g e f i e ld , C o n n e c t i c u t . T h e p ro g ra m

s o u rc e c o d e w a s w r i t t e n i n F O R T R A N a n d s e n t o n a m a g n e t i c t a p e , t h e c o n t e n t s o f w h ic h I

t r a n s fe r r e d to S U N Y A lb a n y 's V A X -8 6 5 0 m a in f ra m e c o m p u te r . A f t e r t r a n s l a t i n g t h e p ro g ra m

d o c u m e n t a t i o n f ro m t h e o r i g i n a l F r e n c h i n t o E n g l i s h ( w i t h t h e a s s i s t a n c e o f D e b r a L e n a r d - -

a S U N Y A l b a n y l in g u i s t i c s m a j o r ) , I w a s a b l e t o c o m p i l e a n d r u n t h e p r o g r a m f o r s e v e r a l f a u l t

p o p u la t i o n s . U n fo r tu n a te ly , a l l o f th e r e s u l t s o b t a in e d w e re n o d i f f e re n t th a n

41

th o s e g iv e n b y A n g e l i e r ' s p ro g ra m a n d I a b a n d o n e d fu r th e r t e s t i n g o f t h i s m e th o d in f a v o r o f

A n g e l i e r ' s .

3 .3 M ich a e l ' s M e th o d o f P a leo st r e ss A n a ly s i s

M ic h a e l (1 9 8 4 ) d e r iv e d a m e th o d o f p a l e o s t r e s s a n a ly s i s w h ic h m a d e a n e w in i t i a l

sa s s u m p t io n - - t h a t t h e m a g n i tu d e s o f th e s h e a r s t r e s s F o n e a c h o f th e f a u l t p l a n e s in a

p o p u la t i o n a t t h e t im e o f s l i p a r e s i m i l a r . M ic h a e l c l a im e d th i s a s su m p t io n w a s ju s t i f i e d b y

o b s e rv in g th a t t h e f a u l t p l a n e s a l l e x p e r i e n c e d s l i p , t h e r e fo re t h e a b s o lu t e m a g n i tu d e s o f th e

ss h e a r s t r e s se s o n a l l o f t h e p la n e s w e re s im i l a r a n d m in im iz in g th e d i f f e re n c e *F * - 1 f o r a l l

so f t h e f a u l t p la n e s w i l l a l l o w o n e to d e te rm in e *F * f o r e a c h f a u l t p l a n e . T h i s a l l o w s a f a i r l y

s i m p l e l in e a r in v e r s i o n t o s o l v e f o r t h e s t r e s s t e n s o r F .

I w ro t e a T u r b o P a s c a l v e r s io n 3 .0 1 c o m p u te r p ro g ra m fo r p e r fo r m in g p a l e o s t r e s s

a n a l y s e s u s in g M ic h a e l 's m e th o d in M a y , 1 9 8 7 . U n fo r tu n a t e ly , I fo u n d th a t t h i s m e th o d g a v e

in c o n s i s t e n t r e s u l t s fo r m a n y ty p e s o f f a u l t p o p u la t i o n s - - e s p e c i a l l y t h o s e w i th fa u l t s w h ic h

a re c lo s e t o b e in g p a ra l l e l t o t h e p r in c ip a l s t r e s s a x e s . T h i s i s p ro b a b ly d u e to th e f a c t t h a t t h e

s h e a r s t r e s s o n s u c h p la n e s b e c o m e s q u i t e l o w re l a t i v e t o t h o s e p la n e s a t 4 5 ° t o th e p r in c ip a l

s t r e s s a x e s ( f i g u re 3 -1 ) . M ic h a e l ' s m e th o d a l s o d o e s n o t w o rk w e l l w i th to o fe w fa u l t s (w h a t

c o n s t i t u t e s " to o fe w " i s n o t w e l l -d e f in e d a n d i s d e p e n d e n t u p o n th e f a u l t ' s o r i e n t a t i o n s ) a n d

fa u l t s w h ic h a l l h a v e a v e ry s im i l a r o r i e n ta t i o n . T h i s i s b e c a u s e th e i n v e rs io n m a t r ix b e c o m e s

c l o s e to b e in g a s i n g u l a r m a t r ix a n d th e c a l c u l a t e d c o n f id e n c e l i m i t s b e c o m e v e r y l a r g e a s a

re s u l t (M ic h a e l , 1 9 8 4 ) .

C é l é r i e r (1 9 8 8 ) s e v e re l y c r i t i c i z e d M ic h a e l ' s m e t h o d a n d s t a t e d th a t t h e s h e a r s t r e s s

a s su m p t io n d o e s n o t c o r re s p o n d to a r e a l i s t i c f a i l u re c r i t e r io n a n d th e o n ly ra t i o n a l fo r u s in g

i t i s t h a t i t r e s u l t s i n a s im p l i f i c a t i o n f o r t h e i n v e rs io n b y l i n e a r i z in g t h e e q u a t io n s . M ic h a e l

42

F ig u r e 3 - 1 - N o r t h e a s t q u a d ra n t o f a lo w e r -h e m is p h e re s te r e o g ra p h i c p ro j e c t io n s h o w in g

p o le s to f a u l t p l a n e s w h e re t h e r e l a t i v e s iz e s o f e a c h p o l e r e f l e c t t h e r e l a t i v e m a g n i tu d e s o f th e

s h e a r s t r e s s e s o n th e i r a s s o c i a t e d p l a n e s . A M v a l u e o f 0 .5 a n d a r a t io o f th e i s o t ro p i c s t re s s

to th e d e v ia to r i c s t r e s s o f 4 .5 (M ic h a e l , 1 9 8 4 ) w a s u s e d to c a lc u la te th i s d a ta .

43

la t e r m o d i f i e d h i s a l g o r i t h m to u s e n o n - G a u s s i a n r a th e r th a n G a u s s i a n s ta t i s t i c s in th e

in v e r s io n (M ic h a e l , 1 9 8 7 a ; M ic h a e l , 1 9 8 7 b ) w h i c h i m p r o v e d t h e m e t h o d b u t w h i c h a l s o

e f f e c t i v e ly re n d e re d m y p ro g ra m o b s o le te .

3 .4 G e p h a r t a n d F o r sy th 's M e th o d o f P a leo st r e ss A n a ly s i s

A ls o i n 1 9 8 4 , G e p h a r t a n d F o r s y th p r o p o s e d a s l ig h t ly d i f f e r e n t m e t h o d o f p a l e o s t r e s s

a n a l y s i s u s in g e a r th q u a k e fo c a l m e c h a n i sm d a t a . T h i s m e th o d b e g in s b y s e t t i n g u p a g r id o f

p o i n t s o n a s t e r e o n e t (G e p h a r t r e c o m m e n d s e i t h e r 1 0 ° o r 5 ° s p a c i n g s ) a n d t h e n s y s t e m a t i c a l l y

1o r ie n t in g th e m o s t c o m p r e s s iv e p r in c ip a l s t r e s s a x i s F s u c h th a t i t i s c o in c id e n t w i th e a c h o f

th e se g r id po in t s in tu rn w h i l e th e n s y s t e m a t i c a l l y o r i e n t in g th e l e a s t c o m p re s s iv e p r in c ip a l

3 1s t r e s s a x i s F s u c h th a t i t i s c o in c id e n t w i th a l l p o in t s 9 0 ° f ro m F i n t u rn a n d th e n v a ry in g th e

3s t r e s s r a t io M a t e a c h o f th e F l o c a t io n s . T h i s o b v io u s ly r e s u l t s i n a v e ry l a rg e n u m b e r o f

s t r e s s t e n s o rs b e in g d e f in e d fo r e a c h fa u l t p o p u la t i o n (d e p e n d e n t u p o n th e n u m b e r o f g r i d

p o i n t s d e f i n e d ) . F o r e a c h s t r e s s t e n s o r F t h u s d e f in e d , t h e a n g l e w h ic h th e n o rm a l v e c to r fo r

e a c h f a u l t p l a n e m u s t b e r o ta t e d t h ro u g h t o h a v e th a t f a u l t ' s s l i p v e c to r b e c o n s i s te n t w i th th e

s t r e s s f i e l d i s c o m p u te d . T h e p r o g r a m s e e k s t o m in i m iz e t h e s u m o f t h e s q u a re s o f th e s e

a n g u l a r d iv e rg e n c e s . T h e s t r e s s m o d e l w h ic h h a s th e s m a l l e s t s u m i s a s su m e d to b e th e

p o p u la t i o n 's p a le o s t r e s s t e n s o r .

I o b t a in e d a c o p y o f th i s p a l e o s t r e s s a n a ly s i s p ro g ra m in F e b r u a ry , 1 9 8 9 f ro m J o h n

G e p h a r t a t C o r n e l l U n i v e r s i ty . T h e p r o g r a m c o n s i s t e d o f s e v e r a l s u b r o u t i n e s a l l w r i t t e n i n

F O R T R A N f o r t h e M a c i n t o s h I I c o m p u t e r . A m a j o r c h a r a c t e r i s t i c o f t h e p r o g r a m i s th a t i t i s

v e ry c o m p u ta t io n a l ly in t e n s iv e a n d re q u i r e s a p p ro x im a te ly a fu l l 2 4 -h o u r d a y to p e r fo rm a

s e a r c h o f 1 0 ,0 0 0 s t r e s s m o d e l s f o r a r e l a t i v e l y s m a l l d a t a s e t o f 2 0 f o c a l m e c h a n i s m s . W h i l e

th i s i s n o t to o s e v e re a l im i t a t i o n fo r a sm a l l n u m b e r o f a n a ly se s , a th o ro u g h t e s t i n g o f th e

44

m e th o d w o u ld b e e x t r e m e ly t i m e c o n s u m in g .

G e p h a r t f u r th e r m o d i f i e d t h i s m e th o d a n d c re a t e d a F O R T R A N p ro g ra m c a l l e d F M S I

(a n a n c r o n y m fo r fo c a l m e c h a n i sm s t r e s s in v e r s io n ) w h ic h h a s re c e n t ly b e e n s u b m i t t e d fo r

p u b l i c a t i o n ( G e p h a r t , 1 9 9 0 ) . T h i s m e t h o d d o e s n o t d i f fe r m u c h f ro m e a r l ie r w o r k a n d i s

p r i m a r i ly a n a t t e m p t t o s p e e d u p th e c o m p u ta t i o n a l p ro c e d u re s .

3 .5 R e c e n t T r e n d s in P a leo st r e ss A n a ly s i s

In 1 9 8 7 , R e c h e s d e r iv e d a p a le o s t r e s s a n a ly s is m e th o d w h ic h u se d a l i n e a r l e a s t - s q u a re s

in v e r s io n m e th o d ra th e r th a n a n o n - l i n e a r o n e . T h i s g re a t ly s im p l i f i e s th e c a l c u l a t i o n s

in v o l v e d b y t a k in g th e C o u lo m b f a i l u r e c r i t e r io n i n t o a c c o u n t ( c h a p t e r 7 ) . C é l é r i e r (1 9 8 8 ) a l s o

d e r iv e d m a th e m a t i c a l a lg o r i t h m s fo r c a lc u la t in g pa le o s t r e s s t e n so rs b y in t ro d u c in g a f r i c t i o n a l

c o n s t r a in t u p o n th e f a u l t s i n th e p o p u la t i o n . T h e a d v a n ta g e o f b e in g a b l e to i n t r o d u c e a n

a d d i t i o n a l c o n s t r a in t i s t h a t t h e i n v e rs e p ro b le m e q u a t io n s b e c o m e l i n e a r a n d th u s m u c h e a s i e r

a n d fa s te r t o s o lv e c o m p u ta t i o n a l l y .

T h e m o s t r e c e n t p a p e r s o n p a l e o s t r e s s a n a l y s i s a r e c o n c e r n e d w i t h t e c h n i q u e s t o

1 2 3e s t im a te a b so lu te m a g n i tu d e s fo r t h e p r in c ip a l s t r e s s a x e s F , F , a n d F r a t h e r th a n s i m p l y

th e i r r e l a t i v e m a g n i tu d e s (e x p re s se d b y th e s t r e s s r a t io M ) . T o d o t h i s , tw o a d d i t i o n a l

c o n s t r a in t s m u s t b e p la c e d u p o n th e p ro b le m . A n g e l i e r (1 9 8 9 ) a t t e m p te d to d o th i s b y

c o n s id e r in g g e o lo g ic a l ly - r e a s o n a b le ru p tu re a n d f r i c t i o n l a w s fo r t h e f a u l t s e x a m in e d .

A n g e l i e r a l s o a t t e m p te d to c o n s t r a in th e v e r t i c a l s t r e s s b y a s su m in g i t t o b e c o in c id e n t w i th o n e

o f t h e t h r e e p r i n c i p a l s t r e s s e s a n d t a k i n g i n t o a c c o u n t t h e t h i c k n e s s o f t h e s e d i m e n t a r y

o v e rb u rd e n fo r f a u l t s i n th e B a s in a n d R a n g e H o o v e r D a m lo c a l i t y in N e v a d a - A r i z o n a

(A n g e l i e r , e t . a l . , 1 9 8 5 ; A n g e l i e r , 1 9 9 0 ) .

A n o th e r i m p o r t a n t a re a o f r e s e a rc h i s t h e a t t e m p t to r e l a t e f a u l t g e o m e t ry a n d

k in e m a t i c s to d r iv in g s t r e s se s . D y n a m ic ( s t r e s s -b a s e d ) a n d k in e m a t i c ( s t r a in -b a s e d ) m e th o d s

45

o f f a u l t a n a ly s i s a r e b e in g u s e d to g e th e r in a n a t t e m p t to l e a r n m o re a b o u t th e m e c h a n i c s o f

f a u l t in g . A c u r re n t l e a d e r in t h i s f i e l d o f s t u d y i s R i c h a r d A l l m e n d i n g e r o f C o r n e l l U n i v e r s i ty

(M a rr e t t a n d A l l m e n d in g e r , 1 9 9 0 ) .

46

C H A P T E R 4

P R O B L E M S IN P A L E O S T R E S S A N A L Y S IS

P r o b l e m s i n c o m p u t a t i o n a l m e t h o d s o f p a l e o s t r e s s a n a l y s i s u s i n g s t r ia t e d - fa u l t

p o p u la t i o n s a r i s e in tw o a re a s - - i n th e g a th e r in g o f d a t a a s in p u t fo r th e p ro g ra m s a n d in th e

fu n d a m e n ta l s im p l i fy in g a s s u m p t io n s m a d e b y th e se p ro g ra m s a s t h e y a t t e m p t t o c a lc u la t e a

p a le o s t r e s s t e n so r . A l l o f th e p a le o s t r e s s a n a ly s i s p ro g ra m s c u r re n t ly in u s e re q u i r e , a s

n u m e r i c a l i n p u t , t h e o r i e n ta t i o n o f e a c h f a u l t p la n e a lo n g w i th t h e f a u l t ' s d i r e c t i o n , a n d se n se ,

o f s l ip . P r o b l e m s m a y a r i s e i n g a t h e r i n g t h i s in f o r m a t i o n f ro m t h e f i e l d s i n c e i n a c c u r a t e d a t a

m a y r e s u l t i n a p r o g r a m r e t u r n i n g a n i n c o r re c t p a l e o s t r e s s t e n s o r ( s e c t i o n s 4 .1 a n d 4 . 2 ) .

P a l e o s t r e s s a n a ly s i s p ro g ra m s a l s o m a k e s e v e ra l s im p l i fy in g a s su m p t io n s a b o u t f a u l t s a n d th e

n a t u r e o f f a u l t in g w h i c h m a y l e a d t o r e s u l t a n t e r r o r s ( s e c t i o n s 4 . 3 t h r o u g h 4 . 6 ) . In o r d e r to

u n d e r s t a n d th e l im i t a t io n s o f th e s e p r o g r a m s , a l l o f t h e a s s u m p t io n s in h e r e n t w i th i n th e m m u s t

b e c lo s e ly e x a m in e d .

4 .1 M e a su r e m e n t E r r o r s

A c a re fu l f i e l d w o rk e r s h o u ld b e a b le t o c o l l e c t f a i r l y a c c u ra t e (± 5 ° o r l e s s ) o r i e n t a t i o n

d a t a fo r a p o p u la t i o n o f f a u l t s u s in g o n ly a c o m p a s s a n d c l i n o m e te r (C o m p to n , 1 9 6 2 , p . 2 1 -3 5 ;

R a g a n , 1 9 8 5 , p . 1 5 ) . T h e r e a r e , h o w e v e r , c o n d i t io n s u n d e r w h i c h s m a l l m e a s u r e m e n t e r r o r s

m a d e w h i l e d e t e r m i n i n g t h e s t r ik e o f a f a u l t p l a n e o r t h e t r e n d o f a l in e a t i o n w i t h i n t h a t fa u l t

p la n e m a y b e c o m e m a g n i f ie d .

W h e n , i n m e a s u r i n g t h e s t r ik e o f a f a u l t p l a n e , t h e c o m p a s s i s n o t h e l d e x a c t l y

h o r i z o n ta l t h e n a d i r e c t i o n o f s t r i k e w i l l b e m e a su re d o th e r th a n t h e t ru e s t r i k e . I f t h e a n g u la r

0d e p a r tu r e i n d e g r e e s o f th i s a p p a r e n t s t r i k e f ro m th e t ru e s t r i k e i s d e n o t e d a s , a n d th e d ip o f

St h e f a u l t p l a n e a s * , t h e n t h e r e s u l t a n t s t r i k e e r ro r (, ) m a y b e c a l c u l a t e d b y

47

T Equation 4.8 in Ragan (1985, p. 56) is given as: tan , = [tan(r+,) - tan *]cos * / 1 + [tan r tan(r+,)cos *]21

which is incorrect and has been corrected here in equation (2).

S 0, = s in [ t a n , / t a n * ] (1 )-1

F r o m t h i s e q u a t i o n ( R a g a n , 1 9 8 5 , p . 1 6 ) , i t m a y b e s e e n t h a t fo r s h a l l o w - d i p p i n g f a u l t

p l a n e s , t h e r e s u l t a n t s t r i k e e r r o r s m a y b e q u i t e l a r g e g i v e n f a i r l y s m a l l m e a s u r e m e n t e r r o r s

( f ig u re 4 -1 ) .

W h e n m e a s u r i n g t h e t re n d o f a l in e a t i o n o n a f a u l t p l a n e , i t i s a c o m m o n p r a c t i c e t o

a l i g n t h e c o m p a s s i n t h e d i r e c t i o n o f a p r o j e c t i o n o f th a t l i n e a t i o n o n t o a h o r i z o n t a l p l a n e . I f

a n e r ro r i s m a d e in th i s a l i g n m e n t , a s m e a su re d b y th e a n g le , , fo r a l i n e a t i o n o f p i t c h r o n a

Tf a u l t p l a n e o f d ip * , t h e n t h e r e s u l t a n t t r e n d e r ro r (, ) m a y b e c a l c u l a t e d b y

T, = t a n { [ t a n ( r+, ) - t a n ( r ) ] c o s * / 1 + [ ta n ( r ) t a n ( r+, ) c o s * ] } ( 2 ) -1 2

F r o m th i s e q u a t io n , i t m a y b e s e e n th a t fo r l i n e a t io n s w i th l a rg e p i t c h a n g l e s o n1

s t e e p l y - d i p p i n g f a u l t p l a n e s , a l a r g e t re n d e r ro r fo r th o s e l in e a t i o n s m a y o c c u r ( f i g u r e 4 - 2 ) .

I n a d d i t io n , t h e m a x i m u m e r ro r a s s o c i a t e d w i t h ( r -, ) i s l e s s t h a n i t i s fo r ( r +, ) a n d re p e a te d

m e a s u r e m e n t s w i l l n o t b e s y m m e t r ic a l l y d i s t r i b u t e d a r o u n d t h e t r u e t r e n d ( R a g a n , 1 9 8 5 , p . 5 6 ) .

G iv e n t h e a b o v e in f o rm a t io n , i t w o u ld b e u s e fu l to k n o w h o w s e n s i t i v e p a l e o s t r e s s

a n a l y s i s p r o g r a m s a r e t o s m a l l v a r i a t i o n s i n t h e o r i e n t a t i o n s o f t h e f a u l t p l a n e s a n d t h e i r s l i p

d i r e c t io n s . I f s m a l l m e a su re m e n t e r ro rs g a v e s ig n i f i c a n t ly d i f f e re n t r e s u l t s fo r th e c a lc u la t e d

p a l e o s t r e s s t e n s o r s , t h e s e p r o g r a m s w o u l d l o s e s o m e o f t h e i r u s e f u l n e s s g i v e n g e o l o g i c a l l y

re a l i s t i c fa u l t p o p u la t i o n d a ta .

48

F ig u r e 4 - 1 - G ra p h o f th e m a x im u m s t r i k e e r r o r f o r a f a u l t p l a n e a r i s in g f ro m a s t r i k e

0m e a s u r e m e n t e r r o r (, ) o f 1 ° to 5 ° a s a fu n c t io n o f th e d ip o f th e f a u l t p la n e ( f i g u re m o d i f i e d

f r o m R a g a n , 1 9 8 5 , p . 1 6 ) .

49

F ig u r e 4 - 2 - G ra p h o f th e m a x im u m t r e n d e r ro r o f a s l i c k e n l in e o n a f a u l t p l a n e a r i s in g f ro m

a t re n d m e a s u r e m e n t e r r o r (, ) o f 3 ° a s a f u n c t i o n o f t h e p i t c h o f t h e s l i c k e n l i n e ( 1 0 ° t o 8 0 ° i n

1 0 ° i n c r e m e n t s ) a n d t h e d i p o f t h e f a u l t p l a n e ( f i g u r e m o d i f ie d f ro m R a g a n , 1 9 8 5 , p . 5 7 ) .

50

4 .2 D e te r m in in g F a u l t S l ip

T h e d i r e c t io n o f s l i p o n a f a u l t i s c o m m o n ly o b ta in e d b y e x a m i n in g l i n e a t io n s k n o w n

a s s l i c k e n l in e s o n th e f a u l t ' s s u r f a c e (T j i a , 1 9 6 4 ; M e a n s , 1 9 8 7 ) . S l i c k e n l in e s a re l i n e a r

s t r i a t i o n s , o r g ro o v e s , r e s u l t i n g f ro m f r i c t i o n o r s h e a r s t r a in o n f a u l t s u r f a c e s a n d in d i c a t in g

t h e l a s t d i r e c t i o n o f m o v e m e n t o n t h a t f a u l t ( F l e u t y , 1 9 7 5 ) . I t i s p o s s i b l e f o r f a u l t s u r fa c e s t o

c o n t a i n m o r e t h a n o n e s e t o f s l i c k e n l in e s a n d c a re f u l e x a m in a t io n m a y b e n e e d e d to d i s t i n g u i s h

th e l a t e s t s l i p d i r e c t i o n f ro m e a r l i e r o n e s . A l s o , s l i c k e n l in e s a re a x ia l d a t a (C h e e n e y , 1 9 8 3 , p .

1 0 -1 1 ) , g iv in g tw o p o s s ib le s l i p d i r e c t i o n s 1 8 0 ° a p a r t , a n d so m e o th e r c r i t e r i a a r e th u s n e e d e d

t o e s t a b l i s h t h e s e n s e o f s l i p o f th e f a u l t ( i . e . w h ic h e n d o f a s l i c k e n l in e p o in t s i n th e d i r e c t i o n

o f m o v e m e n t o f th e o p p o s in g fa u l t b l o c k ) . T h e b e s t s e n s e -o f - s l i p in d i c a t o r s a r e g e o m e t r i c o r

p h y s i c a l l i n e s w h i c h h a v e b e e n o f f s e t b y f a u l t in g ( D a v i s , 1 9 8 4 , p . 2 6 8 ; R a g a n , 1 9 8 5 , p . 9 2 - 9 3 ) .

T h e s e f e a t u r e s m u s t b e u s e d c a u t i o u s l y a s s l i p d i r e c t i o n i n d i c a t o r s , h o w e v e r , s i n c e t h e y r e c o r d

th e n e t s l ip o n th e f a u l t w h ic h m a y b e th e r e s u l t o f s e v e r a l d i s t i n c t s l i p e v e n t s w i th d i f f e r in g

s l i p d i r e c t i o n s ( f i g u re 4 -3 ) .

B e f o r e 1 9 5 8 , i t w a s c o n s i d e r e d a x i o m a t i c t h a t s t e p - l ik e f e a t u r e s o n f a u l t p l a n e s c o u l d

b e u s e d a s s e n s e -o f - s l i p in d ic a to rs (H o b b s , e t . a l . , 1 9 7 6 , p . 3 0 4 ) . B y ru n n in g y o u r h a n d o v e r

th e f a u l t s u r f a c e , t h e d i r e c t i o n o f l e a s t r e s i s t a n c e ( i . e . t h e d i r e c t i o n w h e re y o u r h a n d ju m p s o v e r

th e r i s e r s o f th e s te p s r a t h e r t h a n s l a m m in g in to th e m ) i s t h e d i r e c t i o n o f m o v e m e n t o f th e

o p p o s in g fa u l t b lo c k ( f i g u re 4 -4 ) . A p ro b le m w i th t h i s m e th o d i s t h a t o th e r w o rk e rs h a v e s in c e

c l a im e d th a t s t e p s a re a n u n re l i a b l e s e n se -o f - s l i p in d i c a t o r s in c e s t e p s w i th a n in c o n g ru o u s

s e n se -o f - s l i p a re k n o w n f ro m th e f i e l d a n d th e l a b o ra to ry (P a t e r s o n , 1 9 5 8 ; T j i a , 1 9 6 4 ;

R ie c k e r , 1 9 6 5 ; T j i a , 1 9 6 7 ; N o r r i s a n d B a r r o n , 1 9 6 9 ; G a y , 1 9 7 0 ; H o b b s , e t . a l . , 1 9 7 6 , p . 3 0 3 -

3 0 5 ) . In 1 9 6 9 , N o r r i s a n d B a r ro n d i s t i n g u i s h e d b e tw e e n tw o d i f f e r e n t t y p e s o f s te p s fo u n d o n

fa u l t p l a n e s - - a c c r e t i o n s t e p s a n d f r a c t u re s te p s . A c c r e t io n s t e p s a r e fo rm e d b y th e a d h e s io n

o f m in e ra l i z e d g ou g e o n to th e s l i p su r f a c e a n d f r a c tu re s t e p s a re s t e p s w h ic h h a v e

51

F ig u r e 4 - 3 - D i a g r a m d e m o n s t r a t i n g h o w t h e n e t s l ip v e c t o r o n a f a u l t p l a n e m a y b e t h e r e s u l t

o f s e v e ra l d i s t i n c t s l i p e v e n ts w i t h d i f fe r i n g s l i p d i r e c t i o n s ( s l i p v e c to rs 1 th ro u g h 4 ) .

52

F ig u r e 4 - 4 - C r o s s - s e c t i o n a l v i e w o f a f a u l t p l a n e s h o w i n g h o w s t e p s m a y b e u s e d a s s e n s e - o f -

s l i p in d i c a t o r s o n f a u l t s u r f a c e s . T h e d i r e c t i o n o f l e a s t r e s i s ta n c e i s t a k e n t o b e th e d i r e c t i o n

o f m o t i o n fo r t h e o p p o s in g fa u l t b lo c k .

53

b e e n c u t in to th e s o l id ro c k . A c c r e t io n s t e p s a re fo rm e d a s th e s l i p s u r f a c e i s p a r t e d w i th th e

s te p 's r i s e r s f a c i n g p re f e r e n t i a l l y in th e d i r e c t i o n o f m o v e m e n t o f th e o p p o s in g b lo c k .

A c c r e t io n s t e p s a re t h e re fo re u s u a l ly c o n g ru o u s w i th th e f a u l t ' s s e n se -o f - s l i p . F r a c tu re s te p s

m a y f a c e i n e i t h e r d i r e c t i o n a n d t h u s m a y g i v e e i t h e r a c o n g r u o u s o r a n i n c o n g r u o u s s e n s e - o f -

s l i p . D u r n e y a n d R a m s a y (1 9 7 3 ) c l a im e d th a t a th i rd ty p e o f s t e p s fo rm e d f ro m la y e r s o f

f i b r o u s m in e ra l s o n th e s l i p s u r f a c e a l w a y s g a v e a c o n g ru o u s s e n se -o f - s l i p . T h e re fo re , w i t h

c a re , s t e p s m a y b e u se d a s s e n se -o f - s l i p in d i c a to rs o n s o m e fa u l t s (R o d , 1 9 6 6 ; T j i a , 1 9 6 7 ; T j i a ,

1 9 7 2 ; N o r r i s a n d B a r r o n , 1 9 6 9 ; D u rn e y a n d R a m s a y , 1 9 7 3 ; P e t i t , e t . a l . , 1 9 8 3 ; P e t i t , 1 9 8 7 ) .

O th e r p o s s i b l e s e n s e -o f - s l i p i n d i c a to r s a r e s t ru c tu r a l f e a tu r e s s u c h a s p r o d m a r k s ,

c r e s c e n t i c g o u g e s , p lu c k m a rk s , c h a t t e rm a rk s , p ro tu b e ra n c e s re s e m b l in g ro c h e s m o u to n n é e s ,

s p a l l s , b ru i s e d s t e p r i s e r s (T j i a , 1 9 6 7 ; T j i a , 1 9 7 2 ; G a m o n d , 1 9 8 3 ) , d r a g fo ld s (D a v i s , 1 9 8 4 ,

p . 2 7 0 -2 7 2 ; H o b b s , e t . a l . , 1 9 7 6 , p . 3 0 5 -3 0 6 ) , e n é ch e lo n t e n s io n g a s h e s , a n d th e o r i e n t a t i o n

o f a n y s e c o n d a ry s h e a r f r a c tu re s (G a m o n d , 1 9 8 3 ; P e t i t , e t . a l . , 1 9 8 3 ; H a n c o c k , 1 9 8 5 ; G a m o n d ,

1 9 8 7 ; P e t i t , 1 9 8 7 ) . F a u l t g o u g e (B y e r l e e , e t . a l . , 1 9 7 8 ) a n d s l ic k e n s id e s (L e e , 1 9 9 0 ) m a y a l s o

c o n ta in m ic ro s t r u c tu ra l s e n s e -o f - s l i p in d ic a to rs w h e n e x a m in e d p e t r o g ra p h ic a l l y .

W h e n c o l l e c t i n g fa u l t p o p u la t i o n d a ta fo r p a le o s t r e s s a n a l y s i s p ro g ra m s , a

r e c o m m e n d e d f in a l c h e c k o n t h e s e n s e - o f - s l i p d a t a i s t o s e e w h e t h e r th e y a r e a l l c o n s i s t e n t w i t h

o n e a n o th e r - - a s in g l e r e v e r s e f a u l t i n a p o p u la t i o n o f n o rm a l f a u l t s s h o u ld s ig n a l c a u t io n s in c e

i t i s u n l i k e ly to b e lo n g to th e s a m e s t r e s s f i e ld a s th e o th e rs .

4 .3 F a u l t M o r p h o lo g y

A n i m p l i c i t a s s u m p t i o n i n p a l e o s t r e s s a n a l y s i s i s th a t fa u l t s a r e p l a n a r ( i . e . t h e y m a y

b e d e s c r ib e d b y a u n iq u e s t r i k e , d ip , a n d d ip d i r e c t i o n ) . In r e a l i t y , h o w e v e r , f a u l t s a r e n o t

p e r f e c t l y p la n a r o n a n y s c a le (S c h o lz , 1 9 9 0 , p . 1 4 6 -1 4 7 ) .

M o s t f a u l t s s h o w a d e g re e o f c u rv a tu re in d ip s e c t i o n s o r i n p la n v ie w (M a n d l , 1 9 8 8 ,

54

p . 2 4 ) . L i s t r i c ( s h o v e l - s h a p e d ) n o r m a l a n d t h r u s t f a u l t s a r e e x t r e m e e x a m p l e s o f th i s a n d a r e

q u i t e c o m m o n in a re a s o f th in -s k in n e d t e c to n ic s . S u b s u r fa c e s t r e s s d i s t r i b u t io n s h a v e b e e n

u s e d to a c c o u n t fo r th e d e v e l o p m e n t o f l i s t r i c f a u l t s (H a fn e r , 1 9 5 1 ; J a ro s z e w s k i , 1 9 8 4 , p . 2 1 5 -

2 1 7 ) a n d f a c t o r s w h i c h m a y a f fe c t th e c u r v a t u r e o f a d e v e l o p i n g f a u l t i n c l u d e a n i s o t r o p i e s i n

t h e s h e a r i n g s t r e n g t h o f th e r o c k m a s s , c o m p a c t i o n b y t h e o v e r b u r d e n , a b n o r m a l l y h i g h p o r e

f lu i d p r e s s u r e s , a n d c h a n g e s i n t h e t e c to n ic s t r e s s f i e l d (M a n d l , 1 9 8 8 , p . 2 4 ) . F a u l t s m a y a l s o

b e c u rv e d , o r w a v y , o n a sm a l l e r s c a l e (G a m o n d , 1 9 8 3 ; J a ro s z e w s k i , 1 9 8 4 , p . 2 1 8 ; H a n c o c k ,

1 9 8 5 ) d u e p r i m a r i ly t o a n i s o t r o p i e s o f th e r o c k m a s s o r c h a n g e s i n t h e t e c t o n i c s t r e s s f i e l d

d u r i n g th e i r fo rm a t i o n .

C u rv e d f a u l t s w i l l y i e ld d i f f e r e n t s t r i k e a n d d ip o r i e n t a t i o n s , d e p e n d in g u p o n w h e re o n

t h e f a u l t 's s u r fa c e t h e m e a s u r e m e n t s a r e m a d e , r e s u l t in g i n p r o b l e m s f o r p a l e o s t r e s s a n a l y s i s

p ro g ra m s s im i la r t o t h o s e p re s e n te d b y m e a su re m e n t e r ro rs . A n o th e r p ro b le m w i th c u rv e d

fa u l t s (d e a l t w i th in m o re d e t a i l i n s e c t io n 4 .4 ) i s t h a t f a u l t c u rv a tu re , m o re s o t h a n th e

m a x i m u m r e s o l v e d s h e a r s t re s s , m a y d e t e r m i n e t h e f a u l t ' s s l i p d i r e c t i o n w h e n t h e f a u l t i s

re a c t i v a te d .

A n o th e r c h a ra c te r i s t i c o f f a u l t s i s t h e i r d i s c o n t in u i ty . F i e ld s tu d i e s h a v e s h o w n th a t

f a u l t s , a t a l l s c a le s , a re d i s c o n t in u o u s a n d c o n s i s t o f n u m e ro u s d i s c re t e s e g m e n ts (W a l l a c e ,

1 9 7 3 ; S e g a l l a n d P o l l a r d , 1 9 8 0 ; M a n d l , 1 9 8 7 ; M a n d l , 1 9 8 8 , p . 4 3 - 4 7 ; S c h o l z , 1 9 9 0 , p . 1 5 1 ) .

D i s c o n t i n u o u s f a u l t s h a v e b e e n m o d e l l e d a s a r ra y s o f r i g h t - o r l e f t - s t e p p i n g p a i r s o f e n é ch e lo n

s e g m e n ts (S e g a l l a n d P o l l a r d , 1 9 8 0 ) w h ic h h a v e p ro n o u n c e d d i f f e re n c e s in m e c h a n ic a l

b e h a v i o r f ro m c o n t in u o u s f a u l t s a n d w h ic h in f lu e n c e t h e i r s l i p d i r e c t i o n s w h e n s u b je c t e d to a

g iv e n s t r e s s f i e ld .

In 1 9 7 0 , T c h a l e n k o d e m o n s t r a t e d th a t t h e fo rm a t io n a n d e v o lu t io n o f s h e a r z o n e s

in v o lv e d id e n t i c a l c h a ra c t e r i s t i c s t a g e s in d e p e n d e n t o f th e i r s i z e . S h e a r z o n e s w e re th u s s h o w n

to b e s e l f - s im i l a r f ro m t h e s c a le o f s h e a r -b o x e x p e r im e n ts ( t e n s o f m i l l im e te r s ) t o e a r th q u a k e -

p r o d u c i n g f a u l t s (h u n d r e d s o f m e t e r s ) . S e l f - s i m i l a r i t y a t d i f fe r e n t s c a l e s i s a n i m p o r t a n t

55

c h a r a c t e r i s t i c o f a c l a s s o f f r a c t a l s ( M a n d e l b r o t , 1 9 7 7 ; M a n d e l b r o t , 1 9 8 3 ) , a n d s e v e r a l w o r k e r s

h a v e s in c e d e m o n s t r a t e d th a t f a u l t s u r f a c e s m a y b e d e s c r ib e d b y f r a c t a l g e o m e t ry (B ro w n a n d

S c h o lz , 1 9 8 5 ; S c h o lz a n d A v i l e s , 1 9 8 6 ; O k u b o a n d A k i , 1 9 8 7 ; P o w e r , e t . a l . , 1 9 8 7 ; S c h o lz ,

1 9 9 0 , p . 1 4 7 ) .

F a u l t s w h o s e s u r fa c e r o u g h n e s s i s b e s t d e s c r i b e d b y a f r a c t a l , o r H a u s d o r f f -

B e s i c o v i t c h , d i m e n s i o n m a y b e u s e d i n p a l e o s t r e s s a n a l y s i s i f t h e o r i e n t a t i o n o f t h e f a u l t 's s l i p

p la n e , r a th e r t h a n th e f a u l t p la n e i t s e l f , i s u se d (S c h o lz , 1 9 9 0 , p . 1 4 7 ) . T h e s l i p p l a n e i s d e f in e d

a s th e i d e a l i z e d p la n e u p o n w h ic h th e s l i p v e c to r l i e s a n d m a y b e v ie w e d a s th e r e g io n a l m e a n

o f th e a c t u a l f a u l t p l a n e ( f i g u re 4 -5 ) . D e t e rm in in g th i s s l i p p l a n e f ro m a s m a l l e x p o s u re o f th e

fa u l t p la n e in a n o u tc ro p m a y n o t a lw a y s b e p o s s ib le .

A n t i th e t i c f a u l t s a l s o p o s e a p r o b l e m f o r p a l e o s t r e s s a n a l y s i s . A n t i th e t i c f a u l t s

( J a ro sz e w s k i , 1 9 8 4 , p . 2 1 2 ; M a n d l , 1 9 8 8 , p . 4 7 ) a re m in o r f a u l t s w i th a s e n se -o f - s h e a r w h ic h

i s o p p o s i t e t o th e g e n e r a l d i r e c t i o n o f a n e x te rn a l ly im p o s e d sh e a r . W h e n m o v e m e n t o c c u r s o n

a n o rm a l l i s t r i c fa u l t , fo r e x a m p le , t h e i n c re a se d c u rv a tu re o f th e u p p e r p a r t o f th e f a u l t c a u se s

t h e f a u l t w a l l s to s e p a r a t e . S e c o n d - o r d e r a n t i th e t i c f a u l t s a r i s e t o a c c o m o d a t e t h i s c h a n g e i n

g e o m e t r y . S i n c e t h e s e f a u l t s a r i s e d u e t o a s e c o n d a r y s t r e s s f i e l d d e v e l o p i n g a r o u n d t h e m a i n

f a u l t , c a r e f u l f i e l d w o r k m u s t b e p e r fo r m e d t o b e s u r e t h a t a n t i th e t i c f a u l t s a r e n o t in c l u d e d i n

fa u l t p o p u l a t io n s u s e d fo r p a l e o s t re s s a n a l y s i s .

F i n a l ly , t h e r e a r e a s p e c ia l c l a s s o f f a u l t s w i th a ro t a t i o n a l c o m p o n e n t o f s l i p (D o n a th ,

1 9 6 2 ; D a v i s , 1 9 8 4 , p . 2 6 6 ; J a ro s z e w s k i , 1 9 8 4 , p . 1 4 6 ; R a g a n , 1 9 8 5 , p . 8 9 ; M a n d a l a n d

C h a k ra b o r ty , 1 9 8 9 ; T w is s a n d G e fe l l , 1 9 9 0 ) . S u c h f a u l t s d o n o t h a v e a c o n s ta n t s l i p d i r e c t i o n ,

o r s e n s e - o f - s l i p , a n d c a n n o t b e u s e d i n p a l e o s t r e s s a n a l y s i s p r o g r a m s ( f i g u r e 4 - 6 ) .

4 .4 T h e R e la t io n sh ip o f S h ea r S tr ess to F a u l t S l ip D ir ec t io n s

A fu n d a m e n ta l a s su m p t io n o f a l l p a l e o s t r e s s a n a ly s i s p ro g ra m s i s t h a t f a u l t s l i p a lw a y s

56

F ig u r e 4 - 5 - D ia g ra m d e m o n s t r a t i n g th e d i f f e re n c e b e tw e e n a f a u l t ' s s l i p p la n e a n d th e a c tu a l

f a u l t s u r fa c e w h i c h m a y n o t b e p l a n a r ( f i g u r e m o d i f ie d f ro m S c h o l z , 1 9 9 0 , p . 1 4 8 ) .

57

o c c u r s i n t h e m a x i m u m r e s o l v e d s h e a r s t re s s d i r e c t i o n o n t h e f a u l t p l a n e ( C a r e y a n d B r u n i e r ,

1 9 7 4 ; A rm i j o a n d C is te rn a s , 1 9 7 8 ; A n g e l i e r , 1 9 7 9 ; E tc h e c o p a r , e t . a l . , 1 9 8 1 ; A n g e l i e r , e t .

a l . , 1 9 8 2 ; V a s s e u r , e t . a l . , 1 9 8 3 ; A n g e l i e r , 1 9 8 4 ; G e p h a r t a n d F o r sy th , 1 9 8 4 ; M ic h a e l , 1 9 8 4 ;

R e c h e s , 1 9 8 7 ; A n g e l i e r , 1 9 8 9 ) . I t m a y b e s h o w n , h o w e v e r , t h a t u n d e r c e r t a i n c o n d i t io n s f a u l t s

m a y n o t a lw a y s s l i p in th e d i r e c t i o n o f t h e m a x im u m re s o lv e d s h e a r s t r e s s .

F o r fa u l t s u r f a c e s w i th l o n g -w a v e l e n g t h a s p e r i t i e s ( i . e . w a v y o r c u rv e d f a u l t s ) , s l i d in g

w i l l o c c u r a t s o m e sm a l l a n g le N t o a s l i p p l a n e w i th a n o rm a l fo rc e o f N , a s h e a r in g fo rc e o f

S , a n d a c o e f f i c i e n t o f f r i c t i o n o f : ( J a e g e r a n d C o o k , 1 9 7 9 , p . 5 5 ; S c h o lz , 1 9 9 0 , p . 5 2 ) . T w o

e q u a t io n s m a y b e d e r iv e d r e l a t i n g N a n d S to t h e n o rm a l fo rc e (n ) a n d th e s h e a r fo rc e ( s ) a c t i n g

u p o n t h e r a m p o f t h e a s p e r i ty a s f o l l o w s ( f i g u r e 4 - 7 )

n = N c o s (N ) + S s in (N ) (3 )

a n d

s = S c o s (N ) - N s in (N ) (4 )

A s s u m i n g a C o u l o m b f a i l u r e c r i te r i o n s u c h t h a t

s = : n (5 )

th e fo l l o w in g e q u a t io n r e s u l t s u p o n th e s u b s t i t u t i o n o f e q u a t io n s (3 ) a n d (4 ) in to e q u a t io n (5 )

S c o s (N ) - N s in (N ) = : [N c o s (N ) + S s in (N ) ] (6 )

58

F ig u r e 4 - 6 - T w o f a u l t t y p e s w i t h a r o t a t i o n a l c o m p o n e n t o f s l i p . A . H i n g e f a u l t s a n d B .

P iv o ta l f a u l t s ( f i g u re m o d i f ie d f ro m R a g a n , 1 9 8 5 , p . 8 9 ) .

59

F ig u r e 4 - 7 - C ro s s - s e c t io n a l v i e w o f a f a u l t s u r f a c e p a r a l l e l t o s h e a r in g w i th a n a s p e r i t y A

c re a t i n g a n a n g le N w i th th e f a u l t s u b j e c te d to a to ta l s h e a r in g fo rc e o f S a n d a to ta l n o rm a l

fo rc e o f N . T h e r a m p o f a s p e r i t y A i s s u b je c t e d to th e r e s o lv e d n o rm a l fo rc e (n ) a n d s h e a r in g

fo rc e ( s ) .

60

M u l t ip l y i n g e q u a t io n (6 ) b y [1 / c o s (N ) ] a n d a lg e b r a i c a l ly r e a r ra n g i n g y i e l d s

S = [: + t a n (N ) ] / [ 1 - : t a n (N ) ] N (7 )

w h ic h r e d u c e s to

S = : N (8 )

w h e n th e re a r e n o a s p e r i t i e s in th e s h e a r in g d i r e c t i o n (N = 0 ) . T h e r e f o r e , s h e a r i n g o n a f a u l t

s u r f a c e w i th a s p e r i t i e s w i l l r e q u i r e a l a rg e r s h e a r in g f o rc e (S ) t h a n s h e a r in g o n a fa u l t s u r f a c e

w i t h o u t a s p e r i t i e s f o r s u f f i c i e n t l y s m a l l v a l u e s o f N . T h e d i f f e r e n c e i s a re s u l t o f th e in c re a s e

in th e f r i c t i o n a l c o e f f i c i e n t t e rm o f e q u a t io n (8 ) f ro m : t o [: + t a n (N ) ] / [ 1 - : t a n (N ) ] o f

e q u a t i o n ( 7 ) p r o v i d e d t h a t N < t a n ( 1 / : ) s i n c e a t N = t a n ( 1 / : ) t h e e q u a t io n c h a n g e s s ig n .-1 -1

A s s u m e a n u n d u la t i n g fa u l t p la n e ( f i g u re 4 -8 ) s u c h th a t

S = : ' N (9 )

r e p re s e n ts s h e a r in g i n t h e m a x im u m r e s o lv e d s h e a r s t r e s s d i r e c t i o n a t s o m e a c u te a n g le " t o

t h e l o n g a x i s o f t h e u n d u l a t i o n s w h e r e

: ' = [: + t a n (N ) ] / [ 1 - : t a n (N ) ] (1 0 )

T h e e q u a t io n

61

F ig u r e 4 - 8 - A n u n d u la t i n g fa u l t p l a n e w i t h t h e m a x im u m re s o lv e d s h e a r s t r e s s d i r e c t i o n

(v e c to r S ) m a k in g a n a n g le " w i th t h e s l i p d i re c t i o n w h ic h c o r re s p o n d s t o t h e l o n g a x i s o f th e

u n d u la t i o n s (v e c t o r S ' ) . I t i s a s su m e d th a t o n ly s l i d in g p a ra l l e l t o th e l o n g a x i s o f th e

u n d u la t i o n s e n c o u n te rs n o a s p e r i t i e s .

62

S c o s (" ) = : N (1 1 )

o r

S = : N / c o s (" ) (1 2 )

w i l l t h e n re p re s e n t s h e a r i n g p a ra l l e l t o th e lo n g a x i s o f t h e u n d u la t i o n s .

S e t t i n g e q u a t io n (9 ) e q u a l to e q u a t io n (1 2 ) y i e l d s

: ' N = : N / c o s (" ) (1 3 )

w h ic h r e d u c e s to

: ' = : / c o s (" ) (1 4 )

S u b s t i t u t in g e q u a t io n (1 0 ) in t o e q u a t io n (1 4 ) y i e l d s

[: + t a n (N ) ] / [ 1 - : t a n ) ] = : / c o s (" ) (1 5 )

w h ic h r e d u c e s , t h ro u g h a lg e b ra i c m a n ip u la t i o n , t o

N = t a n [: - : c o s (" ) ] / [ c o s (" ) + : ] (1 6 )-1 2

A s su m in g a g e o lo g ic a l ly r e a s o n a b le c o e f f i c i e n t o f f r i c t i o n (: ) o f 0 .8 5 fo r u p p e r c ru s t a l

ro c k s (B a r to n a n d C h o u b e y , 1 9 7 7 ; B y e r l e e , 1 9 7 8 ) , e q u a t io n (1 6 ) m a y b e re w r i t t e n a s

63

N = t a n [0 .8 5 - 0 .8 5 c o s (" ) ] / [ c o s (" ) + 0 .7 2 2 5 ] (1 7 )-1

a n d t h e r e l a t i o n s h i p b e tw e e n t h e a n g le s " a n d N m a y b e g r a p h e d a s " v a r i e s f ro m 0 ° t o 9 0 °

( f ig u re 4 -9 ) .

F ro m th e a b o v e , i t m a y b e s e e n t h a t n o n -p l a n a r f a u l t s ( i . e . m o s t f a u l t s ) w i th f a v o ra b ly -

a l ig n e d a s p e r i t i e s d o n o t a l w a y s s l i p i n th e d i re c t i o n o f th e i r m a x im u m re s o lv e d s h e a r s t r e s s .

4 .5 F a u l t in g P h a se D if f e re n t ia t io n

A n i m p o r t a n t p r o b l e m i n p a l e o s t r e s s a n a l y s i s u s i n g s t r ia t e d - fa u l t p o p u l a t i o n s i s

d e t e rm in in g i f e a c h o f t h e fa u l t s i n th e p o p u la t i o n w e re a c t i v a t e d w i th in a s in g l e s t r e s s f i e l d .

C a re fu l f i e l d w o rk c a n o f t e n d i s t i n g u i s h t h e r e l a t i v e a g e s o f f a u l t s u s in g c ro s s -c u t t i n g

re l a t i o n s h ip s b u t th e re i s n o g u a ra n t e e t h a t c o n t e m p o ra n e o u s ly - fo rm e d f a u l t s a l l b e lo n g to th e

s a m e fa u l t i n g p h a s e s in c e a f a u l t i s c r e a te d a t o n e t im e a n d m a y th e n b e r e a c t iv a te d m a n y t im e s

d u r i n g i t s e x i s t e n c e . P a l e o s t r e s s a n a ly s i s p ro g ra m s a s s u m e th a t f a u l t i n g w i l l o c c u r o n p re -

e x i s t i n g p la n e s o f w e a k n e s s (A n g e l i e r , 1 9 7 9 ; E tc h e c o p a r , e t . a l . , 1 9 8 1 ; A n g e l i e r , e t . a l . , 1 9 8 2 ;

V a s s e u r , e t . a l . , 1 9 8 3 ; A n g e l i e r , 1 9 8 4 ; G e p h a r t a n d F o r s y th , 1 9 8 4 ; M ic h a e l , 1 9 8 4 ; R e c h e s ,

1 9 8 7 ; A n g e l i e r , 1 9 8 9 ) . T h e re fo re , f a u l t s o f w id e ly d i s p a ra te in i t i a t io n a g e s m a y b e r e a c t iv a te d

w h e n s u b j e c t e d t o a g i v e n p a l e o s t r e s s f i e l d . O b s e r v i n g g e o m e t r ic r e l a t i o n s h i p s b e t w e e n f a u l t s

a n d th e p re s e n c e o f a n y s u c c e s s iv e s t r i a t i o n s o f d i f f e re n t a t t i t u d e s o n fa u l t s i n d i c a t e s th a t tw o

o r m o re p a l e o s t r e s s f i e l d s h a v e b e e n r e c o r d e d b u t , i n g e n e ra l , d i s t i n g u i s h in g w h ic h f a u l t s h a v e

b e e n r e a c t iv a t e d a t t h e s a m e t im e i s a d i f f i c u l t p ro b le m w h ic h h a s n o t b e e n w id e ly a d d re s se d .

I n t h e p a s t t e n y e a r s , n u m e r i c a l a l g o r i th m s h a v e b e e n p r o p o s e d w h i c h s e p a r a t e f a u l t s

i n t o d i f f e r e n t fa u l t in g p h a s e s ( A n g e l i e r a n d M a n o u s s i s , 1 9 8 0 ; H u a n g a n d A n g e l i e r , 1 9 8 7 ;

64

F ig u r e 4 - 9 - G ra p h o f th e c h a n g e in a lp h a (" ) f r o m 0 ° t o 9 0 ° f o r d i f fe r i n g a n g l e s o f p h i (N ) .

R e g i o n 1 c o n t a i n s t h e a n g l e s o f " a n d N f o r w h i c h s l i d i n g w i l l o c c u r p a r a l l e l to t h e l o n g a x i s

o f th e u n d u l a t i o n s a n d r e g i o n 2 c o n t a i n s t h e a n g l e s o f " a n d N f o r w h ic h s l i d i n g w i l l o c c u r

p a r a l l e l t o th e m a x i m u m r e s o l v e d s h e a r s t re s s d i r e c t i o n . F o r s m a l l a n g l e s o f " , e v e n v e r y s m a l l

l o n g - w a v e l e n g t h a s p e r i t i e s w i l l a c t a s b a r r i e r s to s l ip i n th e m a x im u m re s o lv e d s h e a r s t r e s s

d i r e c t i o n .

65

G a l in d o -Z a ld iv a r a n d G o n z a l e z - L o d e i ro , 1 9 8 8 ; H u a n g , 1 9 8 8 ) . U n fo r tu n a t e ly , t h e s e m e th o d s

a l l r e l y o n t h e s a m e c o m p u t a t i o n a l m e t h o d s u s e d t o d e t e r m i n e p a l e o s t r e s s a x e s f ro m f a u l t

p o p u la t i o n s (c h a p te rs 6 a n d 7 ) . S e p a ra t i n g fa u l t s in to h o m o g e n e o u s fa u l t in g p h a se su b se t s w i th

th e s e p r o g r a m s w i l l t h e re f o r e g u a ra n t e e a n e x c e l l e n t f i t fo r a p a l e o s t r e s s t e n s o r w h e n t h e s e

s u b s e t s a r e r u n t h r o u g h a n a n a l y s i s p r o g r a m . T h e r e s u l t s m a y n o t b e v e r y u s e f u l , h o w e v e r ,

s i n c e t h e s u b s e t s a r e e s s e n t i a l l y c r e a t e d b y h o w w e l l t h e y w i l l c o n s t r a i n a p a l e o s t r e s s t e n s o r .

4 .6 D e te rm in in g a P a le o str ess T e n so r

P a le o s t r e s s a n a ly s i s p ro g ra m s a t t e m p t to d e f in e a p a l e o s t r e s s f i e l d w h ic h i s c o n s i s te n t

w i th a p o p u l a t io n o f s t r i a t e d fa u l t s . T h e im p l ic a t i o n o f t h i s i s th a t a s i n g l e , u n i q u e p a l e o s t r e s s

t e n s o r i s r e c o r d e d i n t h e f a u l t in g r o c k s a t a s p e c i f ic p o i n t i n t i m e . A m a j o r p r o b l e m w i t h t h i s

i m p l i c a t i o n i s th a t s t re s s f i e l d s a r e n o t a l w a y s s t a t i c - - t h e y m a y e v o l v e w i t h t i m e ( M a n d l ,

1 9 8 8 , p . 1 5 -1 6 ) .

C o n s id e r tw o t h r u s t f a u l t s s i t u a t e d w i th in a s t r e s s f i e l d w h e re t h e l e a s t c o m p re s s iv e

3p rin c ip a l s t r e s s a x i s (F ) i s v e r t i c a l a n d c o n s t a n t i n m a g n i tu d e , t h e in t e rm e d ia t e p r inc ipa l s t re s s

2a x i s (F ) i s h o r i z o n t a l a n d c o n s ta n t in m a g n i tu d e , w h i l e t h e m o s t c o m p r e s s iv e p r in c ip a l s t r e s s

1a x i s (F ) i s h o r i z o n t a l a n d s t e a d i l y i n c r e a s i n g in m a g n i tu d e . I f t h e tw o fa u l t s h a v e a s t r i k e

1d i re c t io n p e rp e n d i c u l a r to F a n d d i f f e r o n ly in th e i r d ip a n g l e s , i t i s q u i t e p o s s ib le fo r th e m

b o th to b e a c t i v a t e d b y e s s e n t i a l l y th e s a m e s t r e s s f i e ld a t tw o d i f f e re n t t im e s a n d w i th tw o

d i f f e r e n t s l i p d i r e c t i o n s . T h e d i f f e r e n t s l i p d i r e c t i o n s a r i s e s in c e , a c c o rd in g to B o t t (1 9 5 9 ) , t h e

1s l i p d i r e c t i o n i s a fu n c t io n o f t h e r a t io s o f th e p r i n c i p a l s t r e s s e s a n d th i s ra t io c h a n g e s a s F

in c re a s e s in m a g n i t u d e ( f i g u re 4 -1 0 ) .

F a u l t s m a y a l s o t o t a l l y s w i t c h s ty l e d u r in g a s in g l e t e c t o n ic e v e n t (M a n d l , 1 9 8 8 , p . 1 5 -

66

1 6 ) . A s t h e p r in c ip a l s t r e s s a x e s in c re a s e o r d e c re a s e in m a g n i tu d e , t h e y m a y e x c h a n g e

3 2 1o r ie n t a t io n s ( i . e . a h o r i z o n t a l F i n c re a s e s i n m a g n i tu d e u n t i l i t b e c o m e s F a n d th e n F w h i l e

2 1 3 2F a n d F b e c o m e F a n d F r e s p e c t iv e ly ) . A s th e p r in c ip a l s t r e s s a x e s c h a n g e o r i e n t a t io n s ,

fa u l t in g s ty le s m a y s w i t c h b e tw e e n n o rm a l , w re n c h , o r t h ru s t f a u l t s .

A n o th e r w a y in w h ic h f a u l t s m a y c h a n g e i n s ty l e i s b y g ra v i t a t i o n a l r e - e q u i l i b ra t i o n .

A th ru s t f a u l t m a y , w h e n th e h o r i z o n ta l c o m p re s s iv e s t r e s s b e g in s l e s s e n in g , b e h a v e l i k e a

n o rm a l f a u l t (B e u tn e r , 1 9 7 2 ; J a ro s z e w s k i , 1 9 8 4 , p . 1 7 2 ) .

A c c o r d i n g to E d e lm a n ( 1 9 8 9 ) , w h i l e r e a s o n a b l e e s t im a t e s m a y b e m a d e f o r p a l e o s t r e s s

s t a t e s u s i n g s m a l l f a u l t s , l a r g e f a u l t s a r e i n d i c a t i v e o f l a r g e , f in i t e , n o n e l a s t i c s t r a i n s a n d t h e r e

a re n o c o n s t i t u t i v e e q u a t io n s r e l a t i n g s t r e s s a n d p e rm a n e n t s t r a i n . I f t h e s t r a in r a t e , c o a x i a l i t y ,

a n d v i s c o s i ty te n so r w e re k n o w n fo r s o m e in s t a n t in t im e in t h e d e fo rm a t io n h i s to ry o f a ro c k

m a s s , c a l c u la t i o n o f th e s t r e s s w o u ld b e t r i v ia l a n d c o n ta in t h e p ro p o g a te d e r ro rs o f th e o th e r

m e a s u r e m e n t s . In o t h e r w o r d s , a s i n g l e p a l e o s t r e s s d e t e r m i n a t i o n i s a d e r i v e d , u n v e r i f i a b l e

q u a n t i t y . T h i s i s im p o r t a n t s i n c e p a l e o s t r e s s a n a ly s i s p ro g ra m s a r e o f t e n u s e d to d e t e rm in e th e

p a l e o s t r e s s o r i e n t a t i o n s f o r v e r y l a r g e - s c a l e f a u l t s s u c h a s t h e S a n A n d r e a s a n d C o a l i n g a f a u l t

s y s te m s (M ic h a e l , 1 9 8 7 b ; J o n e s , 1 9 8 8 ) .

4 .7 D isc u ss io n

T o e v a lua te the pe r fo rm a n c e of p a leo s t res s a n a ly s i s a lg o r i th m s , I c re a te d a r t i f i c ia l f a u l t

p o p u la t i o n s u s in g th e s a m e in i t i a l a s s u m p t io n s th a t a re u s e d b y th e p ro g ra m s . T h e a r t i f i c i a l

f a u l t p o p u la t i o n s c o n s i s t o f p e r f e c t ly p l a n a r n o rm a l f a u l t s w i th a n e x a c t s t r i k e a n d d ip s i t u a te d

1 2 3w i th i n a s t a t i c s t r e s s f i e l d w i th t h e p r in c ip a l s t r e s s a x e s F , F , a n d F h a v in g o r i e n t a t i o n s o f

n o r th , u p , o r e a s t . T h e s l i p v e c to r s fo r e a c h f a u l t i n th e p o p u la t i o n a re c a l c u l a t e d u s in g th e

s a m e i n i t i a l a s s u m p t io n s t h a t p a l e o s t r e s s a n a l y s i s p ro g ra m s u s e w h e n c a l c u l a t in g p a l e o s t r e s s

t e n s o rs - - B o t t ' s fo rm u la (B o t t , 1 9 5 9 ) i s u t i l i z e d t o f i n d th e m a x im u m

67

F ig u r e 4 -1 0 - M o h r c i r c l e s d e m o n s t r a t i n g h o w tw o fa u l t s o f s l i g h t ly d i f f e r e n t o r i e n t a t i o n s

1(g r a p h e d a s 1 a n d 2 o n th e d i a g r a m s ) w i l l s l i p a t d i f f e r e n t t im e s a s F in c re a s e s . A . N o s l i p

1 1o c c u rs in i t i a l l y . B . F a u l t 1 b e g i n s to s l ip a s F in c re a s e s . C . B o t h f a u l t s 1 a n d 2 s l ip a s F

re a c h e s a m a x im u m v a lu e .

68

s h e a r s t r e s s d i r e c t i o n a n d th i s i s a s su m e d to b e i d e n t i c a l t o t h e f a u l t ' s s l i p d i r e c t i o n . R u n n in g

th e se fa u l t p o p u l a t i o n s t h ro u g h a p a le o s t r e s s a n a ly s i s p ro g ra m s h o u ld th u s g iv e t h e e x a c t

o r i e n t a t i o n s o f t h e p r i n c i p a l s t r e s s a x e s u s e d t o c r e a t e t h e m . I f t h e p a l e o s t r e s s a n a l y s i s

p ro g ra m s e x a m in e d re tu rn d i f fe re n t r e s u l t s , th e m a g n i t u d e o f t h e i r e r r o rs m a y b e e x a m in e d .

S y s t e m a t i c a l l y a l t e r in g th e o r i e n ta t i o n s o f th e i n d iv id u a l f a u l t s w i th in th e a r t i f i c i a l

f a u l t p o p u l a t io ns a l lo w s o n e to t e s t t h e s e n s i t i v i ty o f th e v a r io u s p a l e o s t r e s s a n a l y s i s p r o g r a m s .

A s a n e x a m p le , i n c re a s in g th e d ip o f o n e o f t h e f a u l t p la n e s in th e p o p u la t i o n b y a fe w d e g re e s

m a y b e v i e w e d a s e q u i v a l e n t to u s i n g a r e a l p o p u l a t i o n w h e r e t h e d i p o f o n e o f t h e f a u l t s i s

i n c o r re c t - - d u e e i t h e r to a m e a s u r e m e n t e r r o r o r p o s s i b l y t o t h e f a c t th a t th e f a u l t s u r fa c e i s

n o n -p la n a r . B y p la c in g a n e w fa u l t p la n e in to a p o p u la t i o n w i th a n a rb i t r a r i l y c h o s e n

o r i e n t a t i o n fo r i t s n o rm a l a n d s l i p v e c to r s , t h e s e n s i t i v i t y o f th e p a l e o s t r e s s a n a ly s i s p ro g ra m s

to th e a c c id e n ta l i n c lu s io n o f fa u l t s f ro m s e p a ra te t e c to n ic p h a s e s m a y b e e x a m in e d .

T h r o u g h c a r e f u l s e l e c t i o n o f t h e a r t i f i c i a l f a u l t p o p u la t io n s u s e d to t e s t t h e p a l e o s t r e s s

a n a l y s i s p r o g r a m s , t h e e f fe c t o f t h e v a r i o u s p r o b l e m s i n p a l e o s t r e s s a n a l y s i s d i s c u s s e d i n t h i s

c h a p te r m a y b e d e m o n s t r a t e d a n d e v e n q u a n t i f i e d to s o m e e x t e n t . T h a t i s th e a im o f th i s th e s i s .

69

C H A P T E R 5

G E N E R A T IN G A R T IF IC IA L F A U L T P O P U L A T IO N S

T o d e v e lo p s y n t h e t i c d a t a s e t s f o r t e s t in g c o m p u ta t io n a l m e t h o d s o f p a l e o s t r e s s

a n a ly s i s , I w ro te a P a s c a l p ro g ra m t o c a lc u la t e th e s l i p v e c to rs a n d th e s h e a r s t r e s s to n o rm a l

s t r e s s r a t i o s o n a n y a rb i t r a r i l y o r i e n t e d f a u l t p l a n e s i t u a t e d w i th in a s t r e s s f i e l d o f v a ry in g

p r i n c i p a l s t re s s m a g n i t u d e s . T h i s a l l o w e d m e t o d e r i v e a r t i f i c i a l d a t a s e t s o f f a u l t s a n d t h e i r

s l i p d i r e c t i o n s f o r a g i v e n s t r e s s t e n s o r . A c o m p l e t e l i s t i n g o f t h i s p r o g r a m i s g i v e n i n

A p p e n d ix C .

5 .1 T h e o r y

I t c a n b e s h o w n th a t fo r a g iv e n s t r e s s t e n s o r , t h e t o t a l s t r e s s a c t i n g u p o n a p la n e i n a n y

o r i e n t a t i o n w i th in th a t s t r e s s f i e l d m a y b e c a l c u l a t e d b y a re l a t i o n s h ip d e s c r ib e d b y M e a n s

(1 9 7 6 , p . 1 0 3 ) a s C a u c h y 's fo rm u la , w h ic h m a y b e w r i t t e n i n te n so r n o t a t i o n a s

i ij jT = F l (1 )

i jw h e re T re p re s e n t s t h e n o r th , u p , o r e a s t c o m p o n e n t s o f th e t o t a l s t r e s s v e c to r , l r e p re s e n t s t h e

ijn o r th , u p , o r e a s t d i re c t i o n c o s in e s (C h e e n e y , 1 9 8 3 , p . 1 1 2 ) , a n d F r e p re s e n t s e a c h o f th e n in e

c o m p o n e n t s o f t h e s t r e s s t e n so r . T h e n o r th , u p , a n d e a s t d i r e c t i o n c o s in e s a re d e f in e d h e re a s

th e c o s in e s o f th e a n g l e s b e tw e e n t h e f a u l t p l a n e n o r m a l v e c to r a n d th e n o r th , u p , a n d e a s t

c o o rd in a te a x e s w h ic h w i l l c o r r e s p o n d , fo r p u rp o s e s o f th i s s e c t io n , t o th e t h re e p r in c ip a l

1 2 3s t r e s s e s F , F , a n d F r e s p e c t i v e l y ( f ig u r e 5 - 1 ) .

W h e n t h e d i r e c t i o n c o s i n e s a r e c a l c u l a t e d f ro m t h e o r i e n t a t i o n o f t h e n o r m a l v e c t o r t o

th e f a u l t p la n e , C a u c h y 's fo rm u la m a y b e u se d to d e te rm in e th e c o m p o n e n t s o f th e t o ta l

70

F ig u r e 5 - 1 - R e l a t i o n s h i p b e t w e e n a p l a n e X Y Z s i t u a t e d w i t h i n a g e o g r a p h i c c o o r d i n a t e

1s y s t e m w h e re t h e n o r th , u p , a n d e a s t c o o rd i n a t e a x e s c o r re s p o n d t o th e p r in c ip a l s t r e s s a x e s F ,

2 3F , a n d F r e s p e c t iv e ly . T h e d i r e c t i o n c o s in e s a re th e c o s in e s o f th e a n g le s b e tw e e n th e p l a n e 's

1 2 3n o rm a l v e c t o r ( n ) a n d th e th r e e c o o r d i n a t e a x e s ( i . e . l = c o s (a lp h a ) , l = c o s (b e t a ) , a n d l =

c o s (g a m m a ) .

71

s t r e s s v e c to r a c t i n g u p o n th a t f a u l t p l a n e . S in c e th e p r in c ip a l s t r e s s a x e s h a v e th e s a m e

o r i e n t a t i o n a s th e n o r th , u p , a n d e a s t c o o rd in a te a x e s , t h e s h e a r s t r e s s t e rm s v a n i s h f ro m th e

s t r e s s t e n s o r a n d C a u c h y 's f o r m u l a ( e q u a t i o n 1 ) r e d u c e s t o

1 1 1T = F l

2 2 2T = F l (2 )

3 3 3T = F l

w h e re t h e 1 , 2 , a n d 3 c o m p o n e n t s a r e t h e n o r th , u p , a n d e a s t c o m p o n e n t s r e s p e c t iv e ly .

T o c a lc u la t e th e n o rm a l s t r e s s a n d sh e a r s t r e s s m a g n i tu d e s a c t i n g u p o n th e f a u l t p la n e ,

t h e a n g l e b e tw e e n t h e t o t a l s t r e s s v e c to r a n d th e n o rm a l v e c to r t o t h e f a u l t p l a n e m u s t b e fo u n d .

A s im p le re l a t i o n s h ip e x i s t s b e tw e e n a n y tw o v e c to rs in sp a c e a n d th e a n g le (2) b e tw e e n th e m

s u c h th a t

2 = c o s [ (a @ b ) / (2a 2 2b 2) ] (3 )-1

w h e re a @ b i s t h e i n n e r , o r d o t , p ro d u c t a n d 2a 2 a n d 2b 2 a r e th e m a g n i tu d e s o f v e c to r s a a n d b

r e s p e c t i v e l y ( M a r s d e n a n d T r o m b a , 1 9 8 1 , p . 2 0 ) . T h e i n n e r p r o d u c t b e t w e e n a n y t w o v e c t o r s

i s d e f in e d a s

1 1 2 2 3 3a @ b = a b + a b + a b (4 )

a n d t h e m a g n i tu d e o f a n y v e c t o r i s d e f in e d a s

1 2 32a 2 = ( a + a + a ) (5 )2 2 2 1/2

72

O n c e t h e a n g l e b e t w e e n t h e t w o v e c t o r s h a s b e e n c a l c u l a t e d , i t c a n b e s h o w n b y s i m p l e

n st r i g o n o m e t ry ( f i g u re 5 -2 ) th a t t h e n o r m a l s t r e s s (F ) a n d s h e a r s t r e s s (F ) m a g n i t u d e s a r e

nF = 2T 2 c o s (2) (6 )

sF = 2T 2 s i n (2) (7 )

O n c e t h e n o r m a l s t re s s a n d s h e a r s t re s s m a g n i t u d e s a c t i n g u p o n t h e f a u l t p l a n e a r e

s nc a l c u l a t e d , t h e f a u l t p l a n e ' s s h e a r s t r e s s to n o rm a l s t r e s s r a t i o (F / F ) m a y b e d e te rm in e d .

5 .2 D e r iv in g B o t t ' s F o r m u la

F o r a fa u l t p la n e o f a n y o r i e n ta t i o n w i th in a s t r e s s f i e ld , t h e re w i l l b e a m a x im u m s h e a r

s t r e s s d i re c t i o n a lo n g w h ic h s l i p m a y o c c u r . B o t t (1 9 5 9 ) s h o w e d th a t d i f f e r e n t r e l a t i v e

m a g n i tu d e s o f th e p r in c ip a l s t r e s s e s w i l l r e s u l t i n d i f f e r e n t d i re c t i o n s o f m a x im u m s h e a r s t r e s s .

I f t h e o r i e n t a t i o n o f th e f a u l t p l a n e r e l a t i v e t o t h e p r in c ip a l s t r e s s a x e s i s k n o w n , th e r e l a t i v e

m a g n i tu d e s o f th e p r in c ip a l s t r e s s e s c a n b e u s e d to d e t e r m i n e t h e m a x im u m s h e a r s t r e s s

d i r e c t i o n w i t h in th e fa u l t p la n e .

T o d e r iv e t h i s e q u a t io n , a s su m e a p l a n e X Y Z o f u n i t a re a s i t u a t e d w i th in a n o r th , u p ,

1 2 3a n d e a s t c o o r d i n a t e s y s t e m ( f ig u re 5 -3 ) . T h e p r in c i p a l s t r e s s a x e s F , F , a n d F a n d t h e i r

1 2 3a s so c i a t e d d i r e c t i o n c o s in e s l , l , a n d l c o in c id e w i th th e n o r th , u p , a n d e a s t d i r e c t i o n s

re s p e c t iv e ly . S in c e th e X Y Z p la n e i s o f u n i t a re a ,

1 2 3l + l + l = 1 (8 )2 2 2

1 2 3a n d l i s t h e a re a o f th e O Y Z p la n e , l i s th e a re a o f th e O X Z p la n e , a n d l i s t h e a re a o f th e

73

F ig u r e 5 - 2 - D e t e r m i n i n g t h e s h e a r s t re s s a n d n o r m a l s t re s s m a g n i t u d e s f ro m t h e a n g l e

b e t w e e n t h e t o t a l s t re s s v e c t o r a c t i n g u p o n a f a u l t p l a n e a n d t h e f a u l t p l a n e 's n o r m a l v e c t o r .

74

F ig u r e 5 - 3 - R e l a t i o n s h i p b e t w e e n a p l a n e X Y Z s i t u a t e d w i t h i n a g e o g r a p h i c c o o r d i n a t e

1 2 3 1s y s t e m w h e re t h e p r in c ip a l s t r e s s a x e s F , F , a n d F a n d t h e i r a s s o c i a t e d d i re c t i o n c o s in e s l ,

2 3l , a n d l c o r r e s p o n d to th e n o r t h , u p , a n d e a s t c o o rd in a te a x e s re s p e c t i v e ly .

75

1 1O X Y p l a n e . T h e re f o r e , t h e n o r m a l f o rc e o n th e O Y Z p la n e i s l F , t h e n o rm a l fo rc e o n th e O X Z

2 2 3 3p l a n e i s l F , a n d t h e n o r m a l fo r c e o n t h e O X Y p l a n e i s l F .

S in c e th e s y s t e m i s in e q u i l i b r iu m , th e th re e c o m p o n e n t s o f fo rc e a c t i n g u p o n th e X Y Z

1 1 2 2 3 3 Tp l a n e a r e ( - l F , - l F , - l F ) . T h e to ta l r e s u l t a n t fo rc e (F ) o n th e X Y Z p la n e i s t h e re fo re

T 1 1 2 2 3 3F = - ( l F + l F + l F ) (9 )2 2 2 2 2 2 1/2

Na n d th e n o rm a l f o rc e (F ) a c t i n g u p o n th e X Y Z p la n e , w h ic h m a y b e d e t e rm in e d b y re s o lv in g

e a c h c o m p o n e n t a l o n g t h e n o r m a l d i re c t i o n , i s

N 1 1 2 2 3 3F = - ( l F + l F + l F ) (1 0 )2 2 2

ST h e m a x im u m s h e a r fo rc e (F ) a c t i n g u p o n th e X Y Z p la n e m a y th e n b e c a l c u l a t e d u s in g

th e r e l a t i o n s h ip

T N SF = F + F (1 1 )2 2 2

w h i c h , u p o n s u b s t i t u t i o n o f e q u a t i o n s ( 9 ) a n d ( 1 0 ) in t o e q u a t i o n ( 1 1 ) , i s

S 1 1 2 2 3 3 1 1 2 2 3 3F = [ l F + l F + l F - ( l F + l F + l F ) ] (1 2 )2 2 2 2 2 2 2 2 2 2 1/2

w h i c h y i e l d s

S 1 1 3 2 2 3 1 1 3 2 2 3F = l (F - F ) + l (F - F ) - [ l (F - F ) + l (F - F ) ] (1 3 )2 2 2 2 2 2 2

76

a f t e r u s in g th e id e n t i ty in e q u a t i o n (8 ) a n d a lg e b ra ic a l l y re a r r a n g in g .

ST h e n e x t s t e p i s t o c a l c u l a t e t h e r e s o l v e d c o m p o n e n t s o f t h e m a x i m u m s h e a r fo r c e ( F )

S - strike S - dipa lo n g th e s t r i k e d i r e c t i o n (F ) a n d th e d ip d i r e c t i o n (F ) u s in g th e r e l a t i o n s h ip

S S - strike S - dipF = F + F (1 4 )2 2 2

R e s o lv i n g t h e c o m p o n e n t s o f s h e a r fo r c e a l o n g th e n o r th - e a s t d i re c t i o n y i e l d s

S - strike 1 3 1 1 3 1 3 3 1 3F = [ l l F / ( l + l ) ] - [ l l F / ( l + l ) ] (1 5 )2 2 1/2 2 2 1/2

w h ic h r e d u c e s to

S - strike 1 3 1 3 1 3F = [ l l (F - F ) / ( l + l ) ] (1 6 )2 2 1/2

S u b s t i t u t i n g e q u a t io n s (1 3 ) a n d (1 6 ) in to e q u a t io n (1 4 ) r e s u l t s i n

S - dip 1 1 3 2 2 3 1 1 3 2 2 3F = { l (F - F ) + l (F - F ) - [ l (F - F ) + l (F - F ) ] } - 2 2 2 2 2 2 2 2

1 3 1 3 1 3 [ l l (F - F ) / ( l + l ) ] (1 7 )2 2 1/2 2

w h i c h y i e l d s

S - dip 2 1 1 3 2 2 3 2F = l [ l (F - F ) - ( 1 - l ) (F - F ) ] / (1 - l ) (1 8 )2 2 2 1/2

a f t e r u s in g th e id e n t i ty in e q u a t i o n (8 ) a n d a lg e b ra ic a l l y re a r r a n g in g .

77

T h e p i t c h (" ) o f th e m a x im u m s h e a r s t r e s s v e c to r w i th in t h e X Y Z p la n e ( i . e . t h e a n g l e

b e tw e e n t h e s t r i k e o f th e X Y Z p la n e a n d t h e m a x im u m s h e a r s t r e s s d i r e c t i o n ) i s g iv e n b y

S - dip S - striket a n (" ) = F / F (1 9 )

w h i c h , u p o n s u b s t i t u t io n o f e q u a t io n s (1 6 ) a n d ( 1 8 ) , y i e l d s

2 1 1 3 2 2 3 2t a n (" ) = { l [ l (F - F ) - ( 1 - l ) (F - F ) ] / ( 1 - l ) } / 2 2 2 1/2

1 3 1 3 1 3 [ l l (F - F ) / ( l + l ) ] (2 0 )2 2 1/2

S u i ta b l e a lg e b ra i c r e a r r a n g e m e n t o f e q u a t io n (2 0 ) w i l l r e s u l t i n

1 2 2 2 1 3" = t a n [ l l - M l + M l ) / ( l l ) ] (2 1 )-1 2 3

w h e re M i s a u s e fu l v a l u e d e f in e d b y A n g e l i e r (1 9 7 9 ) a s

2 3 1 3M = (F - F ) / (F - F ) (2 2 )

w h ic h r a n g e s f ro m 0 .0 to 1 .0 a n d re p re s e n ts th e r e l a t i v e m a g n i tu d e s o f t h e p r in c ip a l s t r e s s e s

( i . e . r e p re s e n ts th e s h a p e o f t h e s t r e s s e l l ip s o id ) .

B o t t ' s fo rm u la (e q u a t io n 2 1 ) y ie ld s th e p i t c h a n g le o f t h e s l i p v e c to r o n th e f a u l t p la n e .

F o r p l o t t in g o n a s t e r e o g r a p h i c p r o j e c t i o n , i t m a y b e m o r e c o n v e n i e n t to r e p r e s e n t t h e s l i p

v e c to r s im p ly b y i t s p lu n g e a n d t r e n d . T h i s m a y b e d o n e u t i l i z in g th e t h re e fo rm u la s

78

b e t a = t a n [ t a n (p i t c h ) c o s (d ip ) ] (2 3 )-1

t r e n d = s t r i k e + b e t a (2 4 )

p lu n g e = c o s [c o s (p i t c h ) / c o s (b e t a ) ] (2 5 )-1

w h e re t h e p i t c h a n g le o f t h e s l i p v e c to r in th e f a u l t p la n e a n d th e d ip o f th e f a u l t p la n e a re u s e d

to c a l c u l a t e a v a lu e fo r b e t a w h ic h i s t h e h o r i z o n t a l a n g l e b e tw e e n th e t r e n d o f th e s l i p v e c to r

a n d th e s t r i k e o f th e f a u l t p la n e . T h e p lu n g e o f t h e s l i p v e c to r i s t h e n c a lc u la t e d f ro m th e p i t c h

a n g le a n d b e ta (R a g a n , 1 9 8 5 , p . 5 1 ) .

1 2 3W ith so m e m o d i f i c a t i o n s o f th e a b o v e e q u a t io n s , t h e F , F , a n d F a x e s m a y h a v e a n y

a rb i t r a ry o r i e n t a t i o n s o th e r th a n th e n o r th , u p , a n d e a s t o n e s a s s ig n e d to th e m . T o d o so , t h e

1 2 3l , l , a n d l d i r e c t io n c o s in e s m u s t r e p re s e n t th e c o s in e s o f th e a n g le s b e tw e e n th e n o rm a l

1 2 3v e c to r t o t h e f a u l t p l a n e a n d th e F , F , a n d F a x e s r e s p e c t iv e ly . T h ro u g h C a u c h y 's fo rm u la ,

1 2 3 1 2 3t h e T , T , a n d T to ta l s t r e s s v e c to r c o m p o n e n t s w i l l b e r e s o lv e d p a ra l l e l t o th e F , F , a n d F

a x e s . B o t t ' s fo rm u la (e q u a t io n 2 1 ) m u s t b e m o d i f i e d a c c o rd in g ly a n d e a c h o f th e s p e c i a l c a s e s

w h e r e t h e f a u l t p l a n e m a y b e p a r a l l e l to o n e o f t h e p r i n c i p a l p l a n e s m u s t b e d e a l t w i t h

in d iv id u a l ly . T h e r e s u l t a n t p i t c h a n g l e w i l l t h e n b e th e a n g l e b e tw e e n t h e i n t e r s e c t io n o f th e

1 3p la n e c o n t a in in g F a n d F w i th th e f a u l t p l a n e a n d th e s l i p v e c to r w i th in th a t f a u l t p l a n e

( f i g u r e 5 - 4 ) .

5 .3 P r o g r a m In p u t

A p ro g ra m w a s w r i t t e n in T u rb o P a s c a l v e r s io n 3 .0 1 to p e r fo rm th e a b o v e c a l c u l a t i o n s

a n d g r a p h i c a l l y d i s p l a y t h e r e s u l t s . T h e p r o g r a m r e q u i r e s n i n e i t e m s o f in f o r m a t i o n t o p e r fo r m

1 3t h e c a l c u l a t i o n s - - t h e o r i e n t a t i o n s o f F a n d F r e l a t i v e t o t h e n o r t h , e a s t , a n d u p c o o r d i n a t e

1 3a x e s , t h e m a g n i t u d e s o f F a n d F , t h e c o e f f i c i e n t o f f r i c t i o n (: ) o f t h e f a u l t

79

0p la n e , t h e c o h e s i o n (C ) o f th e f a u l t p la n e , t h e p lu n g e a n d t r e n d o f th e f a u l t p la n e 's n o rm a l

v e c t o r i n d e g r e e s , a n d t h e n u m b e r o f M v a lu e s to e x a m in e .

T h i s in fo rm a t io n i s o b t a in e d in t e r a c t iv e ly b y th e p ro g ra m a s t h e u s e r e n t e r s e a c h v a l u e

w h e n p ro m p te d ( f i g u re 5 -5 ) .

1 3T h e e n t e r e d m a g n i t u d e s o f F a n d F h a v e a rb i t r a ry u n i t s s in c e o n ly th e i r r e l a t i v e

1 2 3v a lu e s a re im p o r t a n t , n o t th e i r a b s o lu te v a lu e s . T h e p ro g ra m a l s o re q u i r e s th e F , F , a n d F

a x e s t o c o r re s p o n d t o e i t h e r th e n o r t h , u p , o r e a s t c o o r d i n a t e a x e s . T h i s i s d o n e o n l y t o s i m p l i fy

t h e m a t h e m a t i c s i n v o l v e d i n c a l c u l a t i n g t h e s l i p v e c t o r o r i e n t a t i o n s a n d d o e s n o t s i g n i f ic a n t l y

l i m i t th e p ro g ra m .

T h e u s e r i s r e q u i re d to e n t e r t h e a l p h a n u m e r ic c h a ra c t e r s " N " , " E " , o r " U " fo r th e

p r in c ip a l s t r e s s o r i e n t a t io n s , a r e a l n u m b e r b e tw e e n - 1 0 0 .0 a n d + 1 0 0 .0 f o r t h e p r in c ip a l s t r e s s

m a g n i tu d e s , a r e a l n u m b e r b e tw e e n 0 .0 a n d 1 0 0 .0 fo r th e c o e f f i e n t o f f r i c t i o n a n d th e c o h e s io n ,

a re a l n u m b e r b e tw e e n 0 .0 a n d 9 0 .0 fo r th e p lu n g e o f th e n o rm a l to th e f a u l t p la n e , a re a l

n u m b e r b e tw e e n 0 .0 a n d 3 6 0 .0 fo r t h e t r e n d o f t h e n o rm a l t o t h e f a u l t p l a n e , a n d a n i n t e g e r

2b e t w e e n 2 a n d 5 0 f o r t h e n u m b e r o f F in te rv a l s to e x a m in e .

O n c e t h e i n i t i a l d a t a h a s b e e n e n t e r e d , t h e p ro g ra m m a y b e g in to c a l c u l a t e s l i p v e c to r

o r i e n ta t i o n s fo r th e s p e c i f i e d f a u l t p la n e .

5 .4 P r o g r a m P r o c e d u r e s

T h e s l i p v e c t o r c a l c u l a t i o n p r o g r a m c o n s i s t s o f m a n y p r o c e d u r e s t o i n t e r a c t i v e l y i n p u t ,

c a l c u l a t e , a n d o u t p u t d a t a . M o s t o f t h e p r o g r a m p r o c e d u r e s i n A p p e n d i x C a r e t h e r e s i m p l y t o

e n a b l e t h e p ro g ra m to fu n c t io n in t e r a c t iv e ly , t o g ra p h i c a l ly d i s p la y th e r e s u l t s o f th e

c a l c u l a t i o n s , a n d t o c r e a t e t h e A u t o C A D D X F f i l e s . T h e o n l y p r o c e d u r e s I w i l l d i s c u s s h e r e

a r e t h o s e d i re c t l y i n v o lv e d w i th m a t h e m a t i c a l l y c a l c u l a t in g th e s l i p v e c t o r o r i e n t a t io n s .

80

F ig u r e 5 - 4 - L o w e r -h e m is p h e re s t e re o g ra p h ic p ro je c t io n s h o w in g th re e a rb i t r a r i l y o r i e n te d

1 2 3p r in c ip a l s t r e s s e s F , F , a n d F i n r e l a t i o n t o a n a rb i t r a r i l y o r i e n te d f a u l t p la n e w i th a n o rm a l

1 2 3v e c t o r n . A , B , a n d ' a r e t h e a n g l e s b e tw e e n t h e n o rm a l v e c to r a n d F , F , a n d F r e s p e c t iv e ly .

T h e p i t c h a n g l e s o f a n y s l i p v e c to r s w i l l b e m e a s u re d f ro m th e in t e r s e c t io n P o f t h e p la n e

1 3c o n t a in in g F a n d F w i t h th e fa u l t p la n e ( f i g u re m o d i f ie d f ro m S c h im m ri c h , 1 9 9 0 ) .

81

F ig u r e 5 - 5 - In te ra c t iv e sc re e n d i sp la ye d b y th e s l ip v e c to r c a l c u l a t io n p r o g ra m a s th e u se r

1e n te rs the in i t i a l d a ta . In th i s e x a m p le , th e o r ie n ta t io n o f F i s no r th w i th a m a g n i tu d e o f + 1 .0 ,

3th e o r ie n t a t i o n o f F i s e a s t w i th a m a g n i tu d e o f -1 .0 , th e c o e f f ic ie n t o f f r ic t io n is 0 .8 5 , th e

c o he s io n i s 0 .0 , th e fa u l t p la ne h a s a n o rm a l v e c to r o r ie n te d a t 7 0 /0 3 0 , a n d 2 1 M v a lu e s w i l l b e

2e xa m in e d ( s in c e 2 0 F in te rv a ls e q u a ls 2 1 M va lue s ) .

+))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))),

* SLIP VECTOR PLOTTING PROGRAM ** ** ** ** What is the orientation of the maximum compressive ** principal stress axis F1 (North, East, or Up) ? N ** ** ** What is the orientation of the minimum compressive ** principal stress axis F3 (North, East, or Up) ? E ** ** ** Enter the value for F1 : 1.0 ** ** Enter the value for F3 : -1.0 ** ** ** Enter the coefficient of friction (:) : 0.85 ** ** Enter the cohesion (C) : 0.0 ** ** ** Now enter the plunge and trend of the normal ** vector to the fault plane you wish to examine ** ** Enter the plunge : 70 ** ** Enter the trend : 030 ** ** ** How many values of F2 between F1 ** and F3 do you wish to examine ? 20 ** *.)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))-

82

O n c e th e d a ta ha s b e e n in te ra c t iv e l y e n te re d th ro u g h th e p r o g ra m p r o c e d u re A sk D a ta ,

1 3th e o r ie n ta t io n o f th e F a n d F p r in c ip a l s t r e s s a x e s a n d th e p lu n g e a n d t r e n d o f th e fa u l t p la n e 's

n o rm a l v e c to r a re p a s se d to p r o c e d u re D irC o s in e s w h ic h c a lc u la te s th e th re e d i r e c t io n c o s in e s

1 2 3l , l , an d l u s ing the eq ua t io ns

nl = [ c o s ( p lu n g e ) c o s ( t r e n d ) ]

ul = s in (p lu n g e ) (2 6 )

el = [ c o s ( p lu n g e ) s in ( t r e n d ) ]

n u ew h e r e l , l , a n d l a r e th e d i r e c t io n c o s in e s re la t in g t h e fa u l t p l a n e 's n o r m a l v e c to r to th e n o r th ,

u p , an d e a s t c o o rd ina te a x e s re sp e c t ive ly ( C h e e n e y , 1 9 8 3 , p . 1 1 2 ) . T h e se m u s t b e c o n v e r te d to

1 2 3 1 2th e p r o p e r l , l , a n d l d i r e c t io n c o s in e s d e p e n d in g u p o n th e g iv e n o r ie n ta t io n s o f th e F , F , a n d

3F p r in c ip a l s t re ss a x e s .

1 3T h e d i r e c t io n c o s in e s a re u se d , a lo n g w i th t h e F a n d F m a g n i tu d e s , to c a lc u la te th e

th re e c o m p o n e n ts o f th e to ta l s t r e ss v ec to r ac t in g u p o n th e fa u l t p la n e b y p r o c e d u re C a u c h y .

2 3T h is p ro c e d u re in i t i a l ly se t s the m a g n i tud e o f F e q u a l to the m a g n i tud e o f F a nd th e n in c re a se s

1i t th ro u g h th e u se r -sp e c i f ie d n u m b e r o f s t e p s u n t i l i t i s e q u a l in m a g n i tu d e to F . F o r e a ch o f

1 2 3the se s te p s , the m a g n i tud e s o f F , F , a n d F a r e u se d to c a lc u la te a v a lu e fo r M ( eq u a t io n 2 2 )

a n d C a u c h y 's fo r m u l a i s u s e d to c a lc u la te th e to ta l s t r e ss v e c to r ( e q u a t io n 2 ) fo r e a c h M v a lu e .

T h is d a ta i s s to re d in tw o -d im e n s io n a l a r ra ys .

A l l o f th e d a ta is th e n p a sse d to p r o c e d u re C a lc u la te S tre sse s w h ich c a lcu la te s the s l ip

v e c to r p i tc h a n g le a n d th e s h e a r s t r e ss to n o r m a l s t r e s s r a t io fo r e a c h M v a lu e . T h e p r in c ip a l

2 3s t r e s s F i s o n c e a g a in se t eq u a l to the m a g n i tud e o f F a n d inc re a se d b y s te p s u n t i l i t i s eq u a l in

1m a gn i tu d e to F . C a lc u la t io n s a r e th e n p e r fo r m e d fo r e a c h M va lue .

83

T h e th r e e d i re c t io n c o s in e s a n d c o m p o n e n ts o f th e to ta l s t re ss v e c to r a re f i r s t use d to

c a lc u la te th e a ng le b e tw ee n th e fa u l t p l a ne 's n o rm a l ve c to r a n d th e to ta l s t r e ss ve c to r a c t in g up o n

the fau l t u s ing eq ua t io ns (3 ) , (4 ) , a n d ( 5 ) . F ro m th i s ang le , the shea r s t r e s s an d no rm a l s t r e s s

a c t in g u p o n th e fa u l t p la n e m a y b e c a lc u la te d u s in g e q u a t io n s (6 ) a n d (7 ) . T h e e ffe c t iv e sh e a r

s ns t r e ss to no rm a l s t r e ss r a t io (F ' / F ' ) i s th e n d e te rm in e d u s in g th e fo l lo w in g e q u a t io n

s n s n 0(F ' / F ' ) = F / [ (: F ) + C ] (2 7 )

np ro v id e d tha t : o r F a r e n o t e q u a l to z e r o . T h is e q u a t io n is u s e d s in c e a C o u lo m b fa i lu r e

c r i t e r io n i s as su m e d (C o u lo m b , 1 7 7 6 ; H a n d in , 1 9 6 9 ) .

T h e p ro g ra m n e x t c h e ck s fo r th e sp e c ia l c a se s w h e re th e fa u l t p la ne i s p a ra l le l to o ne o f

th e p r in c ip a l s t r e ss a x e s s in c e th is w i l l r e su l t in a d iv is io n b y z e r o i n p r o c e d u r e

C a lc u la te S tre sse s ( a fa u l t p l a n e p a r a l le l to a p r in c ip a l s t r e ss a x is w i l l h a v e a d i r e c t io n c o s in e

e q u a l to z e ro ) .

F ina l ly , B o t t 's fo rm u la (e q u a t io n 2 1 ) i s u se d to c a lcu la te the p i tch a n g le o f th e fau l t 's s l ip

v e c to r fo r e a c h M va lue . A s im p l i f i ed f lo w -ch a r t o f th e se p ro c e d u re s i s sh o w n in f igu re 5 -6 .

T h e r e su l t s o f th e s e c a lc u la t io n s a r e th e n n u m e r ic a l ly o r g r a p h i c a l ly d i sp la y e d s h o w i n g

the s l ip v e c to r o r ie n ta t io n s o n the us e r - sp e c i f ie d fau l t p lan e fo r e a c h va lue o f M c a lc u la te d a n d

the a sso c ia ted sh e a r s t re ss to no rm a l s t re ss r a t io s .

5 .5 P r o g r a m O u tp u t

T h e r e a r e s e v e r a l w a ys in w h ic h th e r e su l t s o f th e c a lc u la t io n s m a y b e d is p la y e d . T h e

e a s ie s t w a y i s to d is p la y th e m a s a n u m e r ic a l l i s t in g ( ta b le 5 -1 ) . I t i s o f te n d i f f ic u l t , h o w e v e r ,

84

to se e th e r e la t io n s h ip s b e tw e e n n u m b e r s i n a ta b le o f d a ta , s o a b e t te r m e t h o d is to d i sp la y th e

re su l t s a s a g ra p h o f th e M v a lu e s v e rs u s th e p i tc h a n g le s o f t h e s l i p v e c to r s ( f ig u r e 5 -7 ) .

A l te r n a t ive ly , the sa m e s l ip ve c to rs m a y b e p lo t ted in a lo w e r -h e m isp h e re s te re o g ra p h ic

p ro je c t io n ( f igu re 5 -8 ) . U s in g d i f fe re n t sym b o ls fo r s l ip v e c to rs o n p lan e s w i th a sh e a r s t re ss to

n o r m a l s t r e ss r a t io a b o v e o r b e lo w a c e r ta in c h o s e n v a lu e m a y in d ic a te w h ic h s l ip d i re c t io n s

w o u ld h a v e a h ig h e r c h a n c e o f e x p e r ie n c in g s l ip s in c e th is r a t io i s d i r e c t ly p r o p o r t io n a l to th e

c o e f f ic ien t o f in te rn a l f r i c t io n (C o u lo m b , 1 7 7 6 ; H a n d in , 1 9 6 9 ) .

T h e s l ip ve c to r c a lcu la t io n p ro g ra m w i l l d i sp lay , o n the c o m p u te r 's sc re e n , th e re su l t s

a s a ta b le o f d a ta , a g ra p h o f th e M va lu e s v e r sus the p i tch an g le s o f the s l ip ve c to r s , o r a s a

lo w er -h e m isp h e re s te re o gra p h ic p ro j e c t io n . T h e d a ta m a y a lso b e w r i t te n to a n A S C I I f i le o r b e

u s e d to c r e a te A uto C A D -c o m p atib le d ra wing in te rc ha n g e f i le s (D X F f i le s ) fo r p lo t t in g th e g r a p h s

a n d s te re o g ra p h ic p ro je c t io n s v ia A u to C A D .

5 .6 C r ea t in g F a u lt P o p u la t io n s

T h e s l ip ve c to r c a lc u la t io n p ro g ra m w as u se d to ge ne ra te a r t i f ic ia l fa u l t p o p u la t io n s fo r

te s t ing p a leo s t r e s s an a lys is p ro gra m s . T he se pop u la tions were c re a t ed us ing the fo l lo w ing s tep s :

1 . D e c id ing up o n the typ e o f fa u l t p o p u la t io n to t es t ( i . e . c o n ju g a te fau l t s , o r th o r h o m b ic

sym m e try fau l t s , r a n d o m ly o r ie n ted fau l t s ) .

2 . D e c id ing up o n the nu m b e r o f fa u l t s to t es t . T o o few o r to o m a n y fau l t s wi l l ad v e rs ly

a f fec t the p a l eo s t r e s s an a lys is .

3 . D e c id in g u p o n th e typ e o f s t r e ss f ie ld in wh ic h to s i tu a te th e fa u l t p o p u la t io n . T h e

85

F ig u r e 5 - 6 - S im p l i f i ed f lo w c h a r t d e m o n s t ra t ing the m a the m a t ica l a lg o r i thm us e d b y the s l ip

v e c to r c a lc u la t io n p ro gra m .

86

s nS i g m a 1 S i g m a 2 S i g m a 3 P h i P i t c h F /F

1 .0 0 -1 .0 0 -1 .0 0 0 .0 0 5 8 .4 3 ° 0 . 6 9

1 . 0 0 - 0 . 9 0 - 1 . 0 0 0 . 0 5 5 6 . 6 4 ° 0 . 7 3

1 . 0 0 - 0 . 8 0 - 1 . 0 0 0 . 1 0 5 4 . 6 7 ° 0 . 7 9

1 . 0 0 - 0 . 7 0 - 1 . 0 0 0 . 1 5 5 2 . 4 8 ° 0 . 8 7

1 . 0 0 - 0 . 6 0 - 1 . 0 0 0 . 2 0 5 0 . 0 4 ° 0 . 9 8

1 . 0 0 - 0 . 5 0 - 1 . 0 0 0 . 2 5 4 7 . 3 4 ° 1 . 1 4

1 . 0 0 - 0 . 4 0 - 1 . 0 0 0 . 3 0 4 4 . 3 2 ° 1 . 4 0

1 . 0 0 - 0 . 3 0 - 1 . 0 0 0 . 3 5 4 0 . 9 6 ° 1 . 9 0

1 . 0 0 - 0 . 2 0 - 1 . 0 0 0 . 4 0 3 7 . 2 2 ° 3 . 1 5

1 . 0 0 - 0 . 1 0 - 1 . 0 0 0 . 4 5 3 3 . 0 7 ° 1 1 . 8 6

1 . 0 0 0 . 0 0 - 1 . 0 0 0 . 5 0 2 8 . 4 8 ° 5 . 7 6

1 . 0 0 0 . 1 0 - 1 . 0 0 0 . 5 5 2 3 . 4 6 ° 2 . 2 0

1 . 0 0 0 . 2 0 - 1 . 0 0 0 . 6 0 1 8 . 0 3 ° 1 . 3 2

1 . 0 0 0 . 3 0 - 1 . 0 0 0 . 6 5 1 2 . 2 4 ° 0 . 9 4

1 . 0 0 0 . 4 0 - 1 . 0 0 0 . 7 0 6 . 1 9 ° 0 . 7 2

1 . 0 0 0 . 5 0 - 1 . 0 0 0 . 7 5 0 . 0 0 ° 0 . 5 0

1 . 0 0 0 . 6 0 - 1 . 0 0 0 . 8 0 - 6 . 1 9 ° 0 . 5 1

1 . 0 0 0 . 7 0 - 1 . 0 0 0 . 8 5 - 1 2 . 2 4 ° 0 . 4 5

1 . 0 0 0 . 8 0 - 1 . 0 0 0 . 9 0 - 1 8 . 0 3 ° 0 . 4 1

1 . 0 0 0 . 9 0 - 1 . 0 0 0 . 9 5 - 2 3 . 4 6 ° 0 . 3 8

1 . 0 0 1 . 0 0 - 1 . 0 0 1 . 0 0 - 2 8 . 4 8 ° 0 . 3 6

T a b l e 5 - 1 - T a b le o f d a ta g e ne ra te d b y th e c a lc u la t io n o f 2 1 s l ip v e c to r s r e p r ese n t in g a M v a lu e

1r a n g in g f ro m 0 .0 to 1 .0 o n a fa u l t p la n e w i th a n o r m a l v e c to r o r ie n te d a t 7 0 /0 3 0 d e g re e s . T h e F ,

2 3F , a n d F v a lu e s a re in a n y a r b i t r a r y s t r e ss u n i t s , th e p i tc h i s d e f in e d a s th e a n g le b e tw e e n th e

s t r ik e o f the fau l t p lan e a n d the s l ip v e c to r in d e g re e s , a n d the sh e a r s t re ss to no rm a l s t re ss r a t io

s n(F / F ) i s d im e n s io n le ss ( t ab le m o d i f ie d f ro m S c h im m ric h , 1 9 9 0 ) .

87

F ig u r e 5 - 7 - G ra p h o f 2 1 M v a lu e s fo r e a c h s l ip v e c to r a s th e y r a n g e fr o m 0 . 0 to 1 . 0 v e r s u s th e

p i tc h o f th e s l ip v e c to r s f ro m th e s t r ik e o f th e fa u l t p la ne w ith a no rm a l ve c to r o r ie n te d a t 7 0 /0 3 0

d e g re e s . T he la rg e c i rc le s re p re se n t s l ip v e c to rs w i th a sh ea r s t re ss to no rm a l s t re ss r a t io o f 0 .6

o r g re a te r a n d the sm a l l c i rc le s re p re se n t s l ip v e c to rs w i th a sh e a r s t re ss to no rm a l s t re ss r a t io

o f le ss th a n 0 .6 .

88

F ig u r e 5 - 8 - L o w e r -h e m isp h e re s te re o g ra p h ic p r o j ec t io n o f 2 1 s l ip v e c to r s r e p r ese n t in g v a lu e s

r a n g in g f r o m 0 . 0 to 1 . 0 o n a fa u l t p l a n e w i th a n o r m a l v e c to r o r ie n te d a t 7 0 / 0 3 0 d e g r e e s . T h e

la r g e c i r c le s re p r e se n t s l ip v e c to r s w i th a sh e a r s t r e ss to n o r m a l s t r e ss r a t io o f 0 . 6 o r g re a te r a n d

th e sm a ll c i r c le s r e p re se n t s l ip ve c to r s w ith a sh e a r s t r e ss to n o rm a l s t r e ss r a t io o f le ss th a n 0 .6 .

89

1 2 3o r ie n ta t io n s o f F , F , a n d F r e la t iv e to th e n o r th , u p , a n d e a s t c o o r d i n a t e a x e s a n d

th e ir r a t io M m u s t b e d e te rm ine d .

04 . D e c id in g u p o n v a lu e s to u se fo r th e c o e f f ic ie n t o f f r ic t io n (: ) a n d c o h e s io n ( C ) .

5 . D e te r m in in g th e p lu n g e a n d t r e n d o f th e n o r m a l v e c to r fo r e a c h fa u l t p l a n e w i th in th e

p o p u la t io n w h ich w i l l b e t es ted .

6 . U s in g th e s l ip v e c to r c a lc u la t io n p r o g r a m to d e te r m in e th e p i tc h o f th e s l ip v e c to r a n d

th e sh e a r s t r e ss to no rm a l s t r e ss r a t io fo r e ac h fa u l t p la ne a t th e d e c id e d u p o n va lu e o f

M .

7 . D e c id ing up o n a sh e a r s t re ss to no rm a l s t re ss r a t io c u to f f v a lue to u se s inc e fau l t s wi th

a s u ff ic ie n t ly lo w r a t io w i l l n o t e x p e r ie n c e s l ip u n d e r re a l i s t ic g e o lo g ic c o n d i t io n s a n d

to ss in g o u t th o se fau l t s wh ich ha v e a ra t io b e lo w tha t cu to f f .

8 . C r e a t in g d a ta f i le s o f th e fa u l t 's o r ie n ta t io n s a n d s l ip d i r e c t io n s in th e p ro p e r fo rm a t fo r

e n t ry in to the va r io u s p a leo s t re ss a n a lys i s p ro g ra m s .

T h e a r t i f ic ia l fa u l t p o p u la t io n s g en e ra te d in th is m a n ne r w e r e th e n ru n th ro u g h se v e ra l

p a l e o s t r e s s a n a lys is p ro gra m s to d e te rm in e i f th e c a lc u la te d p a le o s t r e s s te n so rs c o r re sp o n d e d

to th e in i t ia l s t r e ss f ie ld s u s e d to c r e a te th e p o p u la t io n s . T h is p r o v i d e s a n in d e p e n d e n t m e a n s

o f a s se s s in g t h e a c c u r a c y o f c o m p u ta t io n a l m e th o d s o f p a lo s tr e ss a n a lys is s in c e th e p o p u la t io n s

w e re c re a ted us ing the sa m e in i t i a l m a the m a t ica l as su m p t i o n s a s th o se us e d b y the a n a lys i s

p ro g ra m s .

90

C H A P T E R 6

A N G E L IE R 'S M E T H O D O F P A L E O S T R E S S A N A L Y S IS

In 1 9 7 5 , J a c q u e s A n g e l i e r o f th e U n iv e rs i t é P ie r r e e t M a r i e C u r i e in P a r i s p ro p o se d

a n e w c o m p u t a t i o n a l m e th o d fo r p a l e o s t r e s s a n a ly s i s w h ic h h e s u b s e q u e n t ly m o d i f i e d o v e r

t i m e (A n g e l i e r , 1 9 7 5 ; A n g e l i e r , 1 9 7 9 ; A n g e l i e r , e t . a l . , 1 9 8 2 ; A n g e l i e r , 1 9 8 4 ; A n g e l i e r ,

1 9 8 9 ) . A n g e l i e r ' s m e th o d a t t e m p ts to i t e ra t i v e ly d e te rm in e a p a le o s t r e s s t e n so r fo r a g iv e n

f a u l t p o p u l a t i o n s u c h t h a t t h e a n g u l a r d i v e r g e n c e b e t w e e n t h e o b s e r v e d s t r ia t i o n s i n t h e f a u l t

p la n e s a n d th e p re d ic te d s l i p d i r e c t i o n s a re m in im iz e d (A n g e l i e r , e t . a l . , 1 9 8 2 ) .

I o b ta in e d a c o m p i l e d v e r s io n o f A n g e l i e r ' s p ro g ra m f ro m C h r i s t o p h e r B a r to n o f th e

L a m o n t -D o h e r ty G e o lo g ic a l O b se rv a to ry in Ju n e , 1 9 9 0 . T h e p ro g ra m w a s w r i t t e n b y A n g e l i e r

in F O R T R A N fo r a n IB M P C o r c o m p a t i b le c o m p u te r w i t h a n 8 0 2 8 7 m a th c o p ro c e s s o r .

I d e t e rm in e d th a t t h i s p ro g ra m w a s o pe ra t i n g c o r re c t ly b y e x a m in in g s e v e ra l p u b l i s h e d

fa u l t p o p u la t i o n s fo r w h ic h A n g e l i e r ' s m e th o d p a l e o s t r e s s t e n s o rs w e re g iv e n a n d c o m p a r in g

m y re s u l t s to th e p u b l i s h e d o n e s (A n g e l i e r , e t . a l . , 1 9 8 2 ; A n g e l i e r , 1 9 8 4 ) . T h i s d o n e , I b e g a n

to e v a lu a te th e p e r f o rm a n c e o f A n g e l i e r ' s m e th o d u s in g a r t i f i c ia l f a u l t p o p u la t i o n s .

6 .1 P r o g r a m A ssu m p t io n s

A n g e l i e r ' s m e t h o d o f p a l e o s t r e s s a n a l y s i s i s b a s e d u p o n t h e f o l l o w i n g t w o v e r y

im p o r t a n t i n i t i a l a s s u m p t i o n s (A n g e l i e r , 1 9 8 9 ) .

1 . A l l fa u l t s w h ic h m o v e d d u r in g a s in g l e t e c t o n i c e v e n t m o v e d in d e p e n d e n t ly o f o n e

a n o th e r a n d in a m a n n e r c o n s i s te n t w i t h a u n iq u e , s t a t i c s t r e s s t e n s o r .

91

2 . F a u l t s a r e a s su m e d to s l i p o n p re - e x i s t i n g p la n a r d i s c o n t in u i t i e s in th e d i r e c t i o n o f th e

m a x i m u m r e so lv e d s h e a r s t r e s s w i th in th e f a u l t p la n e ( i . e . a t r i g h t a n g le s to th e d i r e c t i o n o f

z e ro s h e a r s t r e s s ) .

6 .2 T h e o r y

T h e m a th e m a t i c s in th i s s e c t i o n ro u g h ly fo l l o w th e d e r i v a t i o n s g iv e n in A n g e l i e r , e t .

a l . (1 9 8 2 ) .

A l lo w F t o b e t h e u n k n o w n r e g i o n a l s t r e s s t e n s o r a c t i n g u p o n a f a u l t p l a n e w i t h a u n i t

n o r m a l v e c t o r N a n d a u n i t s l i p v e c t o r S ( f i g u r e 6 - 1 ) . T h e s t r e s s v e c t o r T a c t i n g u p o n t h e f a u l t

p l a n e m a y b e d e f in e d b y

T = F @ N (1 )

w h e re (F @ N ) i s t h e i n n e r , o r d o t , p r o d u c t o f t e n s o r F a n d v e c t o r N (M a rs d e n a n d T ro m b a ,

1 9 8 1 , p . 2 0 ) a n d t h e c o m p o n e n t s o f T o n N a n d S a re

N @ T = N @ F @ N (2 )

a n d

S @ T = S @ F @ N (3 )

re s p e c t i v e ly .

S i n c e th e d i r e c t i o n o f th e s t r i a t i o n s i n th e f a u l t p l a n e i s t a k e n t o b e th e m a x im u m

92

F ig u r e 6 - 1 - G e o m e t r y o f th e s t r e s s e s o n a s t r ia t e d f a u l t p l a n e w i t h a u n i t n o r m a l v e c t o r (N ) ,

a u n i t s l i p v e c t o r (S ) , a n d a s t r e s s v e c t o r (F @ N ) a c t i n g u p o n i t ( f i g u re m o d i f i e d f ro m

A n g e l i e r , e t . a l . , 1 9 8 2 ) .

93

re s o lv e d s h e a r s t r e s s d i r e c t i o n , t h e fo l l o w in g tw o e q u a t io n s m a y b e w r i t t e n

F @ N = (N @ F @ N ) N + (S @ F @ N ) S (4 )

S @ F @ N $ 0 (5 )

E q u a t io n (4 ) m a y b e s im p l i f i e d th r o u g h t h e f o l l o w in g s t e p s

(S @ F @ N ) S = F @ N - (N @ F @ N ) N (6 )

(S @ F @ N ) = 2 F @ N - (N @ F @ N ) N 2 (7 )2

(S @ F @ N ) = 2 F @ N 2 - (N @ F @ N ) (8 )2 2 2

S @ F @ N = ± [2 F @ N 2 - (N @ F @ N ) ] (9 )2 2 1/2

a n d c o m b i n i n g e q u a t io n s (5 ) a n d (9 ) y i e l d s

S @ F @ N = + [2 F @ N 2 - (N @ F @ N ) ] (1 0 )2 2 1/2

a m a th e m a t i c a l r e la t i o n s h ip w h ic h w i l l b e u s e d la te r i n th i s a n a ly s i s .

I n d e s c r i b i n g t h e o r i e n t a t i o n o f t h e f a u l t p l a n e s a n d t h e i r a s s o c i a t e d s t r i a t i o n s u s e d i n

th e p a l e o s t r e s s a n a ly s i s , t h r e e in d e p e n d e n t a n g le s a re d e f in e d i n a n o r th , u p , a n d e a s t

g e o g r a p h i c c o o r d i n a t e s y s t e m . T h e t re n d o f t h e f a u l t 's d i p d i r e c t i o n ( d ) , t h e f a u l t 's d i p a n g l e

( p ) , a n d th e p i t c h a n g le o f t h e f a u l t ' s s l i p v e c to r ( i ) . T h e p i t c h a n g le ( i ) i s d e f in e d a s t h e

c lo c k w is e a n g le ( l o o k in g d o w n th e f a u l t n o rm a l 's p lu n g e a t t h e f o o t w a l l b lo c k ) b e tw e e n t h e

s l i p v e c to r a n d th e f a u l t ' s s t r i k e d i r e c t i o n ( t h e t r e n d o f t h e p o l e t o th e f a u l t p l a n e + B / 2 ) s u c h

th a t 0 < i < B fo r a n o rm a l f a u l t a n d B < i < 2B fo r a re v e rs e fa u l t ( f i g u re 6 -2 ) .

T h e a n g l e s d , p , a n d i a r e t h o s e c o m m o n l y m e a s u re d in th e f i e l d b y g e o lo g i s t s w i th a

94

F ig u r e 6 - 2 - D i a g r a m o f a f a u l t p l a n e l o o k i n g d o w n t h e p l u n g e o f t h e n o r m a l v e c t o r ( N ) to

t h e f a u l t a t t h e f o o t w a l l b l o c k s h o w i n g a s l i p v e c t o r a l i g n e d a t 3B / 4 . I n A n g e l i e r ' s ( A n g e l i e r ,

e t . a l . , 1 9 8 2 ) n o t a t i o n a l s y s t e m , t h i s im p l i e s a n o rm a l f a u l t ( t h e s l i p v e c to r p o in t s i n t h e

d i r e c t i o n o f m o v e m e n t o f t h e l o w e r b l o c k ) .

95

c o m p a s s a n d c l i n o m e te r . T h e a d v a n t a g e i n u s in g th e s e a n g l e s i s t h a t t h e y a r e a l l i n d e p e n d e n t

o f o n e a n o th e r s o a n e r r o r i n m e a s u r i n g o n e a n g le w i l l n o t a f f e c t t h e o th e r t w o .

T h e th re e c o m p o n e n t s o f th e u n i t n o rm a l v e c to r to t h e f a u l t p la n e m a y th u s b e d e f in e d

in te rm s o f d , p , a n d i a s

1 N = [ s i n ( d ) s i n ( p ) ]

2N = [c o s (d ) s in (p ) ] (1 1 )

3N = c o s ( p )

a n d , s im i l a r ly , fo r th e s l i p v e c t o r c o m p o n e n t s

1S = - [ s i n ( i ) c o s ( p ) s i n ( d ) ] + [ c o s ( i ) c o s ( d ) ]

2S = - [ s in ( i ) c o s (p ) c o s (d ) ] - [ c o s ( i ) s i n (d ) ] (1 2 )

3S = [ s i n ( i ) s i n ( p ) ]

I f F i s th e u n k n o w n r e g i o n a l s t r e s s t e n s o r f o r a g i v e n f a u l t , a t e n s o r F ' m a y b e d e f in e d

s u c h t h a t

1 2F = t F ' + t I (1 3 )

1 2w h e re t a n d t a r e a n y p o s i t i v e c o n s ta n t s a n d I i s a n y i s o t ro p ic 3 x 3 te n s o r . I t c a n b e

d e m o n s t r a t e d th a t m u l t i p ly in g F ' b y a p o s i t i v e c o n s t a n t a n d a d d i n g a n i s o t r o p i c t e n s o r I t o i t

w i l l n o t c h a n g e th e s e n s e o r d i r e c t i o n o f t h e p re d ic te d s t r i a t i o n s o n th e fa u l t p la n e .

1,2 2,1 1,3S i n c e F i s a 3 x 3 s y m m e t r i c t e n s o r , i t h a s s ix d e g re e s o f f r e e d o m ( i . e . F = F , F

3,1 2,3 3,2= F , a n d F = F ) . T h e t e n s o r F ' i s t h u s t e rm e d th e r e d u c e d d e v i a to r i c s t r e s s t e n s o r

96

1 2(A n g e l i e r , 1 9 7 9 ; A n g e l i e r , e t . a l . , 1 9 8 4 ) a n d h a s fo u r d e g re e s o f f r e e d o m s in c e t a n d t m a y

h a v e a n y a rb i t r a ry p o s i t i v e v a lu e s . F u r th e rm o re , i t i s a lw a y s p o s s ib l e t o c h o o s e p o s i t i v e

1 2v a l u e s f o r t a n d t s u c h t h a t

1,1 2,2 3,3F + F + F = 0 (1 4 )

a n d

1,1 2,2 3,3F + F + F = (3 /2 ) (1 5 )2 2 2

F o r n u m b e r s s a t i s fy i n g e q u a t i o n s ( 1 4 ) a n d ( 1 5 ) , a u n i q u e n u m b e r R (m o d u lo 2B ) c a n

b e f o u n d s u c h t h a t

1,1F = c o s (R )

2,2F = c o s [R + ( 2B / 3 ) ] (1 6 )

3,3F = c o s [R + ( 4B / 3 ) ]

w h i c h y i e l d s t h e r e d u c e d s t r e s s t e n s o r F '

+ ,

* c o s (R ) " ( *

* *

* *

* " c o s [R + ( 2B / 3 ) ] $ * (1 7 )

* *

* *

* ( $ c o s [R + ( 4B / 3 ) ] *

. -

97

1,2 2,1 2,3 3,2 1,3 3,1w h e re " , $ , a n d ( a r e t h e s h e a r s t r e s s t e rm s (F , F , F , F , F , a n d F ) o f t h e t e n s o r .

A l l t e n s o r s F ' a n d F w h ic h s a t i s fy e q u a t io n (1 3 ) y i e ld th e s a m e e ig e n v e c t o r s a n d

e ig e n v a l u e s a n d th u s t h e p r in c ip a l s t r e s s a x e s o r i e n t a t i o n s a n d m a g n i tu d e s a re t h e s a m e fo r

e a c h .

0 0 0 0L e t R , " , $ , a n d ( b e v a lu e s fo r th e a p r io r i e s t i m a t e o f F ' a n d F , F , F , a n d FR " $ (

b e t h e i r s t a n d a r d d e v ia t i o n s . I f t h e r e i s n o a p r io r i e s t i m a t e o f F ' , t h e s t a n d a rd d e v i a t i o n s

0 0 0 nm u s t b e m a d e v e r y la rg e . A l s o , l e t (d , p , i ) b e d a t a a n d (F , F , F ) b e th e s ta n d a r dd p i

d e v ia t i o n s o f t h a t d a ta fo r e a c h fa u l t n .

In t h e g e n e ra l c a s e , n o t e n s o r F ' e x a c t l y s a t i s f i e s e q u a t i o n ( 1 0 ) o n e a c h f a u l t .

nT h e r e f o r e , w h a t i s n e e d e d i s a t e n s o r F ' a n d a n e w s e t o f d a ta (d , p , i ) w h ic h e x a c t ly s a t i s f i e s

th e e q u a t io n . S in c e th e re a re a n in f in i t e n u m b e r o f s u c h s o lu t io n s , t h e s o lu t io n w h ic h

m in im iz e s th e fo l l o w in g s u m (s ) fo r a p o p u la t i o n o f n fa u l t s i s u s e d .

k=1 6 n 0 k 0 k 0 k 0s = E { [ (d - d ) /F ] + [ (p - p ) /F ] + [ ( i - i ) /F ] } + [ (R -R ) /F ] + d 2 p 2 i 2 R 2

0 0 0[ (" -" ) /F ] + [ ($ -$ ) /F ] + [ (( -( ) /F ] (1 8 )" 2 $ 2 ( 2

T h is i s a n o n - l i n e a r l e a s t - s q u a re s p ro b le m w h o s e so lu t io n i s o b t a in e d b y a c o m p l i c a te d

i t e ra t i v e a lg o r i th m w h ic h m a y b e fo u n d in A n g e l i e r , e t . a l . (1 9 8 2 ) .

6 .3 P r o g r a m In p u t

T h e p ro g ra m u t i l i z in g A n g e l i e r ' s m e th o d o f p a l e o s t r e s s a n a ly s i s r e q u i r e s f i v e i t e m s

o f in fo rm a t io n to ru n - - a tw o l e t t e r c o d e (d e s c r ib e d in m o re d e t a i l b e lo w ) d e s c r ib in g th e t y p e

o f s t ru c tu r e w h i c h w i l l b e a n a l y z e d , th e f a u l t ' s s t r i k e (0 ° 6 3 6 0 ° ) , t h e f a u l t ' s d i p a n g le ( 0 ° 6

98

9 0 ° ) , t h e f a u l t ' s d ip d i r e c t i o n (N , E , S , o r W fo r n o r th , e a s t , s o u th , o r w e s t r e s p e c t iv e ly ) , a n d

th e t r e n d ( 0 ° 6 3 6 0 ° ) o f t h e s t r i a t i o n s o n th e fa u l t s u r f a c e .

T h e tw o le t t e r c o d e u se d b y A n g e l i e r i s t o a l l o w a w id e v a r i e ty o f g e o lo g ic s t ru c tu re s

s u c h a s fa u l t s , j o i n t s , t e n s io n g a s h e s , d ik e s , b e d d i n g p l a n e s , m y l o n i t i c fo l i a t io n s , c l e a v a g e s ,

m in e ra l l i n e a t io n s , fo l d s , e t c . t o b e s u b je c t e d to p a l e o s t r e s s a n a ly s i s . T h e c o d e s u se d in m y

a n a ly se s a re C N , C I , C D , a n d C S f o r , r e s p e c t i v e l y , s t r i a t e d n o r m a l , r e v e r s e ( in v e r s e ) , d e x t r a l ,

o r s in i s t r a l f a u l t s w i t h a k n o w n s e n s e o f s h e a r .

T h i s i n f o r m a t i o n m u s t b e w r i t t e n t o a n A S C I I d a t a f i l e i n a s p e c i a l fo r m a t s o t h a t i t

m a y b e c o r re c t ly re a d b y A n g e l i e r ' s p ro g r a m . A d a t a f i l e c r e a t io n p ro g ra m e x i s t s w h ic h

c re a t e s th e s e fo rm a t te d f i l e s w h e n th e i n i t i a l d a t a i s i n t e r a c t iv e ly e n t e r e d . E a c h f a u l t d a tu m

m u s t b e e n t e re d a s a s in g l e l i n e o f c h a ra c te r s a n d in te g e r s s e p a ra te d b y a s in g l e b l a n k s p a c e .

A s a n e x a m p l e , a c o n j u g a t e s e t o f t w o n o r m a l fa u l t s w i t h a n e a s t - w e s t s t r ik e a n d a d i p

o f 4 5 ° ( f i g u re 6 -3 ) w o u ld b e e n t e r e d in t o th e d a t a f i l e c r e a t io n p r o g r a m a s

C N 0 9 0 4 5 S 1 8 0

C N 2 7 0 4 5 N 0 0 0

s in c e t h e f i r s t f a u l t i s n o rm a l , h a s a s t r i k e o f 0 9 0 ° , i s d ip p in g 4 5 ° to th e s o u th , a n d h a s

s t r i a t i o n s w i t h a t r e n d o f 1 8 0 ° . T h e s e c o n d f a u l t i s a l s o n o r m a l , h a s a s t r ik e o f 2 7 0 ° , i s

d ip p in g 4 5 ° to t h e n o r th a n d h a s s t r i a t i o n s w i th a t r e n d o f 0 0 0 ° . T h e d a ta f i l e c r e a t io n p ro g ra m

a l s o a s k s fo r th e m a g n e t i c d e v i a t i o n o f th e m e a s u re m e n t s i n d e g re e s , a v a lu e fo r th e

in s t ru m e n t e r ro r in d e g re e s , t h e a u th o r 's n a m e , th e s i t e n a m e , t h e d a te , a n d c o m m e n t s a b o u t

th e g e o lo g y o f t h e s i t e .

O n c e t h e p ro p e r ly - fo rm a t t e d A S C I I d a ta f i l e h a s b e e n c re a t e d a n d r e a d i n to th e

p ro g ra m , th e c a lc u la t i o n s a re p e r f o rm e d .

99

6 .4 P r o g r a m P r o c e d u r e s

0 0 0W h e n a l l o f t h e d a ta h a s b e e n e n t e re d in to t h e p ro g ra m , t h e t h re e a n g le s d , p , a n d i

a r e d e t e r m in e d f o r e a c h fa u l t i n t h e p o p u l a t io n . T h e s t a n d a rd d e v i a t io n s F , F , a n d F o fd p i

th e s e a n g le s a re a l s o d e te rm in e d f ro m th e e n te re d m e a s u re m e n t e r r o r t e rm .

T h e n e x t s t e p i n t h e p ro g ra m i s to s e t t h e a p r io r i c o n s t r a i n t s f o r t h e f o u r p a r a m e t e r s

0 0 0 0(R , " , $ , a n d ( ) d e s c r i b i n g t h e r e d u c e d s t r e s s t e n s o r F ' ( e q u a t io n 1 7 ) to z e ro a n d to s e t t h e

a p r io r i s t a n d a r d d e v ia t i o n s t o 4B f o r F a n d t o 1 0 0 f o r F , F , a n d F . R " $ (

A n i t e ra t i v e a lg o r i th m (A n g e l i e r , e t . a l . , 1 9 8 2 ) i s t h e n u s e d t o d e t e r m i n e v a l u e s f o r [R ,

1 n" , $ , ( , (d , p , i ) , . . . (d , p , i ) ] s u c h th a t e q u a t i o n (1 8 ) i s m in im iz e d .

O n c e a r e d u c e d s t r e s s t e n s o r F ' h a s b e e n c a l c u la t e d , t h e t h r e e e ig e n v a l u e s a n d

e i g e n v e c t o r s o f F ' m a y b e d e t e rm in e d u s in g s t a n d a r d l i n e a r a lg e b ra t e c h n i q u e s (A n to n , 1 9 8 1 ,

p . 2 6 1 -2 8 4 ; F rö b e rg , 1 9 8 5 , p . 2 2 -2 6 ) . T h e s e e ig e n v a l u e s a n d e ig e n v e c t o rs c o r re s p o n d to th e

1 2 3m a g n i tu d e s a n d o r ie n t a t io n s o f th e th r e e p r in c ip a l s t r e s s a x e s F , F , a n d F r e s p e c t i v e ly .

6 .5 P r o g r a m O u tp u t

T h e p ro g ra m re s u l t s a r e d i s p la y e d o n th e c o m p u te r 's s c re e n w h e n th e c a l c u l a t i o n s h a v e

f in i s h e d a n d th e u se r h a s th e o p t io n o f s a v in g th e m to a n A S C II d a t a f i l e o r p e r fo rm in g a n o th e r

a n a ly s i s .

1T h e o u t p u t d a t a c o n s i s t s o f th e p l u n g e s a n d t r e n d s o f th e th r e e p r in c ip a l s t r e s s a x e s F ,

2 3 2 3 1 3F , a n d F a n d t h e i r r e la t i v e m a g n i tu d e s . T h e s t r e s s r a t i o M , d e f i n e d a s [ (F - F ) / (F - F ) ] ,

i s a l s o d i s p la y e d .

T h e d a t a f o r e a c h p a l e o s t r e s s a n a l y s i s I o b t a i n e d w a s p l o t t e d o n l o w e r -h e m i s p h e r e

100

F ig u r e 6 - 3 - L o w e r -h e m i s p h e re s t e r e o g ra p h i c p ro j e c t io n s h o w in g a c o n ju g a t e s e t o f tw o

n o rm a l f a u l t s w i th a n e a s t -w e s t s t r i k e a n d a d ip o f 4 5 °

101

s te re o g ra p h ic p ro je c t io n s b y a T u rb o P a s c a l v e r s io n 3 .0 1 p ro g ra m I w ro te fo r th a t p u rp o s e

(A p p e n d i x D ) . T h e p r o g r a m re a d th e f a u l t p o p u la t io n d a t a a n d th e p r e d i c t e d p r in c ip a l s t r e s s

a x e s o r i e n ta t i o n s a n d c re a te d A u to C A D s c r i p t f i l e s fo r p lo t t in g s te re o n e ts v ia A u to C A D .

6 .6 D isc u ss io n

A n g e l i e r 's m e t h o d o f p a l e o s t r e s s a n a l y s i s w a s c h o s e n fo r t e s t in g fo r s e v e r a l re a s o n s .

I h a d a w o rk in g c o p y o f th e p ro g ra m fo r a n IB M P C o r c o m p a t ib le c o m p u te r , t h e p ro g ra m

p e r fo rm e d c a l c u l a t i o n s fo r r e a s o n a b ly - s iz e d f a u l t p o p u l a t i o n s i n r e la t i v e ly s h o r t a m o u n t s o f

t i m e , A n g e l i e r ' s m e th o d o f p a l e o s t r e s s a n a ly s i s i s w id e ly -u s e d a n d i s t h e s t a n d a r d b y w h i c h

m o s t o th e r s a r e ju d g e d , a n d th e m e th o d h a s b e e n u s e d in s e v e ra l p u b l i s h e d f i e ld s t u d i e s

(A n g e l i e r , 1 9 8 4 ; A n g e l i e r , e t . a l . , 1 9 8 5 ; A n g e l i e r , 1 9 9 0 ) .

102

C H A P T E R 7

R E C H E S ' M E T H O D O F P A L E O S T R E S S A N A L Y S IS

In 1 9 8 7 , Z e 'e v R e c h e s o f th e H e b re w U n iv e rs i ty in J e ru sa le m p ro p o se d w h a t h e c la im e d

to b e a n e w a n d i m p ro v e d m e th o d o f c o m p u ta t io n a l p a l e o s t r e s s a n a ly s i s (R e c h e s , 1 9 8 7 ) . T h e

im p r o v e m e n t o v e r p re v io u s m e th o d s w a s th e i n c o rp o ra t io n o f th e C o u lo m b fa i l u re c r i t e r io n

in to th e c a l c u l a t i o n s . T h i s a l l o w s th e c o h e s io n a n d c o e f f i c i e n t o f f r i c t i o n to b e c o n s t r a in e d fo r

th e f a u l t p o p u la t i o n s a n d u s e s a l i n e a r in v e rs io n to c a lc u la t e a s t r e s s t e n s o r r a th e r th a n

A n g e l i e r ' s m u c h m o re c o m p l i c a te d n o n - l in e a r o n e .

I o b ta in e d a c o m p i l e d v e r s i o n o f R e c h e s ' p ro g ra m f ro m K e n n e t h H a rd c a s t l e o f th e

U n iv e r s i ty o f M a s sa c h u s e t t s a t A m h e r s t i n A u g u s t , 1 9 8 9 . T h e p ro g ra m w a s w r i t t e n b y

H a rd c a s t l e in M ic ro so f t B A S IC v e r s io n 5 .6 0 fo r a n IB M P C o r c o m p a t ib le c o m p u t e r w i th a n

8 0 2 8 7 m a th c o p ro c e s s o r . U s in g th i s p ro g ra m , H a rd c a s t l e p e r fo rm e d p a l e o s t r e s s a n a l y s e s o n

fa u l t d a ta f ro m e a s te rn V e rm o n t a n d w e s te rn N e w H a m p s h i r e (H a rd c a s t l e , 1 9 8 9 ) .

I d e t e rm in e d th a t t h i s p ro g ra m w a s o pe ra t i n g c o r re c t ly b y e x a m in in g s e v e ra l p u b l i s h e d

fa u l t p o p u la t i o n s fo r w h ic h R e c h e s ' m e th o d p a l e o s t r e s s t e n s o r s w e re g iv e n a n d c o m p a r in g m y

r e s u l t s to t h e p u b l i s h e d o n e s ( A n g e l i e r , 1 9 8 4 ; R e c h e s , 1 9 8 7 ) . T h i s d o n e , I b e g a n t o e v a l u a t e

th e p e r f o rm a n c e o f R e c h e s ' m e th o d u s in g a r t i f i c ia l f a u l t p o p u la t i o n s .

7 .1 P r o g r a m A ssu m p t io n s

R e c h e s ' m e th o d o f p a l e o s t r e s s a n a l y s i s i s b a s e d u p o n th e fo l l o w in g th re e a s s u m p t io n s

(R e c h e s , 1 9 8 7 ) .

1 . F a u l t s a r e a s s u m e d t o s l i p i n t h e d i r e c t i o n o f t h e m a x i m u m r e s o l v e d s h e a r s t re s s w i t h i n

th e f a u l t p la n e ( i . e . a t r ig h t a n g le s to th e d i r e c t i o n o f z e ro s h e a r s t r e s s ) .

103

2 . T h e m a g n i tu d e s o f t h e s h e a r a n d n o rm a l s t r e s se s a c t i n g u p o n a f a u l t p l a n e s a t i s fy th e

s 0 nC o u lo m b fa i l u re c r i t e r io n (F > C + : F ) . T h i s a s s u m p t i o n i m p l i e s t h a t f a u l t s w i l l

s l i p u n d e r g e o lo g ic a l l y - r e a l i s t i c c o n d i t io n s .

3 . S l ip o n a fa u l t o c c u r s w i th in a r e l a t iv e ly s t a t i c s t r e s s f i e l d a n d th e c o e f f i c i e n t o f

0f r i c t i o n : a n d c o h e s i o n C t e r m s f o r a f a u l t m a y b e re p re s e n t e d b y t h e i r m e a n v a lu e s .

7 .2 T h e o r y

T h e m a t h e m a t i c s i n t h i s s e c t i o n r o u g h l y f o l l o w s t h e d e r iv a t io n s g iv e n in R e c h e s (1 9 8 7 ) .

F o r e a c h f a u l t p l a n e i n t h e p o p u l a t i o n t o t e s t , t h e f o l l o w i n g i t e m s o f in f o r m a t i o n a r e

k n o w n - - t h e o r i e n t a t i o n o f th e n o rm a l v e c to r to th e f a u l t p l a n e , t h e o r i e n t a t i o n o f th e f a u l t ' s

1s l i p v e c to r , a n d th e f a u l t ' s s e n se o f s l i p . A s su m in g a g e o g ra p h i c c o o r d i n a t e s y s t e m w i th X

2 3n o r th w a rd , X e a s tw a rd , a n d X d o w n w a rd , t h e t w o u n i t v e c to r s r e p re s e n t in g th e n o rm a l a n d

s l ip d i r e c t i o n s m a y b e r e p re s e n te d b y

1 2 3< N , N , N > (1 )

a n d

1 2 3< S , S , S > (2 )

i iw h e re N a n d S a re t h e d i r e c t i o n c o s i n e s f o r t h e n o rm a l a n d s l i p v e c to r s a n d th e 1 , 2 , a n d 3

s u b s c r i p t s re fe r t o th e n o r t h , e a s t , a n d d o w n d i r e c t i o n s re s p e c t i v e ly .

T h e d i re c t i o n c o s in e s in e q u a t io n s (1 ) a n d (2 ) s a t i s fy t h e f o l l o w in g id e n t i t i e s :

104

1 2 3N + N + N = 1 (3 )2 2 2

1 2 3S + S + S = 1 (4 )2 2 2

1 1 2 2 3 3N S + N S + N S = 0 (5 )

i iG iv e n th a t S r e p re s e n t s t h e c o m p o n e n t s o f th e f a u l t ' s s l i p v e c to r , N re p re s e n t s t h e

ic o m p o n e n t s o f th e f a u l t ' s n o rm a l v e c to r , a n d B re p re s e n t s t h e c o m p o n e n t s o f th e v e c t o r

o r th o g o n a l to b o th S a n d N ( i . e . B i s t h e n o rm a l v e c to r to th e m o v e m e n t p l a n e ) , t h e n

B = N x S (6 )

w h e r e t h e s y m b o l x r e p r e s e n t s t h e t h e o p e r a t i o n o f d e t e r m i n i n g t h e c r o s s p r o d u c t o f t w o v e c t o r s

(M a rs d e n a n d T ro m b a , 1 9 8 1 , p . 2 5 ) .

A s s u m p t i o n 1 i n s e c t i o n 7 . 1 s t a t e s t h a t th e r e s o l v e d s h e a r s t re s s p a r a l l e l to v e c t o r B ( i . e .

a t r i g h t a n g l e s t o v e c t o r S ) i s e q u a l to z e ro . R e s o lv in g th e s t r e s se s p a ra l l e l t o B ( J a e g e r a n d

i,jC o o k , 1 9 7 9 , p . 1 7 - 2 4 ) , d e n o t in g n in e c o m p o n e n t s o f t h e s t r e s s t e n s o r a s F (w h e re i = 1 , 2 , o r

3 a n d j = 1 , 2 , o r 3 ) , a n d u s in g th e i d e n t i t i e s in e q u a t io n s (3 ) , (4 ) , a n d (5 ) a l l o w s o n e to s e t u p

th e fo l l o w in g re l a t i o n s h ip :

1 1 1,1 3,3 2 2 2,2 3,3 2 3 2 3 2,3N B (F - F ) + N B (F - F ) + ( N B + B N ) F +

1 3 1 3 1,3 1 2 1 2 1,2(N B + B N ) F + (N B + B N ) F = 0 (7 )

I n a s i m i l a r m a n n e r , t h e s t r e s s e s m a y b e r e s o l v e d p a r a l l e l to t h e v e c t o r N (w h ic h i s t h e

nf a u l t ' s n o r m a l s t r e s s F )

105

2,2 3,3 2,3 2,2 Equation (3) in Reches' (1987) paper is incorrect with : , : , and : representing what should be F ,1

3,3 2,3F , and J respectively. This error has been corrected for equation (11).

n 1 1,1 3,3 2 2,2 3,3 3,3 2 3 2,3F = [ N (F - F ) + N (F - F ) + F + N N 2F +2 2

1 3 1,3 1 3 1,3 1 2 1,2 N N 2F + N N 2F + N N 2F ] (8 )

sa n d t h e v e c t o r S ( t h e f a u l t ' s s h e a r s t r e s s F ) .

s 1 1 1,1 3,3 2 2 2,2 3,3 2 3 2 3 2,3F = N S (F - F ) + N S (: - : ) + ( N S + S N ) : +

1 3 1 3 1,3 1 2 1 2 1,2(N S + S N ) F + (N S + S N ) F (9 )

A s s u m p t i o n 2 i n s e c t i o n 7 .1 s t a t e s t h a t a f a u l t m u s t s a t i s fy t h e C o u l o m b f a i l u r e

c r i t e r i o n .

s 0 nF = C + : F (1 0 )

S u b s t i t u t i n g e q u a t io n s (8 ) a n d (9 ) in to e q u a t io n (1 0 ) y i e ld s 1

1 1 1,1 3,3 2 2 2,2 3,3 2 3 2 3 2,3N S (F - F ) + N S (F - F ) + ( N S + S N ) F +

1 3 1 3 1,3 1 2 1 2 1,2(N S + S N ) F + (N S + S N ) F =

0 1 1,1 3,3 2 2,2 3,3 3,3 2 3 2,3C + : [ N (F - F ) + N (F - F ) + F + N N 2F + 2 2

1 3 1,3 1 3 1,3 1 2 1,2N N 2F + N N 2F + N N 2F ] (1 1 )

E q u a t io n (1 1 ) m a y b e re w r i t t e n a s

106

1 1 1 1,1 3,3 2 2 2 2,2 3,3[ (N S - :N ) (F - F ) ] + [ (N S - :N ) (F - F ) ] + 2 2

2 3 2 3 2 3 2,3 1 3 1 3 1 3 1,3[ (N S + S N - 2:N N ) F ] + [ (N S + S N - 2:N N ) F ] +

1 2 1 2 1 2 1,2 0 3,3[ (N S + S N - 2:N N ) F ] = C + :F (1 2 )

E q u a t io n s (7 ) a n d ( 1 2 ) m a y b e w r i t t e n fo r e a c h f a u l t i n a p o p u la t i o n o f n fa u l t s r e s u l t i n g

in a t o ta l o f 2 n e q u a t io n s . T h u s , fo r a g iv e n f a u l t p o p u la t i o n , t h e l e f t s i d e s o f th e tw o e q u a t io n s

0 3,3( i . e . t h e s id e s w h ic h a re e q u a l to 0 a n d C + :F r e s p e c t iv e ly ) m a y b e u s e d to c r e a t e a 2 n x 5

m a t r ix o f th e fo rm

+ ,

1 1 1 2 2 1 2 3 2 3 1 1 3 1 3 1 1 2 1 2 1* [N B ] [N B ] [(N B + B N )] [(N B + B N )] [(N B + B N )] *

* *

* ... ... ... ... ... *

* *

1 1 n 2 2 n 2 3 2 3 n 1 3 1 3 n 1 2 1 2 n* [N B ] [N B ] [(N B + B N )] [(N B + B N )] [(N B + B N )] *

* *

* *

1 1 1 1 2 2 2 1 2 3 2 3 2 3 1 1 3 1 3 1 3 1 1 2 1 2 1 2 1* [N S -:N ] [N S -:N ] [N S +S N -2:N N ] [N S +S N -2:N N ] [N S +S N -2:N N ] *2 2

* *

* ... ... ... ... ... *

* *

1 1 1 n 2 2 2 n 2 3 2 3 2 3 n 1 3 1 3 1 3 n 1 2 1 2 1 2 n* [N S -:N ] [N S -:N ] [N S +S N -2:N N ] [N S +S N -2:N N ] [N S +S N -2:N N ] *2 2

. -

(13)

w h e re t h e s u b s c r ip t s 1 th r o u g h n i n d i c a t e th e p a ra m e t e r s a s s o c i a t e d w i th e a c h o f th e n f a u l t s .

D e n o t in g th e m a t r ix i n e q u a t io n (1 3 ) a s A , t h e fo l l o w in g re l a t i o n s h ip m a y b e s e t u p

A x D = F (1 4 )

w h e re D i s th e v e c t o r

107

1,1 3,3 2,2 3,3 2,3 1,3 1,2< (F - F ) , (F - F ) , F , F , F > (1 5 )

o f th e u n k n o w n s t r e s se s to b e s o lv e d fo r a n d F i s th e v e c t o r

1 n 0 3,3 1 0 3,3 n< [0 ] , . . . , [0 ] , [C + : F ] , . . . , [C + : F ] > (1 6 )

0 3,3w h e re th e f i r s t n t e rm s a re z e ro a n d th e l a s t n t e rm s a re (C + : F ) t h u s s a t i s fy in g a s su m p t io n s

n u m b e r 1 a n d 2 d e sc r ib e d in s e c t io n 7 .1 .

E q u a t io n (1 4 ) i s a n o v e r d e t e r m i n e d l i n e a r s y s t e m ( i . e . t h e re a re m o re e q u a t io n s th a n

u n k n o w n s ) i n w h i c h t h e t e n s o r A i s d e t e rm in e d f ro m th e m e a s u re d f a u l t n o rm a l a n d s l i p v e c to r

0o r i e n t a t i o n s a n d t h e v e c t o r F r e p r e s e n t s t h e c h o s e n v a l u e s f o r : a n d C . T h e s t r e s s v e c t o r D i s

d e t e rm in e d b y u s in g a s t a n d a r d l e a s t - s q u a re s l i n e a r i n v e r s io n m e th o d (S c h ie d , 1 9 6 8 ; A n to n ,

1 9 8 1 , p . 3 1 5 -3 2 7 ; F rö b e rg , 1 9 8 5 , p . 1 5 5 -1 5 7 ,2 5 0 -2 5 4 ) . S in c e D y i e ld s t h e p a l e o s t r e s s t e n s o r

i,j 1 2 3F , t h e m a g n i tu d e s a n d o r ie n t a t io n s o f th e p r in c ip a l s t r e s s e s F , F , a n d F m a y th u s b e

d e te rm in e d .

7 .3 P r o g r a m In p u t

T h e p ro g ra m u t i l i z i n g R e c h e s ' m e th o d o f p a l e o s t r e s s a n a ly s i s r e q u i r e s s ix i t e m s o f

in f o rm a t io n t o ru n - - t h e fa u l t ' s s t r i k e (0 ° 6 3 6 0 ° ) , t h e f a u l t ' s d i p a n g le ( 0 ° 6 9 0 ° ) , t h e t r e n d o f

a s l i c k e n l in e o n t h e f a u l t s u r f a c e ( 0 ° 6 3 6 0 ° ) , t h e p l u n g e o f t h a t s l i c k e n l i n e ( 0 ° 6 9 0 ° ) , t h e

ro t a t i o n s e n s e o f th e f a u l t a s v i e w e d d o w n th e p lu n g e o f th e ro t a t i o n a x i s (1 = c lo c k w is e a n d

2 = c o u n t e r c l o c k w i s e ) , a n d t h e c o n f i d e n c e l e v e l o f t h e f a u l t ( 1 = e x c e l l e n t 6 4 = p o o r ) .

T h i s i n fo rm a t io n m u s t b e in a n A S C II d a t a f i l e w h e re e a c h fa u l t d a tu m i s w r i t t e n o n a

s in g le l i n e a s in te g e rs s e p a ra te d b y b la n k s p a c e s .

108

F ig u r e 7 - 1 - L o w e r -h e m i s p h e re s t e r e o g ra p h i c p ro j e c t io n s h o w in g a c o n ju g a t e s e t o f tw o

n o rm a l f a u l t s w i th a n e a s t -w e s t s t r i k e a n d a d ip o f 4 5 °

109

A s a n e x a m p l e , a c o n j u g a t e s e t o f t w o n o r m a l fa u l t s w i t h a n e a s t - w e s t s t r ik e a n d a d i p

o f 4 5 ° ( f i g u re 7 -1 ) w o u ld b e w r i t t e n to t h e i n p u t f i l e a s

0 9 0 4 5 1 8 0 4 5 2 1

2 7 0 4 5 0 0 0 4 5 2 1

s in c e t h e f i r s t f a u l t h a s a s t r i k e o f 0 9 0 ° , a d ip o f 4 5 ° , a s l i c k e n l in e w i th a t r e n d o f 1 8 0 ° a n d a

p l u n g e o f 4 5 ° , a c o u n t e r c l o c k w i s e ( 2 ) r o t a t i o n s e n s e , a n d a c o n f i d e n c e l e v e l o f 1 ( e x c e l l e n t ) .

T h e s e c o n d f a u l t h a s a s t r i k e o f 2 7 0 ° , a d ip o f 4 5 ° , a s l i c k e n l in e w i th a t r e n d o f 0 0 0 ° a n d a

p l u n g e o f 4 5 ° , a c o u n t e r c l o c k w i s e ( 2 ) r o t a t i o n s e n s e , a n d a c o n f i d e n c e l e v e l o f 1 ( e x c e l l e n t ) .

O n c e t h e A S C I I d a t a f i l e h a s b e e n r e a d i n t o t h e p r o g r a m , t h e u s e r i s a s k e d t o s u p p l y

0 H20v a lu e s fo r th e c o e f f i c i e n t o f f r i c t i o n : , t h e c o h e s i o n C , a n d t h e f lu i d p r e s s u r e P o n t h e f a u l t .

T h e f l u id p re s s u re t e rm s im p ly re s u l t s i n a l o w e r e f f e c t iv e n o rm a l s t r e s s o n th e f a u l t a n d w a s

s e t to z e r o f o r a l l t e s t s o f t h e p r o g r a m . T h e c o e f f i c i e n t o f f r i c t i o n a n d c o h e s i o n w e r e n o r m a l l y

s e t e q u a l to th e v a lu e s u se d w h e n c r e a t in g th e a r t i f i c i a l f a u l t p o p u la t i o n s w i th th e s l i p v e c to r

c a lc u la t i o n p ro g ra m (c h a p te r 5 ) .

7 .4 P r o g r a m P r o c e d u r e s

W h e n a l l o f th e d a t a h a s b e e n e n te r e d in to th e p ro g ra m , th e d i r e c t i o n c o s i n e s o f th e

n o r m a l a n d s l i p v e c t o r s ( e q u a t i o n s 1 a n d 2 ) a r e c a l c u l a t e d . U s i n g e q u a t i o n ( 6 ) , t h e c o m p o n e n t s

o f v e c t o r B o r th o g o n a l t o v e c t o r s N a n d S a r e d e t e rm in e d . N e x t , t h e c o e f f i c i e n t s o f m a t r ix A

i i i 0( e q u a t i o n 1 3 ) a n d v e c t o r F a re c a lc u la te d u s in g N , S , B , : , a n d C .

T h e o v e rd e t e rm in e d s y s t e m A x D = F ( e q u a t i o n 1 4 ) m u s t n o w b e s o l v e d f o r D b y u s in g

s t a n d a r d l i n e a r a l g e b r a m e t h o d s f o r d e t e r m i n i n g a l e a s t - s q u a r e s l i n e a r i n v e r s i o n o f A (S c h ie d ,

1 9 6 8 ; A n t o n , 1 9 8 1 , p . 3 1 5 - 3 2 7 ; F r ö b e r g , 1 9 8 5 , p . 1 5 5 - 1 5 7 ,2 5 0 - 2 5 4 ) s u c h t h a t

110

D = A x F (1 7 )-1

3,3W h e n t h e f iv e c o m p o n e n t s o f v e c t o r D a r e c a l c u la t e d , t h e v e r t i c a l s t r e s s F i s s e t e q u a l

1,1 2,2t o 1 .0 a n d s c a l e s t h e m a g n i t u d e s o f F a n d F s i n c e t h e f i r s t tw o c o m p o n e n t s o f v e c t o r D a r e

1,1 3,3 2,2 3,3(F - F ) a n d (F - F ) .

i,jT h e c o m p o n e n t s o f v e c t o r D c o n ta in a l l o f t h e F c o m p o n e n t s o f t h e s t r e s s t e n s o r F

w h ic h m a y , in tu rn , b e u se d to d e te rm in e th e m a g n i tu d e s a n d o r i e n ta t i o n s o f t h e t h re e p r in c ip a l

1 2 3s t r e s s a x e s F , F , a n d F . T h e t h r e e e i g e n v a l u e s a n d e i g e n v e c t o r s o f th e 3 x 3 s t r e s s t e n s o r F

c o r re s p o n d to th e m a g n i tu d e s a n d o r i e n t a t i o n s o f t h e t h re e p r in c ip a l s t r e s s a x e s re s p e c t iv e ly .

T h e se e ig e n v a lu e s a n d e ig e n v e c to rs m a y be c a lc u la te d u s in g s ta n d a rd l i n e a r a lg e b ra t e c h n iq u e s

(A n to n , 1 9 8 1 , p . 2 6 1 -2 8 4 ; F rö b e rg , 1 9 8 5 , p . 2 2 -2 6 ) .

i,jT h e s t r e s s t e n s o r c o m p o n e n t s F a r e n o w s u b s t i t u t e d i n t o e q u a t i o n ( 1 1 ) f o r e a c h f a u l t .

nT h e p r o g r a m c a l c u l a t e s , fo r e a c h o f th e n f a u l t s , t h e n o r m a l s t r e s s F , s h e a r s t re s s i n t h e s l i p

sd i re c t io n F , c o e f f i c i e n t o f f r i c t i o n : , a n d th e m i s f i t a n g le . T h e m i s f i t a n g le , o r a n g u la r

d i v e r g e n c e , i s th e a n g l e b e t w e e n t h e o b s e r v e d s l i p d i r e c t i o n ( g i v e n b y s l i c k e n l i n e s o n t h e f a u l t

p la n e a n d th e f a u l t ' s s h e a r s e n s e ) a n d th e e x p e c te d s l i p d i r e c t i o n d e t e rm in e d b y th e c a lc u la t e d

p a le o s t r e s s t e n so r . T h e m e a n a n g u la r d iv e rg e n c e a n d c o e f f i c i e n t o f f r i c t i o n a re a l s o c a lc u la t e d

fo r t h e p o p u la t i o n .

T h e g o a l o f R e c h e s ' m e th o d i s t o f i n d a g e o lo g ic a l ly - r e a s o n a b le c o e f f i c i e n t o f f r i c t i o n

: w h ic h w i l l r e s u l t i n a p a l e o s t r e s s t e n so r w h ic h y ie ld s t h e l o w e s t a v e ra g e a n g u la r d iv e rg e n c e .

7 .5 P r o g r a m O u tp u t

T h e p ro g ra m re s u l t s , a lo n g w i th th e i n i t i a l d a t a , a re d i s p la y e d o n th e c o m p u te r 's s c re e n

111

F ig u r e 7 - 2 - F i g u r e s h o w i n g t h e g r a p h i c a l o u t p u t f ro m R e c h e s ' m e t h o d o f p a l e o s t r e s s a n a l y s i s

u s in g K e n n e t h H a rd c a s t l e ' s (1 9 8 9 ) p ro g ra m . T h i s i s a n a n a l y s i s f ro m a p o p u la t i o n o f 1 2

a r t i f i c ia l l y g e n e ra te d fa u l t s . S e e t e x t f o r a n e x p la n a t i o n o f t h e h e a d e r a b b re v ia t i o n s u s e d .

112

in th e fo rm a t s h o w n in f i g u re 7 -2 .

T h e o u tp u t d a t a c o n s i s t s o f - - t h e f i l e n a m e c o n t a in in g th e o r ig in a l f a u l t p o p u la t i o n

H2O 0i n p u t d a t a ; t h e f l u id p r e s s u re P , c o e f f i c i e n t o f f r i c t i o n : , a n d c o h e s io n C v a lu e s c h o se n b y

th e u s e r ; t h e n u m b e r (N ) o f f a u l t s i n th e p o p u la t i o n ; th e t r e n d a n d p lu n g e in d e g r e e s o f th e

1 2 3t h r e e p r in c ip a l s t r e s s a x e s F , F , a n d F a n d th e i r r e l a t i v e m a g n i tu d e s ; th e s t r e s s r a t i o M

(d e n o t e d b y S 1 - S 3 /S 2 - S 3 ) ; th e e n t e r e d s t r i k e a n d d ip in d e g re e s (S t r ,D ip ) o f e a c h f a u l t ; th e

e n te re d t r e n d a n d p lu n g e in d e g re e s (A z ,P l g ) o f th e s l i c k e n l in e s fo r e a c h f a u l t ; th e e n te re d

c o n f id e n c e l e v e l (C o n fd n c ) fo r e a c h fa u l t ; t h e f a u l t c l a s s o b ta in e d f ro m th e e n t e r e d ro t a t i o n

s e n s e f o r e a c h f a u l t ; t h e p r e d i c t e d f a u l t c l a s s f o r e a c h f a u l t ; th e p r e d i c t e d t re n d a n d p l u n g e i n

d e g r e e s ( A z ,P l g ) o f th e s l i c k e n l i n e s f o r e a c h f a u l t ; t h e a n g u l a r d i v e r g e n c e i n d e g r e e s ( A n g l r

D v rg n c ) b e tw e e n th e e n te re d s l ic ke n l in e o r ie n ta t io n s a n d th e p re d i c t e d s l i c k e n l in e o r i e n t a t i o n s

fo r e a c h f a u l t ; th e c a lc u la t e d n o rm a l a n d sh e a r s t r e s s e s o n e a c h fa u l t ; th e c a lc u la t e d

c o e f f i c i e n t o f f r i c t i o n ( C o e ff . F rc t 'n ) f o r e a c h f a u l t ; a n d th e a v e ra g e s o f th e c a lc u la t e d a n g u la r

d i v e r g e n c e s , n o r m a l s t re s s e s , s h e a r s t re s s e s , a n d c o e f f i c i e n t s o f f r i c t i o n f o r t h e f a u l t

p o p u la t i o n .

A f t e r t h e d a t a h a s b e e n d i s p l a y e d , t h e u s e r h a s t h e o p t i o n o f s a v i n g t h e d a t a t o a n A S C I I

d a ta f i l e a n d /o r ru n n in g th e s a m e p o p u la t i o n a g a in fo r a d i f f e re n t s e t o f f l u id p re s s u re ,

c o e f f i c i e n t o f f r i c t i o n , a n d c o h e s io n v a lu e s . T h e d a ta fo r e a c h p a le o s t r e s s a n a ly s i s I o b t a in e d

w a s p lo t t e d o n lo w e r -h e m is p h e re s te r e o g ra p h i c p ro j e c t io n s b y a T u rb o P a s c a l v e r s io n 3 .0 1

p ro g ra m I w ro te fo r th a t p u rp o s e (A p p e n d ix D ) . T h e p ro g ra m r e a d t h e f a u l t p o p u la t i o n d a t a a n d

th e p re d i c t e d p r in c ip a l s t r e s s a x e s o r i e n t a t i o n s a n d c r e a t e d A u to C A D s c r ip t f i l e s fo r p lo t t i n g

s te re o n e ts v ia A u to C A D .

7 .6 D isc u ss io n

R e c h e s ' m e t h o d o f p a l e o s t r e s s a n a l y s i s w a s c h o s e n fo r t e s t in g fo r s e v e r a l re a s o n s . I h ad

113

a u s e r - f r i e n d ly c o p y o f th e p ro g ra m w h ic h w o rk e d c o r re c t ly , t h e p ro g r a m w a s w r i t t e n fo r a n

I B M P C o r c o m p a t i b l e c o m p u t e r , t h e u s e o f a n o n - l in e a r in v e r s i o n a l l o w s t h e p r o g r a m t o

p e r fo rm c a l c u la t i o n s f o r r e a so n a b ly -s i z e d f a u l t p o p u la t i o n s i n s h o r t a m o u n ts o f t im e ( l e s s th a t

1 m in u te f o r m o s t p o p u la t i o n s ) , t h e p ro g ra m i s c l a im e d t o b e a n i m p ro v e m e n t o v e r A n g e l i e r ' s

c o m p u t a t i o n a l m e t h o d o f p a l e o s t r e s s a n a l y s i s s i n c e i t t a k e s i n t o a c c o u n t th e C o u l o m b f a i l u r e

c r i t e r i o n , a n d th e m e th o d h a s b e e n u s e d in s e v e ra l p u b l i s h e d f i e ld s tu d i e s (R e c h e s , 1 9 8 7 ;

H a rd c a s t l e , 1 9 8 9 ) .

114

C H A P T E R 8

P A L E O S T R E S S A N A L Y S IS T E S T D A T A

T h e a r t i f ic ia l fa u l t p o p u la t io ns u se d fo r te s t in g th e tw o p a le o s t r e s s a n a ly s i s p ro gra m s

w e re c re a ted w i th fo u r sp e c i f ic q u e s t io n s in m ind :

1 . H o w a c c u ra te a re p a leo s t re ss a n a lys i s p ro g ra m s g ive n a g e o lo g ica l ly -re a l i s t ic

p o p u la t io n o f fa u l t s?

2 . H o w d o the p a l eo s t r e s s a n a lys i s p ro gra m s r ea c t to sp ec ia l typ es o f fau l t p o p u la t io ns?

3 . H o w se ns i t iv e a re p a le o s t r e ss a n a lys is p ro g ra m s to e r ro r s in th e in i t ia l fa u l t p o p u la t io n

d a ta ?

4 . H o w d o th e r e su l t s o f p a le o s tr e ss a n a lys is p r o g r a m s c o m p a r e to o n e a n o th e r fo r th e

sa m e in i t ia l p o p u la t io n o f fa u l t s?

T o a n s w e r th e s e q u e s t io n s , th e fa u l t p o p u la t io n s d is c u ss e d in th e fo l lo w in g se c t io n s

w e re c re a ted .

8 .1 C r ea t in g th e A r t i f ic ia l F a u l t P o p u la t io n s

F o r c re a t in g t h e a r t i f ic ia l fa u l t p o p u la t io n s , a s ta n d a rd s t re ss f i e ld w a s d e f ine d . T h is

a l lo w ed fo r e a sy c o m p a r iso n b e tw ee n th e r e su l t s o f th e p a le o s t r e ss a n a lyse s a n d d id no t

s ig n i f i c a n t ly c o n s tr a in th e te s ts in a n y w a y . T h e s l ip v e c to r c a lc u la t io n p r o g r a m r e q u i r e s th e

1 3use r to sp ec i fy the o r i en ta t io ns fo r the p r inc ip a l s t r e s s ax es F a n d F , th e r e la t iv e m a g n itu d e s

115

1 3fo r th e m o s t c o m p re ss iv e F a nd th e le a s t c o m p re ss iv e F p r in c ip a l s t r e ss a x e s , a n d va lu e s fo r

0th e c o e f f ic ie n t o f f r ic t io n : a n d c o h e s io n C a c t ing up o n the fau l t p lan e s (c h a p te r 5 ) . F o r a l l

o f th e a r t i f ic ia l fa u l t p o p u la t io n s d i sc u sse d in th is c h a p te r , t h e a b o v e v a lu e s w e r e s e t su c h th a t

1 3F ha d a p lun g e a n d t re n d o f 9 0 /0 0 0 ( u p ) w i th a re la t ive m a g n i tud e o f + 1 .0 , F h a d a p l u n g e a n d

t r e n d o f 0 0 / 0 0 0 ( n o r t h ) w i th a r e la t iv e m a g n i tu d e o f -1 .0 , th e c o e f f ic ie n t o f f r ic t io n : w a s se t

0to 0 .8 5 ( B a r to n a n d C h o u b e y , 1 9 7 7 ; B ye r le e , 1 9 7 8 ) , a n d th e c o h e s io n C w a s se t to 0 .0 . N o te

1 3 2tha t th e o r ie n ta t io n s o f F a n d F im p ly th a t F h a s a n o r ie n ta t io n o f 0 0 /0 9 0 ( e a s t ) . T h e

2 1 3 2 3m a g n i tud e o f F i s d e p e nd a n t up o n th e s t r e ss r a t io M w h ic h i s [ (F - F ) / (F - F ) ] .

F o r e ac h fa u l t - s l ip d a tu m g en e ra te d b y th e s l ip v e c to r ca lc u la t io n p r o g ra m , th e sh e a r

s t r e ss to no rm a l s t r e s s r a t io w a s e x a m in e d . I f th i s r a t io w a s to o lo w , th e fa u l t c o u ld no t b e

e x p e c ted to s l ip u n d e r an y re a l i s t ic g e o lo g ica l c o n d i t io n s . O n ly tho se fau l t s w i th a su f f ic ien t ly

h igh sh e a r s t re ss to no rm a l s t re ss r a t io w e re us e d in a l l o f th e a n a lyse s .

T h e fa u l t o r ie n ta t io n d a ta ( th e p l u n g e a n d t r e n d o f th e fa u l t 's n o r m a l v e c to r a n d th e

p i tc h a n g le o f th e s l ip ve c to r s ) fo r th e fa u l t p la n es in e a ch p o p u la t io n d i sc u sse d in th is c ha p te r

a re l is t e d in A p p e n d ix B .

8 .2 R a n d o m F a u lt -S l ip P o p u la t io n s

T o tes t th e a c c u ra c y o f th e p a leo s t re ss a n a lys i s p ro g ra m s , th r e e ra n d o m p o le fau l t -s l ip

p o p u la t io n s w e r e c r e a te d in th e fo l lo w in g m a n n e r :

1 . A s ta n d a rd s t re ss f i e ld w a s d e c id e d up o n ( se c t io n 8 .1 ) .

2 . A T u rb o P a sc a l ve rs io n 3 .0 1 p ro g ra m w a s w r i t t e n to ra n d o m ly re tu r n two nu m b e rs - -

o n e b e tw ee n 0 a nd 8 9 in c lu s iv e a nd o n e b e tw ee n 0 a nd 3 5 9 in c lu s iv e . T h e r a nd o m

116

n u m b e rs w e re c h o se n th r o u g h T u rb o P a sc a l 's R A N D O M fun c t io n .

3 . T h e two nu m b e rs ge n e ra ted w e re t ak e n to b e the p lun g e a n d t re n d re sp e c t ive ly o f a p o le

(n o rm a l ve c to r ) to a fau l t p lan e .

4 . T h e p o le t o th is fa u l t p la n e w a s e n te re d in to th e s l ip v e c to r ca lc u la t io n p r o g ra m

( c h a p te r 5 ) a n d th e c a lc u la te d p i tc h a n g le s o f th e s l ip v e c to r in th e fa u l t p l a n e a n d th e

s h e a r s t r e ss to n o r m a l s t r e ss r a t io s a c t in g u p o n th e fa u l t p l a n e w e r e r e tu r n e d fo r f iv e

v a lue s o f M (M = 0 .0 0 , M = 0 .2 5 , M = 0 .5 0 , M= 0 .7 5 , a n d M = 1 .0 0 ) .

5 . I f the sh e a r s t re ss to n o rm a l s t re ss ra t io s fo r ea c h va lue o f M a c t in g u p o n th e fa u l t p l a n e

w e re a l l a b o v e a c u to f f va lue o f 1 .0 , th e f a u l t c o u ld b e e x p e c ted to s l ip un d e r re a l i s t ic

g e o lo g ica l co n d i t io n s a n d the fau l t p lan e w a s inc lud e d i n to th e ra n d o m p o le fau l t

p o p u la t io n . I f o ne o r m o re o f th e r a t io s w e r e b e lo w th e c u to ff va lu e , th e fa u l t w a s no t

inc lud e d in the p o p u la t io n .

6 . S t e p s 2 th r o u g h 5 w e r e r e p e a te d u n t i l t h r e e p o p u la t io n s o f 1 8 fa u l t p l a n e s e a c h w e r e

c re a ted .

W h i le th e fau l t p lan e s in th e ra n d o m -p o le fau l t p o p u la t io n s w e re ra n d o m ly ch o se n , i t

i s im p o r ta n t t o r e m e m b e r th a t th e y d o n o t n e c e s s a r i ly h a v e a r a n d o m sp a t ia l d i s t r ib u t io n . In

a d d t io n , o n l y th o s e ra n d o m ly-c h o s e n fa u l t s w h ic h s a t i s f ie d a fa i lu r e c r i te r ia fo r th e s ta n d a r d

s tr e ss f ie ld ( se c t io n 8 . 1 ) w e r e i n c lu d e d i n e a c h p o p u la t io n . T h e p u r p o s e o f r a n d o m ly c h o o s in g

a p lun ge an d t r en d fo r ea ch fau l t p lan e wa s no t to in su r e a r an d o m sp a t ia l d is t r ibu t io n o f fau l t s ,

b u t to insu re tha t an y b ia s in se lec t ing fau l t s to inc lud e in e a c h p o p u la t io n w a s e l im ina ted .

117

T h r e e p o p u la t io n s o f r a n d o m -p o le fa u l t s ( la b e l le d R P -0 1 , R P -0 2 , a n d R P -0 3 ) , f o r f iv e

v a lue s o f M e a ch , y ie ld s a to ta l o f 1 5 fa u l t p o p u la t i o n s ( f ig u re s 8 -1 6 8 -1 5 ) to te s t fo r e a ch o f

th e tw o p a le o s tr e ss a n a lys is p r o g r a m u se d . B y c o m p a r i n g t h e r e s u l t s o f th e s e te s ts to th e

o r ig in a l s ta n d a rd s t r e ss f ie ld ( se c t io n 8 .1 ) , th e a c cu ra c y o f th e p a le o s t r e ss p r o g ra m s w a s

e v a lua ted .

118

F ig u r e 8 - 1 - L o w e r -h e m is p h e r e s te r e o g r a p h ic p r o j e c t io n o f fa u l t p o p u la t io n R P -0 1 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 0 0 ( R P -0 1 -0 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

119

F ig u r e 8 - 2 - L o w e r -h e m is p h e r e s te r e o g r a p h ic p r o j e c t io n o f fa u l t p o p u la t io n R P -0 1 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 2 5 ( R P -0 1 -2 5 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

120

F ig u r e 8 - 3 - L o w e r -h e m is p h e r e s te r e o g r a p h ic p r o j e c t io n o f fa u l t p o p u la t io n R P -0 1 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 5 0 ( R P -0 1 -5 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

121

F ig u r e 8 - 4 - L o w e r -h e m is p h e r e s te r e o g r a p h ic p r o j e c t io n o f fa u l t p o p u la t io n R P -0 1 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 7 5 ( R P -0 1 -7 5 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

122

F ig u r e 8 - 5 - L o w e r -h e m is p h e r e s te r e o g r a p h ic p r o j e c t io n o f fa u l t p o p u la t io n R P -0 1 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 1 . 0 0 ( R P -0 1 -1 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

123

F ig u r e 8 - 6 - L o w e r -h e m is p h e r e s te r e o g r a p h ic p r o j e c t io n o f fa u l t p o p u la t io n R P -0 2 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 0 0 ( R P -0 2 -0 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

124

F ig u r e 8 - 7 - L o w e r -h e m is p h e r e s te r e o g r a p h ic p r o j e c t io n o f fa u l t p o p u la t io n R P -0 2 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 2 5 ( R P -0 2 -2 5 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

125

F ig u r e 8 - 8 - L o w e r -h e m is p h e r e s te r e o g r a p h ic p r o j e c t io n o f fa u l t p o p u la t io n R P -0 2 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 5 0 ( R P -0 2 -5 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

126

F ig u r e 8 - 9 - L o w e r -h e m is p h e r e s te r e o g r a p h ic p r o j e c t io n o f fa u l t p o p u la t io n R P -0 2 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 7 5 ( R P -0 2 -7 5 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

127

F ig u r e 8 -1 0 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n R P -0 2 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 1 . 0 0 ( R P -0 2 -1 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

128

F ig u r e 8 -1 1 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n R P -0 3 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 0 0 ( R P -0 3 -0 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

129

F ig u r e 8 -1 2 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n R P -0 3 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 2 5 ( R P -0 3 -2 5 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

130

F ig u r e 8 -1 3 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n R P -0 3 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 5 0 ( R P -0 3 -5 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

131

F ig u r e 8 -1 4 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n R P -0 3 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 7 5 ( R P -0 3 -7 5 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

132

F ig u r e 8 -1 5 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n R P -0 3 sh o w in g

1 8 n o r m a l f a u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 1 . 0 0 ( R P -0 3 -1 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

133

8 .3 C r ea t in g S p e c ia l -C a se F a u l t P o p u la t io n s

T h e b e h a v io r o f p a le o s t r e ss a na lys is p r o g ra m s to sp e c ia l -c a se fa u l t p o p u la t io n s w a s

n e x t e x am in e d . H a rd c a s t le (1 9 9 0 ) c la im e d th a t R e c he s ' m e th o d (c h ap te r 7 ) r e tu rn e d

in c o n sis te n t r e su l t s w i th s im p le co n ju ga te fa u l t p o p u la t io n s a nd A l lm e n d in ge r (1 9 8 9 ) in d ic a te d

th a t G e p h a r t a nd F o r sy th 's m e th o d ( ch a p te r 3 ) g a ve in c o n sis te n t r e su l t s fo r th ru s t fa u l t s w he n

th e y w e r e a l l o f a v e r y s im i la r o r ie n ta t i o n . G iv e n th e m a th e m a t ic s in v o lv e d in c a lc u la t in g

p a leo s t r e s s ten so r s f ro m fau l t d a t a , fau l t s wh ich ha ve o r i en ta t io ns c lo se to the p r inc ip a l s t r e s s

p la n e s ( th e p la n e s n o r m a l to th e t h r e e p r in c ip a l s t r e ss a x e s ) m a y in f lu e n c e th e c a lc u la t io n s

a d v e rse ly .

W i th the se tho u g h ts in m ind , se v e ra l sp e c ia l -ca se fau l t p o p u la t io n s w e re c re a ted - -

s im p le A nd er so n ian co n ju ga te f au l t s , o r tho rho m b ic sym m et ry fa u l t s , r ad ia l sym m et ry fau l t s ,

a n d fa u l t s w h ic h a l l h a v e a p p r o x i m a t e ly th e s a m e o r ie n ta t io n .

8 .4 A n d er so n ia n C o n ju g a te F a u l t P o p u la t io n s

C o nju ga te f au l t s e t s a r e co m m o nly fo un d in the f ie ld an d used to e s t im a te p a l eo s t r e s s

o r ie n ta t io n s (D a v is , 1 9 8 4 , p . 3 0 6 ; R a ga n , 1 9 8 5 , p . 1 3 5 ; S up p e , 1 9 8 5 , p . 2 9 2 ; R o w la nd , 1 9 8 6 ,

p . 1 3 4 ; D e n n is , 1 9 8 7 , p . 2 3 6 ; M a r sh a k a n d M it r a , 1 9 8 8 , p . 2 6 1 ; S p e n c e r , 1 9 8 8 , p . 1 9 9 ) . U s in g

A n d e rso n 's (1 9 5 1 ) th e o ry o f fa u l t in g ( se c t io n 2 .1 ) , i t i s a t r iv ia l m a t te r to a ss ig n p o ss ib le

p r in c ip a l s t r e ss a x is o r i e n t a t io n s fo r a c o n j u g a te fa u l t p o p u la t io n . T h e m o s t c o m p r e ss iv e

1p r inc ip a l s t r e s s ax is F b i se c t s the a c u te a n g le o f th e c o n ju g a te fau l t s , the in te rm e d ia te

2p r inc ip a l s t r e s s ax is F i s p a ra l le l to the in t e r se c t io n o f t h e co n ju ga te f au l t s , an d the lea s t

3co m p res s i v e p r in c ip a l s t r e s s ax is F b i se c ts th e o b tu se an g le o f th e c o n ju ga te fa u l t s . T w o

c o n ju g a te fa u l t p o p u la t io ns w e re c h o se n fo r t e s t in g to se e i f th e p a le o s t r e s s a n a lys is p ro gra m s

re tur n e d the sa m e p r in c ip a l s t re ss a x e s a s A n d e rso n 's the o ry .

134

T h e f i r s t c o n ju g a te fa u l t p o p u la t io n ( A C -0 1 ) , w a s c re a te d su c h th a t t h e s t r ik e s o f a l l o f

3th e fa u l t s w e re e i th e r p a ra l le l , o r su b p a r a l le l (± 5 ° ) , to th e p r in c ip a l p la n e fo r th e F a x i s w i th

1the i r a c u te a n g le b e ing b i se c ted b y F ( f ig u re s 8 -1 6 6 8 -2 0 ) . T h is p o p u la t io n i s c o n s i s te n t wi th

1 2 3A n d e r s o n 's th e o r y g iv e n th e s ta n d a r d s t r e ss f ie ld o f u p , e a s t , a n d n o r th fo r F , F , a n d F

re sp e c t ive ly .

T h e se c o n d c o n ju g a te fau l t p o p u la t io n ( A C -0 2 ) , w a s c re a ted su c h tha t a l l o f th e fau l t s

2 3w e re o r ie n te d a t 4 5 ° f ro m th e p r in c ip a l p la n es fo r th e F a n d F a x e s w i th the i r a c u te a n g le

1b e ing b i se c ted b y F ( f ig u re s 8 -2 1 6 8 -2 5 ) . T h i s po p u la t io n i s n o t c o n s is te n t w i th A n d e r so n 's

2 3th e o ry s in c e F a n d F a re o r ie n ted a t 4 5 ° f ro m the i r p re d ic ted p o s i t io n s .

135

F ig u r e 8 -1 6 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n A C -0 1 sh o w in g

1 8 n o r m a l f a u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 0 0 ( A C -0 1 -0 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

136

F ig u r e 8 -1 7 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n A C -0 1 sh o w in g

1 8 n o r m a l f a u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 2 5 ( A C -0 1 -2 5 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

137

F ig u r e 8 -1 8 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n A C -0 1 sh o w in g

1 8 n o r m a l f a u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 5 0 ( A C -0 1 -5 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

138

F ig u r e 8 -1 9 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n A C -0 1 sh o w in g

1 8 n o r m a l f a u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 7 5 ( A C -0 1 -7 5 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

139

F ig u r e 8 -2 0 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n A C -0 1 sh o w in g

1 8 n o r m a l f a u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 1 . 0 0 ( A C -0 1 -1 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

140

8 .5 O r th o r h o m b ic F a u l t P o p u la t io n s

O rth o rh o m b ic , o r rh o m b o h e d r a l , fa u l t p a t te rn s h av e b e e n d e sc r ib e d in se v e ra l a re a s

(A yd in a n d R e c h e s , 1 9 8 2 ; K ra n tz , 1 9 8 6 ; K ra n tz , 1 9 8 9 ) . T h e se fau l t s a r e t e r m e d o r th o rh o m b ic

s in c e th e y a r e a r ra n g e d in a n o r th o r h o m b ic s ym m e tr y a b o u t th e p r in c ip a l s t r a in a x e s a n d

u su a l ly c o n s i s t o f tw o se t s o f c o n ju g a te no rm a l fau l t s . T h e o c c u re n c e o f the se fau l t s is n o t we l l

e x p la ine d b y c o n ju g a te fau l t in g the o ry a n d K ra n tz (1 9 8 9 ) su g g e s te d tha t o r th o rh o m b ic fau l t

p a t te r n s r e p r e s e n t th e g e n e r a l , th r e e -d im e n s io n a l s t r a i n c a s e ( th e o d d -a x is m o d e l ) a n d

c o n ju g a te fau l t s a r e thu s re leg a ted to the sp e c ia l ca se o f p lan e s t ra in .

A n o r th o r h o m b i c fa u l t p o p u la t io n c o n s is t in g o f 2 0 fa u l t s w a s c r e a te d fo r te s t in g th e

p a le o s t r e ss a na lys is p r o g ra m s (O S -0 1 ) . T h e 2 0 fa u l t s o f t h e p o p u la t io n fo r m e d f iv e d i s t in c t

se ts o f o r th o rh o m b ic fa u l t s w i th ± 5 ° o f fse ts in s t r ik e a nd d ip f ro m th e tw o c o n ju g a te se ts a t 4 5 °

2 3 1f ro m th e F a n d F p r in c ip a l p lan e s . F o r a l l o f th e c o n ju g a te f a u l t se t s in the p o p u la t io n , F

2 3b ise c te d th e ir a c u te a ng le a nd F o r F b ise c te d th e ir o b tu se a ng le s ( f ig u re s 8 -2 6 6 8 -3 0 ) .

141

F ig u r e 8 -2 1 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n A C -0 2 sh o w in g

1 8 n o r m a l f a u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 0 0 ( A C -0 2 -0 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

142

F ig u r e 8 -2 2 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n A C -0 2 sh o w in g

1 8 n o r m a l f a u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 2 5 ( A C -0 2 -2 5 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

143

F ig u r e 8 -2 3 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n A C -0 2 sh o w in g

1 8 n o r m a l f a u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 5 0 ( A C -0 2 -5 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

144

F ig u r e 8 -2 4 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n A C -0 2 sh o w in g

1 8 n o r m a l f a u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 . 7 5 ( A C -0 2 -7 5 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

145

F ig u r e 8 -2 5 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n A C -0 2 sh o w in g

1 8 n o r m a l f a u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 1 . 0 0 ( A C -0 2 -1 0 ) .

1 2 3T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t , an d no r th

re sp e c t ive ly .

146

F ig u r e 8 -2 6 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n O S - 0 1 sh o w in g

2 0 o r th o rh o m b ic no r m a l fa u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 .0 0

1 2 3(O S -0 1 -0 0 ) . T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a r e u p , e a s t , a n d

n o r th re sp e c t ive ly .

147

F ig u r e 8 -2 7 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n O S - 0 1 sh o w in g

2 0 o r th o rh o m b ic no r m a l fa u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 .2 5

1 2 3(O S -0 1 -2 5 ) . T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a r e u p , e a s t , a n d

n o r th re sp e c t ive ly .

148

F ig u r e 8 -2 8 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n O S - 0 1 sh o w in g

2 0 o r th o rh o m b ic no r m a l fa u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 .5 0

1 2 3(O S -0 1 -5 0 ) . T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a r e u p , e a s t , a n d

n o r th re sp e c t ive ly .

149

F ig u r e 8 -2 9 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n O S - 0 1 sh o w in g

2 0 o r th o rh o m b ic no r m a l fa u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 0 .7 5

1 2 3(O S -0 1 -7 5 ) . T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a r e u p , e a s t , a n d

n o r th re sp e c t ive ly .

150

F ig u r e 8 -3 0 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n O S - 0 1 sh o w in g

2 0 o r th o rh o m b ic no r m a l fa u l t s a n d th e ir a sso c ia te d s l ip v e c to r s ( c i r c le s ) fo r a M v a lu e o f 1 .0 0

1 2 3(O S -0 1 -1 0 ) . T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a r e u p , e a s t , a n d

n o r th re sp e c t ive ly .

151

8 .6 R a d ia l S y m m etr y F a u l t P o p u la t io n s

W h ile c re a t in g th e c o n ju ga te an d o r t ho r ho m b ic fa u l t p o p u la t io n s , I n o t ic e d th a t

c o n ju g a te no rm a l fa u l t se t s o r ie n ted a t a w id e ra n g e o f s t r ik e d i re c t io n s w o u ld e x p e r ie n c e s l ip

in m y s ta n d a rd s t re ss f i e ld ( se c t io n 8 .1 ) . T h e o n ly ex c e p t io n s w e re tho se c o n ju g a te se t s w i th

1a s t r ik e o f le ss t h a n 3 0 ° f r o m th e F p r in c ip a l s t r e ss d i re c t io n . I th e re fo r e c re a te d a ra d ia l

sym m et ry fau l t p o p u la t io n (R S -0 1 ) co ns i s t ing o f 1 0 no rm a l fau l t s w i th s t r ikes o f 3 0 ° , 6 0 ° , 9 0 ° ,

11 2 0 ° , a n d 1 5 0 ° fo r e a c h o f th e f iv e c o n ju g a te se t s . T h e i r a c u te a n g le s w e re b i se c ted b y F

( f ig u re s 8 -3 1 6 8 -3 5 ) . W h ile th is m a y n o t b e a g e o lo g ic a l ly - r e a so n a b le fa u l t p o p u la t io n , i t d o e s

sa t i s fy a l l o f th e in i t i a l p a leo s t re ss a ssu m p t io n s a n d sh o u ld b e s o lva b le b y the a n a lys i s

p ro g ra m s . F o r th i s re a so n , th e p o p u la t io n w a s inc lud e d in the s tud y .

8 .7 F a u l t P o p u la t io n s o f a S im i la r O r ie n ta t io n

F ina l ly , th r e e sp e c ia l -ca se fau l t p o p u la t io n s w e re c re a ted s u c h t h a t a l l o f th e fau l t s in

e ac h p o p u la t io n ha d a v e ry s im i la r o r ie n ta t io n (S O -0 1 , S O -0 2 , a n d S O -0 3 ) . T h is i s a typ e o f

fau l t p o p u la t io n w h ich m a y re a so n a b ly b e e x p e c ted to fo rm .

T h e f i r s t p o p u la t io n ( S O -0 1 ) o f 1 5 n o r m a l fa u l t s w a s c r e a te d su c h th a t th e s t r ik e s w e r e

3p a r a l le l , a n d s u b p a r a l l e l (± 3 ° a nd ± 6 ° ) , to th e F p r inc ip a l p lan e . A l l o f the fau l t s we re a l so

1o r ie n te d su c h th a t th e y m a d e a n a n g le o f 3 0 ° (± 5 ° ) f r o m th e F p r in c ip a l s t r e ss d i r e c t io n

( f ig u re s 8 -3 6 6 8 -4 0 ) .

T h e se c o n d p o p u l a t io n ( S O -0 2 ) o f 1 5 n o r m a l fa u l t s w a s c re a te d su c h th a t th e ir s t r ik e s

2w e re o r ie n te d a t 3 0 ° ( ± 3 ° a n d ± 6 ° ) f ro m th e F d i r e c t io n . A l l o f th e fa u l t s w e re a l so o r ie n te d

1su c h th a t th e y m ad e a n a n g le o f 3 0 ° ( ± 5 ° ) f r o m th e F p r in c ip a l s t r e ss d i r e c t io n ( f ig u re s 8 -4 1

6 8 -4 5 ) .

152

T h e th i rd p o p u la t io n (S O -0 3 ) o f 1 5 n o r m a l fa u l t s w a s c re a te d su c h th a t th e ir s t r ik e s

2 3w e re o r ie n te d a t 4 5 ° (± 3 ° a nd ± 6 ° ) f ro m th e F a n d F d i r ec t io ns . A l l o f t h e f a u l t s we re a l so

1o r ie n te d su c h th a t th e y m a d e a n a n g le o f 3 0 ° (± 5 ° ) f ro m th e F p r i n c ip a l s t r e ss d i r e c t io n

( f ig u re s 8 -4 6 6 8 -5 0 ) .

153

F ig u r e 8 -3 1 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n R S - 0 1 sh o w in g

1 0 ra d ia l sym m e try n o rm a l fa u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c l e s ) fo r a M v a lu e o f

1 2 30 .00 (R S -0 1 -0 0 ) . T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t ,

a n d no r th re sp e c t ive ly .

154

F ig u r e 8 -3 2 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n R S - 0 1 sh o w in g

1 0 ra d ia l sym m e try n o rm a l fa u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c l e s ) fo r a M v a lu e o f

1 2 30 .25 (R S -0 1 -2 5 ) . T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t ,

a n d no r th re sp e c t ive ly .

155

F ig u r e 8 -3 3 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n R S - 0 1 sh o w in g

1 0 ra d ia l sym m e try n o rm a l fa u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c l e s ) fo r a M v a lu e o f

1 2 30 .50 (R S -0 1 -5 0 ) . T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t ,

a n d no r th re sp e c t ive ly .

156

F ig u r e 8 -3 4 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n R S - 0 1 sh o w in g

1 0 ra d ia l sym m e try n o rm a l fa u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c l e s ) fo r a M v a lu e o f

1 2 30 .75 (R S -0 1 -7 5 ) . T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t ,

a n d no r th re sp e c t ive ly .

157

F ig u r e 8 -3 5 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n R S - 0 1 sh o w in g

1 0 ra d ia l sym m e try n o rm a l fa u l t s a nd th e ir a sso c ia te d s l ip v e c to r s ( c i r c l e s ) fo r a M v a lu e o f

1 2 31 .00 (R S -0 1 -1 0 ) . T he o r i en ta t io ns o f the th re e p r inc ip a l s t r e s s ax es F , F , a n d F a re up , ea s t ,

a n d no r th re sp e c t ive ly .

158

F ig u r e 8 -3 6 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 1 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .0 0 (S O -0 1 -0 0 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

159

F ig u r e 8 -3 7 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 1 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .2 5 (S O -0 1 -2 5 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

160

F ig u r e 8 -3 8 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 1 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .5 0 (S O -0 1 -5 0 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

161

F ig u r e 8 -3 9 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 1 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .7 5 (S O -0 1 -7 5 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

162

F ig u r e 8 -4 0 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 1 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 1 .0 0 (S O -0 1 -1 0 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

163

F ig u r e 8 -4 1 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 2 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .0 0 (S O -0 2 -0 0 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

164

F ig u r e 8 -4 2 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 2 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .2 5 (S O -0 2 -2 5 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

165

F ig u r e 8 -4 3 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 2 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .5 0 (S O -0 2 -5 0 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

166

F ig u r e 8 -4 4 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 2 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .7 5 (S O -0 2 -7 5 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

167

F ig u r e 8 -4 5 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 2 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 1 .0 0 (S O -0 2 -1 0 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

168

F ig u r e 8 -4 6 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 3 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .0 0 (S O -0 3 -0 0 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

169

F ig u r e 8 -4 7 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 3 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .2 5 (S O -0 3 -2 5 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

170

F ig u r e 8 -4 8 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 3 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .5 0 (S O -0 3 -5 0 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

171

F ig u r e 8 -4 9 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 3 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 0 .7 5 (S O -0 3 -7 5 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

172

F ig u r e 8 -5 0 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n S O -0 3 sh o w in g

1 5 n o r m a l fa u l t s o f a p p r o x i m a t e ly th e s a m e o r ie n ta t io n a n d th e i r a ss o c i a te d s l ip v e c to r s

(c i r c le s ) fo r a M v a lu e o f 1 .0 0 (S O -0 3 -1 0 ) . T h e o r ie n ta t io n s o f th e th re e p r in c ip a l s t r e ss a xe s

1 2 3F , F , a n d F a re up , ea s t , an d no r th re sp e c t ive ly .

173

8 .8 F in a l F a u l t P o p u la t io n T e s ts

T o te s t th e s e n s i t iv i ty o f th e p a le o s tr e ss a n a lys is p r o g r a m s , th e fo l lo w in g s te p s w e r e

p e r fo r m e d to th e r a n d o m -p o le fa u l t p o p u la t io n s ( R P -0 1 , R P -0 2 , a n d R P -0 3 ) :

1 . R a n d o m ly r e m o v in g o n e o r m o r e p la n e s f r o m t h e p o p u la t io n a n d o b s e rv in g th e c h a n g e

in th e c a lcu la ted p a leo s t re ss t e n so r .

2 . R a n d o m ly a d d in g o n e o r m o r e p la n e s to t h e p o p u la t io n s a n d o b s e rv in g th e c h a n g e in th e

c a lcu la ted p a leo s t re ss t e n so r .

3 . G iv in g a r a n d o m ± 5 ° v a r ia b i l i ty in p l u n g e a n d t r e n d o f th e fa u l t n o r m a l v e c to r s a n d

g iv in g a ± 5 ° v a r ia b i l i ty in the p i tch an g le s o f th e s l ip ve c to rs f o r e a c h fa u l t d a tum in

the p o p u la t io n .

In th is w a y, th e se n s i t iv i ty o f th e tw o p a le o s t r e ss a na lys is p r o g ra m s to in su ff ic ie n t d a ta ,

e x t ra n e o u s d a ta , an d m e a su re m e n t e r ro rs wa s e v a lua ted .

A n ge l i e r ' s (1 9 7 9 ) f ie ld d a ta (F D -0 1 ) o f 3 8 N e o g e ne ag e n o rm a l fa u l t s f ro m C e n tra l

C re te , G re e c e ( f igu re 8 -5 1 a n d tab le 8 -1 ) w e re a l so ru n th r o u g h the p a leo s t re ss a n a lys i s

p r o g ra m s . T h is d a ta p o p u la t io n h as b e c o m e a n un o ff ic ia l s t a n d a r d a ga in s t w h ic h o th e r

p a l e o s t r e s s a na lys is m e th o d s a re te s te d to se e i f th e y y ie ld the sa m e re su l t s a s A ng e l ie r

(G e p ha r t a n d F o rsy th , 1 9 8 4 ; M ic ha e l , 1 9 8 4 ; R e ch e s , 1 9 8 7 ) a n d is o n ly u se d fo r a c o m p a r iso n

h e re - - I d id no t wo r r y a b o u t wh e the r th e re su l t s we re ge o lo g ica l ly -re a so n a b le o r n o t .

174

F ig u r e 8 -5 1 - L o w e r -h e m is p h e r e s te r e o g r a p h i c p r o j e c t io n o f fa u l t p o p u la t io n F D -0 1 sh o w in g

3 8 no rm a l fau l t s f ro m C en t ra l C re t e , G ree ce (A ng e l ie r , 1 9 7 9 ) an d the i r a s so c ia t ed s l ip ve c to r s .

175

FaultPlane Slickenline

Strike Dip Trend Plunge

045° 61° 115° 59°

036° 59° 145° 58°

270° 80° 286° 57°

232° 68° 292° 65°

225° 63° 290° 61°

290° 88° 293° 59°

254° 78° 278° 62°

046° 60° 155° 59°

257° 61° 355° 61°

067° 56° 153° 56°

049° 70° 187° 61°

216° 50° 312° 50°

058° 51° 165° 50°

079° 62° 195° 59°

236° 62° 313° 61°

214° 61° 275° 58°

034° 60° 151° 57°

037° 63° 138° 63°

068° 72° 099° 58°

049° 53° 139° 90°

189° 47° 295° 46°

237° 45° 296° 41°

112° 74° 260° 61°

205° 42° 296° 42°

214° 56° 309° 56°

037° 77° 202° 48°

057° 61° 195° 51°

248° 58° 006° 55°

061° 67° 173° 65°

028° 58° 168° 46°

030° 69° 106° 68°

041° 63° 144° 62°

023° 68° 105° 68°

249° 48° 346° 48°

248° 69° 332° 69°

195° 68° 310° 66°

274° 70° 320° 63°

267° 71° 000° 71°

T a b l e 8 - 1 - A l is t ing o f th e o r ie n ta t io n s fo r A n g e l ie r 's (1 9 7 9 ) p o p u la t io n o f 3 8 no rm a l fa u l t sf ro m C e n t ra l C re te , G re e c e .

176

C H A P T E R 9

T E S T IN G P R O C E D U R E S A N D R E S U L T S

In th i s c h a p te r , t h e r e s u l t s o f th e t e s t s o n th e a r t i f i c i a l f a u l t p o p u la t i o n s b y th e tw o

p a le o s t r e s s a n a ly s i s p ro g ra m (R e c h e s ' m e th o d a n d A n g e l i e r ' s m e th o d ) a re p re s e n te d .

9 .1 T e st in g P r o c e d u r e s

T h e t e s t i n g p ro c e d u r e s u se d w e re v e ry s t r a ig h t fo rw a rd . T h e a r t i f ic ia l f a u l t p o p u la t i o n s

s h o w n in c h a p te r 8 a n d l i s t e d i n a p p e n d ix B , w e re c re a te d in t h e m a n n e r d i s c u ss e d in c h a p te r

5 . T h e f a u l t - s l i p d a t a f o r e a c h p o p u l a t i o n a t e a c h o f t h e f iv e v a l u e s o f M e x a m in e d (0 .0 0 , 0 .2 5 ,

0 .5 0 , 0 .7 5 , a n d 1 .0 0 ) w e re m a n u a l ly c o n v e r t e d in to in p u t fo rm a t s c o m p a t ib l e w i th th e tw o

p r o g r a m s . T h i s n e w f a u l t d a t a w a s t h e n r e a d i n t o t h e p a l e o s t r e s s a n a l y s i s p r o g r a m s a n d r e s u l t s

w e re o b ta in e d . T h e a n g le s b e tw e e n th e k n o w n a n d th e c a lc u la t e d o r i e n ta t i o n s o f th e p r in c ip a l

1 2 3s t r e s s a x e s F , F , a n d F w e re d e te rm in e d u s in g th e p ro g ra m l i s te d in a p p e n d ix E .

T h e s e re s u l t s w e re c a re fu l ly e x a m in e d to s e e i f t h e y w e re c o n s i s t e n t w i th th e i n i t i a l

a s su m p t i o n s u s e d t o c r e a t e t h e a r t i f i c i a l f a u l t p o p u la t i o n s . I f t h e y w e re n o t th e s a m e , th e

re a s o n s w h y w e re a s c e r t a in e d (o r a t l e a s t s u rm is e d ) .

9 .2 R a n d o m - P o le F a u l t P o p u la t io n R e s u l t s

T h e th re e r a n d o m -p o le f a u l t p o p u l a t i o n s R P - 0 1 , R P - 0 2 , a n d R P - 0 3 w e re t h e f i r s t t o b e

e x a m in e d . T h e re s u l t s o f th i s e x a m in a t io n a r e s h o w n in f i g u re s 9 -1 th r o u g h 9 -1 5 fo r R e c h e s '

m e th o d a n d f i g u re s 9 -1 6 th ro u g h 9 -3 0 fo r A n g e l i e r ' s m e th o d . C o m p a r i s o n s o f th e r e s u l t s o f

R e c h e s ' a n d A n g e l i e r ' s m e th o d s a re g iv e n in t a b le s 9 -1 th ro u g h 9 -3 .

177

Known Program Error

1F 90/000 71/195 19.0°

2F 00/090 17/345 75.7°

3F 00/000 09/078 78.1°

M 0.00 0.069 0.069

F ig ur e 9 -1 - L o w e r-h e m is p h e re s te re o g ra p h ic p ro je c t io n a n d ta b le d e m o n s tra t in g th e

1 2 3d i ffe ren ce s be tw ee n the k no w n a nd ca lcu la t ed p r inc ipa l s t re s s ax es F , F , a n d F a n d th e

v a lue o f M fo r fa u l t p o p u la t io n R P - 0 1 -0 0 u s in g R e c h e s ' m e th o d o f p a le o s t re s s a n a ly s is . In th e

1 2 3s te reo graph ic p ro jec t ion , the kno w n p r inc ipa l s t re s s ax es F , F , a n d F a re o r ien ted up , e a s t ,

a n d n or th re sp e c t iv e ly an d th e c a lc u la te d p r in c ip a l s t re ss a xe s a re de n o te d b y th e f i l le d c i rc le s

la b e l l e d 1 , 2 , an d 3 .

178

Known Program Error

1F 90/000 83/205 7.0°

2F 00/090 02/100 10.2°

3F 00/000 07/010 12.2°

M 0.25 0.131 0.119

F ig u r e 9 - 2 - L o w e r -h e m is p h e re s te r e o g ra p h i c p ro j e c t io n a n d t a b l e d e m o n s t r a t i n g th e

1 2 3d i f f e r e n c e s b e t w e e n t h e k n o w n a n d c a l c u la t e d p r in c ip a l s t r e s s a x e s F , F , a n d F a n d th e

v a l u e o f M f o r fa u l t p o p u l a t i o n R P - 0 1 - 2 5 u s i n g R e c h e s ' m e t h o d o f p a l e o s t r e s s a n a l y s i s . In

1 2 3t h e s t e r e o g r a p h ic p ro j e c t io n , t h e k n o w n p r in c ip a l s t r e s s a x e s F , F , a n d F a r e o r i e n t e d u p ,

e a s t , a n d n o r th re s p e c t iv e ly a n d th e c a lc u la t e d p r in c ip a l s t r e s s a x e s a re d e n o te d b y th e f i l l e d

c i r c le s l a b e l l e d 1 , 2 , a n d 3 .

179

Known Program Error

1F 90/000 83/205 7.0°

2F 00/090 02/096 6.3°

3F 00/000 07/006 9.2°

M 0.50 0.387 0.113

Figure 9-3 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-01-50 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

180

Known Program Error

1F 90/000 83/214 7.0°

2F 00/090 04/095 6.4°

3F 00/000 07/005 8.6°

M 0.75 0.683 0.112

Figure 9-4 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-01-75 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

181

Known Program Error

1F 90/000 82/217 8.0°

2F 00/090 04/095 6.4°

3F 00/000 07/004 8.1°

M 1.00 0.903 0.097

Figure 9-5 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-01-10 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

182

Known Program Error

1F 90/000 80/347 10.0°

2F 00/090 07/214 56.3°

3F 00/000 08/124 56.4°

M 0.00 0.178 0.178

Figure 9-6 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-02-00 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

183

Known Program Error

1F 90/000 83/330 7.0°

2F 00/090 03/084 6.7°

3F 00/000 06/175 7.8°

M 0.25 0.178 0.072

Figure 9-7 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-02-25 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

184

Known Program Error

1F 90/000 83/342 7.0°

2F 00/090 02/089 2.2°

3F 00/000 07/179 7.1°

M 0.50 0.351 0.149

Figure 9-8 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-02-50 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

185

Known Program Error

1F 90/000 80/321 10.0°

2F 00/090 06/090 6.0°

3F 00/000 07/180 7.0°

M 0.75 0.637 0.113

Figure 9-9 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-02-75 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

186

Known Program Error

1F 90/000 74/300 16.0°

2F 00/090 14/089 14.0°

3F 00/000 08/181 8.1°

M 1.00 0.903 0.128

Figure 9-10 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-02-10 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

187

Known Program Error

1F 90/000 88/049 2.0°

2F 00/090 02/256 14.1°

3F 00/000 01/156 14.0°

M 0.00 0.070 0.070

Figure 9-11 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-03-00 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

188

Known Program Error

1F 90/000 87/047 3.0°

2F 00/090 02/265 5.4°

3F 00/000 02/175 5.4°

M 0.25 0.252 0.002

Figure 9-12 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-03-25 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

189

Known Program Error

1F 90/000 88/076 2.0°

2F 00/090 02/266 4.5°

3F 00/000 00/176 4.0°

M 0.50 0.437 0.063

Figure 9-13 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-03-50 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

190

Known Program Error

1F 90/000 86/098 4.0°

2F 00/090 04/26 5.7°

3F 00/000 01/356 4.1°

M 0.75 0.658 0.092

Figure 9-14 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-03-75 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

191

Known Program Error

1F 90/000 69/090 21.0°

2F 00/090 21/266 21.4°

3F 00/000 01/356 4.1°

M 1.00 0.880 0.120

Figure 9-15 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-03-10 using Reches' method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

192

Known Program Error

1F 90/000 79/014 11.0°

2F 00/090 00/104 14.0°

3F 00/000 11/194 17.7°

M 0.00 0.236 0.236

Figure 9-16 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-01-00 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

193

Known Program Error

1F 90/000 82/022 8.0°

2F 00/090 02/279 9.2°

3F 00/000 08/189 12.0°

M 0.25 0.390 0.140

Figure 9-17 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-01-25 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

194

Known Program Error

1F 90/000 83/059 7.0°

2F 00/090 05/277 8.6°

3F 00/000 04/186 7.2°

M 0.50 0.550 0.050

Figure 9-18 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-01-50 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

195

Known Program Error

1F 90/000 78/095 12.0°

2F 00/090 12/274 12.6°

3F 00/000 00/004 4.0°

M 0.75 0.694 0.056

Figure 9-19 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-01-75 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

196

Known Program Error

1F 90/000 66/102 24.0°

2F 00/090 24/271 24.0°

3F 00/000 04/003 5.0°

M 1.00 0.796 0.204

Figure 9-20 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-01-10 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

197

Known Program Error

1F 90/000 87/304 3.0°

2F 00/090 03/087 4.2°

3F 00/000 02/177 3.6°

M 0.00 0.077 0.077

Figure 9-21 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-02-00 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

198

Known Program Error

1F 90/000 86/323 4.0°

2F 00/090 03/092 3.6°

3F 00/000 03/183 4.2°

M 0.25 0.253 0.003

Figure 9-22 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-02-25 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

199

Known Program Error

1F 90/000 86/351 4.0°

2F 00/090 01/093 3.2°

3F 00/000 04/183 5.0°

M 0.50 0.443 0.060

Figure 9-23 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-02-50 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

200

Known Program Error

1F 90/000 83/349 7.0°

2F 00/090 02/092 2.8°

3F 00/000 07/182 7.3°

M 0.75 0.675 0.075

Figure 9-24 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-02-75 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

201

Known Program Error

1F 90/000 82/012 8.0°

2F 00/090 01/272 2.2°

3F 00/000 08/182 8.2°

M 1.00 0.846 0.154

Figure 9-25 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-02-10 using Anglier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

202

Known Program Error

1F 90/000 82/003 8.0°

2F 00/090 03/251 19.2°

3F 00/000 07/160 21.1°

M 0.00 0.149 0.149

Figure 9-26 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-03-00 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

203

Known Program Error

1F 90/000 85/357 5.0°

2F 00/090 00/262 8.0°

3F 00/000 05/172 9.4°

M 0.25 0.326 0.076

Figure 9-27 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-03-25 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

204

Known Program Error

1F 90/000 88/329 2.0°

2F 00/090 01/085 5.1°

3F 00/000 02/175 5.4°

M 0.50 0.528 0.028

Figure 9-28 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-03-50 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

205

Known Program Error

1F 90/000 86/256 4.0°

2F 00/090 04/087 5.0°

3F 00/000 01/357 3.2°

M 0.75 0.728 0.022

Figure 9-29 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-03-75 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

206

Known Program Error

1F 90/000 73/260 17.0°

2F 00/090 16/089 16.0°

3F 00/000 02/358 2.8°

M 1.00 0.901 0.099

Figure 9-30 - Lower-hemisphere stereographic projection and table demonstrating the differences

1 2 3between the known and calculated principal stress axes F , F , and F and the value of M for fault

population RP-03-10 using Angelier's method of paleostress analysis. In the stereographic projection, the

1 2 3known principal stress axes F , F , and F are oriented up, east, and north respectively and the calculated

principal stress axes are denoted by the filled circles labelled 1, 2, and 3.

207

F o r fa u l t p o p u l a t io n R P -0 1 , R e c h e s ' m e t h o d r e tu r n e d th e l a r g e s t p r in c ip a l s t r e s s

2 3o r i e n t a t i o n e r ro r s fo r a n i n i t i a l M v a l u e o f 0 .0 0 w h e r e t h e o r i e n t a t i o n s o f F a n d F w e r e

r e v e r s e d . T h e o r i e n t a t i o n e r ro r s w e r e a l l l e s s t h a n 1 5 ° f o r a n i n i t i a l M v a l u e o f 0 .2 5 a n d a l l

l e s s t h a n 1 0 ° f o r i n i t i a l M v a lu e s o f 0 .5 0 , 0 .7 5 , a n d 1 .0 0 . T h e e r ro rs in m a g n i tu d e b e tw e e n

t h e i n i t i a l a n d c a l c u l a t e d v a l u e s o f M w e re a l l l e s s th a n 0 .1 5 ( f i F ig u re s 9 -1 th ro u g h 9 -5 ) .

F o r fa u l t p o p u l a t io n R P -0 2 , R e c h e s ' m e t h o d r e tu r n e d th e l a r g e s t p r in c ip a l s t r e s s

o r i e n t a t i o n e r ro r s fo r a n i n i t i a l M v a lu e o f 0 .0 0 w i th th e l a rg e s t e r ro r s i n th e o r i e n t a t i o n s o f

2 3F a n d F . T h e o r i e n t a t i o n e r ro r s w e r e a l l 1 0 ° o r l e s s f o r a l l o t h e r in i t i a l M v a lu e s . T h e

e r ro r s i n m a g n i t u t e b e t w e e n t h e i n i t i a l a n d c a l c u l a t e d v a l u e s o f M w e re a l l l e s s th a n 0 .1 8

( f iF ig u re s 9 -6 th ro u g h 9 -1 0 ) .

F o r fa u l t p o p u l a t io n R P -0 3 , R e c h e s ' m e t h o d r e tu r n e d th e l a r g e s t p r in c ip a l s t r e s s

o r i e n t a t i o n e r ro r s fo r a n i n i t i a l M v a lu e o f 1 .0 0 w i th th e l a rg e s t e r ro r s i n th e o r i e n t a t i o n s o f

1 2F a n d F . T h e o r i e n t a t i o n e r ro r s w e r e a l l l e s s t h a n 1 5 ° f o r a n i n i t i a l M v a l u e o f 0 .0 0 a n d a l l

l e s s t h a n 1 0 ° f o r i n i t i a l M v a lu e s o f 0 .2 5 , 0 .5 0 , a n d 0 .7 5 . T h e e r ro rs in m a g n i tu d e b e tw e e n

t h e i n i t i a l a n d c a l c u l a t e d v a l u e s o f M w e re a l l 0 .1 2 o r l e s s ( f i F ig u re s 9 -1 1 th ro u g h 9 -1 5 ) .

F o r fa u l t p o p u l a t io n R P -0 1 , A n g e l i e r 's m e t h o d r e tu r n e d th e l a r g e s t p r in c ip a l s t r e s s

o r i e n t a t i o n e r ro r s fo r a n i n i t i a l M v a lu e o f 1 .0 0 w i th th e l a rg e s t e r ro r s i n th e o r i e n t a t i o n s o f

1 2F a n d F . T h e o r i e n t a t i o n e r ro r s w e r e a l l 2 0 ° o r l e s s f o r a l l o t h e r in i t i a l M v a lu e s . T h e

e r ro r s i n m a g n i t u d e b e t w e e n t h e i n i t i a l a n d c a l c u l a t e d v a l u e s o f M w e re a l l l e s s th a n 0 .2 4

( f iF ig u re s 9 -1 6 th ro u g h 9 -2 0 ) .

F o r f a u l t p o p u la t i o n R P - 0 2 , A n g e l i e r ' s m e th o d re tu rn e d p r in c ip a l s t r e s s o r i e n t a t i o n

e r ro r s o f l e s s t h a n 1 0 ° f o r a l l i n i t i a l M v a lu e s . T h e e r ro rs in m a g n i tu d e b e tw e e n th e i n i t i a l

a n d c a l c u l a t e d v a l u e s o f M w e r e a l l l e s s t h a n 0 . 1 6 f o r a n i n i t a l M v a lu e o f 1 .0 0 a n d le s s th a n

208

0 .0 8 f o r i n i t i a l M v a lu e s o f 0 .2 5 , 0 .5 0 , 0 .7 5 , a n d 1 .0 0 ( f i F ig u re s 9 -2 1 th ro u g h 9 -2 5 ) .

F o r fa u l t p o p u l a t io n R P -0 3 , A n g e l i e r 's m e t h o d r e tu r n e d th e l a r g e s t p r in c ip a l s t r e s s

o r i e n t a t i o n e r ro r s fo r in i t i a l M v a lu e s o f 0 .0 0 a n d 1 .0 0 w i th th e l a rg e s t e r ro r s i n th e

2 3 2 3o r i e n t a t i o n s o f F a n d F f o r a n i n i t i a l M v a lu e o f 0 .0 0 a n d F a n d F f o r a n i n i t i a l M v a lu e

o f 1 .0 0 . T h e o r i e n t a t i o n e r ro r s w e r e a l l 1 0 ° o r l e s s f o r a l l o t h e r M v a l u e s . T h e e r ro r s i n

m a g n i t u d e b e t w e e n t h e i n i t i a l a n d c a l c u l a t e d v a l u e s o f M w e re a l l l e s s th a n 0 .1 5 ( f iF i g u re s

9 -2 6 th ro u g h 9 -3 0 ) .

A s a g e n e ra l o b s e rv a t io n , t h e c a l c u l a t e d o r ie n t a t io n s o f s o m e o f th e p r in c ip a l s t r e s s

1 2 3a x e s F , F , a n d F s e e m t o b e d i s p l a c e d f ro m t h e i r t r u e o r i e n t a t i o n s s u c h t h a t th e y a r e

r o u g h l y s u b p a r a l l e l lo c a l c o n c e n t r a t i o n s o f s l ip v e c t o r s . F i g u r e 9 - 1 d i s p l a y s t h i s w e l l w i t h

1t h e o r i e n t a t i o n o f F .

T a b l e s 9 -1 , 9 -2 , a n d 9 -3 c o m p a re th e r e s u l t s o f R e c h e s ' a n d A n g e l i e r ' s m e th o d s fo r

e a c h o f t h e th re e ra n d o m -p o le fa u l t p o p u la t i o n s R P -0 1 , R P -0 2 , a n d R P -0 3 re s p e c t i v e ly .

T a b l e 9 - 1 s h o w s R e c h e s ' a n d A n g e l i e r ' s m e t h o d s t o p o o r l y c o r re s p o n d f o r fa u l t

p o p u l a t i o n R P - 0 1 g i v e n i n i t i a l M v a lu e s o f 0 .0 0 a n d 1 .0 0 w i th a 2 0 ° o r l e s s a n g u la r

d e v i a t i o n f o r i n t e r m e d i a t e i n i t i a l M v a lu e s . T a b le 9 -2 s h o w s R e c h e s ' a n d A n g e l i e r ' s

m e t h o d s t o s i m i l a r l y p o o r l y c o r re s p o n d g i v e n i n i t i a l M v a lu e s o f 0 .0 0 a n d 1 .0 0 w i th a 1 0 ° o r

l e s s a n g u l a r d e v i a t i o n f o r i n t e r m e d i a t e i n i t i a l M v a lu e s . T a b l e 9 -3 s h o w s R e c h e s ' a n d

A n g e l i e r ' s m e t h o d s t o p o o r l y c o r re s p o n d g i v e n a n i n i t i a l M v a lu e o f 1 .0 0 w i th a 1 0 ° o r l e s s

a n g u l a r d e v i a t i o n f o r a l l o t h e r in i t i a l M v a lu e s . T h e e r ro r s i n m a g n i tu d e b e t w e e n R e c h e s '

a n d A n g e l i e r ' s m e t h o d s f o r t h e i n i t i a l a n d c a l c u l a t e d v a l u e s o f M w e r e 2 .2 5 o r l e s s f o r fa u l t

p o p u la t i o n R P -0 1 a n d 0 .1 0 o r l e s s fo r fa u l t p o p u la t i o n s R P -0 2 a n d R P -3 .

T h e s e r e s u l t s g e n e r a l l y i n d i c a t e t h a t b o t h R e c h e s ' a n d A n g e l i e r ' s m e t h o d s r e t u r n

r e a s o n a b l e ( ± 2 0 ° ) p r i n c i p a l s t re s s a x i s o r i e n t a t i o n r e s u l t s fo r in t e r m e d i a t e i n i t i a l M v a lu e s

209

( 0 . 2 5 , 0 . 5 0 , a n d 0 . 7 5 ) b u t m a y n o t p e r fo r m w e l l g i v e n i n i t i a l M v a lu e s o f 0 .0 0 o r 1 .0 0 (p l a n e

2s t r a i n ) . T h i s i s m o s t l ik e l y d u e t o t h e f a c t th a t fo r a n i n i t i a l M v a lu e o r 0 .0 0 , F i s e q u a l in

3 2 1m a g n i tu d e to F a n d f o r a n i n i t i a l M v a lu e o f 1 .0 0 , F i s e q u a l in m a g n i tu d e to F a n d th e

p ro g ra m s h a v e d i f f i c u l t y in a s s ig n in g th e p ro p e r o r i e n ta t i o n s fo r th e s e s t r e s s a x e s .

210

Reches' Angelier's Deviation

Known

M of

0.00

1F 71/195 79/014 30.0°

2F 17/345 00/104 62.4°

3F 09/078 11/194 66.7°

M 0.069 0.236 0.167

Known

M of

0.25

1F 83/205 82/022 15.0°

2F 02/100 02/279 4.1°

3F 07/010 08/189 15.0°

M 0.165 0.390 0.225

Known

M of

0.50

1F 83/205 83/059 13.4°

2F 02/096 05/277 7.1°

3F 07/006 04/186 11.0°

M 0.378 0.550 0.172

Known

M of

0.75

1F 83/214 78/095 16.5°

2F 04/095 12/274 16.0°

3F 07/005 00/004 7.1°

M 0.638 0.694 0.056

Known

M of

1.00

1F 82/217 66/102 28.3°

2F 04/095 24/271 28.3°

3F 07/004 04/003 3.2°

M 0.903 0.796 0.107

1 2 3Table 9-1 - Table demonstrating the deviation for the orientations of the F , F , and F principal stress

axes and the principal stress magnitude ratio M between Reches' and Angelier's methods of paleostress

analysis on fault population RP-01 at five different values of M.

211

Reches' Angelier's Deviation

Known

M of

0.00

1F 80/347 87/304 8.1°

2F 07/214 03/087 53.8°

3F 08/124 02/177 53.1°

M 0.178 0.077 0.101

Known

M of

0.25

1F 83/330 86/323 3.1°

2F 03/084 03/092 8.0°

3F 06/175 03/183 8.5°

M 0.178 0.253 0.075

Known

M of

0.50

1F 83/342 86/351 3.1°

2F 02/089 01/093 4.1°

3F 07/179 04/183 5.0°

M 0.351 0.443 0.092

Known

M of

0.75

1F 80/321 83/349 5.0°

2F 06/090 02/092 4.5°

3F 07/180 07/182 2.0°

M 0.637 0.675 0.038

Known

M of

1.00

1F 74/300 82/012 15.5°

2F 14/087 01/272 15.8°

3F 08/081 08/182 80.3°

M 0.872 0.846 0.026

1 2 3Table 9-2 - Table demonstrating the deviation for the orientations of the F , F , and F principal stress

axes and the principal stress magnitude ratio M between Reches' and Angelier's methods of paleostress

analysis on fault population RP-02 at five known values of M.

212

Reches' Angelier's Deviation

Known

M of

0.00

1F 88/049 82/003 6.8°

2F 02/256 03/251 5.1°

3F 01/166 07/160 8.5°

M 0.070 0.149 0.079

Known

M of

0.25

1F 87/047 85/357 5.6°

2F 02/265 00/262 3.6°

3F 02/175 05/172 4.2°

M 0.252 0.326 0.074

Known

M of

0.50

1F 88/076 88/329 3.2°

2F 02/266 01/085 3.2°

3F 00/176 02/175 2.2°

M 0.437 0.528 0.091

Known

M of

0.75

1F 86/098 86/256 7.9°

2F 04/266 04/087 8.1°

3F 01/356 01/357 1.0°

M 0.658 0.728 0.070

Known

M of

1.00

1F 69/090 73/260 37.9°

2F 21/266 16/089 37.1°

3F 01/356 02/358 2.2°

M 0.880 0.901 0.021

1 2 3Table 9-3 - Table demonstrating the deviation for the orientations of the F , F , and F principal stress

axes and the principal stress magnitude ratio M between Reches' and Angelier's methods of paleostress

analysis on fault population RP-03 at five different values of M.

213

9 .3 Sp ec ia l-C a se F a ul t P o pu la t io n R esult s

T h e f i r s t spe c ia l -ca se fau l t p o p u la t io n s to b e t es ted w e re th e tw o c o n jug a te fau l t

p op u la t io ns A C -0 1 a n d A C -0 2 . In c o n ju ga te fa u l t p op u la t io n A C -0 1 , th e c o n ju ga te fa u l t se t w a s

3 1 2pa ra l le l to t he p r inc ipa l s t re s s ax is F an d pe rpe nd icu la r the the p r inc ipa l s t re s s ax es F a n d F .

2 3In c o n ju g a te fa u l t p o p u la t io n A C -0 2 , th e c o n ju g a te fa u l t se t w a s a t 4 5 ° to b o th F a n d F a n d

1pe rpe nd icu la r the the p r inc ipa l s t re s s ax is F .

U t i l i z ing R e c h e s ' m e tho d , c o n jug a te po p u la t ion A C -01 re tu rne d su rpr i s ing resu l t s

( f ig u re s 9 -3 1 th ro ug h 9 -3 5) . T h e M v a lue s re tu rne d w e re th e op p o s i te o f w h a t on e w o u ld e x p e c t .

A M o f 1 .0 0 w a s re tu rne d for an in i t i a l M o f 0 .0 0 , a M o f 0 .7 0 w a s r e tu rn e d for an in i t i a l M o f

0 .2 5 , a M o f 0 .4 9 w a s r e tu rn e d f o r an in i t i a l M o f 0 .5 0 (w h ic h i s q u i te go od ) , a M o f 0 .2 7 w a s

re tu rne d for a n in i t i a l M o f 0 .7 5 , a nd a M o f 0 .0 9 w as re tu rne d for an in i t i a l M o f 1 .0 0 . T h is i s

1 3m o st l ik e ly re la te d to th e fa c t th a t t h e F a n d F p rin c ip a l s t re ss a xe s w e re sw i tc h ed an d h ad

1 2o p p o s i te o r ie n ta t io n s f ro m w h a t w a s e x p e c te d ( i .e . F h a d the p rop e r o r ien ta t ion fo r F a nd v ic e

v e rsa ) . T h is is ob v io u s ly a sy s te m a ti c e rro r a r i s in g w ith in th e p ro g ra m a lg o ri th m s .

A n ge l ie r 's m e th od p ro du c ed an ex a c t m a tc h b e tw e e n th e in i t i a l a nd ca lc u la te d

o r ie n ta t io n s o f t h e th re e p r in c ip a l s t re s s a x e s fo r c o n ju g a te p o p u la t io n A C -0 1 ( f ig u re s 9 -3 6

thro u g h 9 -41 ) . T h e e r ro rs in m a g n i tud e b e tw e en th e in i t i a l a n d c a lcu la ted va lue s o f M ho w e v e r ,

w e re q u i te l a rge (ap p roa c h ing 0 .5 ) fo r in i t i a l M v a lu e s o f 0 .0 0 a n d 1 .0 0 a n d sm a l le s t (0 .0 0 4 ) fo r

a n in i t i a l M v a lu e o f 0 .50 .

C o n ju g a te fa u l t p o p u la t io n A C -0 2 a l s o re tu rn e d s u rp r i s in g re s u l t s in c e R e c h e s ' m e th o d

1 3w a s to ta l ly u n a b le to de a l w i th th is se t o f fa u l t s ( f ig u re s 9 -4 1 th ro ug h 9 -4 5) . T h e F a n d F

o r ien ta t ion s w e re o n c e a g a in sw i tch e d a n d , m o re im p o r tan t ly , the va lue s fo r M ra n g e d f ro m

214

1 .0 0 to 6 .1 3 . T h e ra t io M , b y d e f in i t io n , ra n g e s fro m 0 .0 to 1 .0 o n ly . T h is im p l ie s th a t th e

1 3 1 3p ro gra m is a pp a re n t ly co nfu s in g th e F a n d F m a g n i tu de s w i th e a ch o th e r . W h e n th e F a n d F

or ien ta t ion s a re sw i tch ed , h ow ev er , t he so lu t ion i s c o r rec t . T h i s i s a rea sona b le re su l t s inc e m os t

2s tru c tu ra l g e o lo g y te x tb o o k s w o u ld g ra p h ic a l ly a s s ig n F to b e p a ra l le l t o th e in te rs e c t io n o f th e

c o n ju g a te se t (w h ic h i t i sn ' t in th is c a se ) .

A n g e l ie r 's m e th o d a ls o re tu rn e d w i ld ly in a c c u ra te re s u l t s fo r c o n ju g a te fa u l t p o p u la t io n

A C -02 ( f igu res 9 -46 th rou g h 9 -50 ) . A t lo w in i t i a l M v a lu e s (0 .0 0 , 0 .2 5 , a nd 0 .5 0 ) , th e p ro gra m

2 3c o n fuse d the o r ie n ta t ion s o f F a n d F a n d a t la rge r in i t ia l M v a lu e s (0 .7 5 a nd 1 .0 0 ) , th e p ro gra m

1 2c o n fuse d the o r ie n ta t ion s o f F a n d F . T h e e rro r in m a g ni tu de be tw e e n th e in i t ia l a nd ca lc u la te d

v a lue s fo r M ra n g e d fro m a lo w o f 0 .15 5 to a h ig h o f 0 .47 9 w h ic h is un a c c e p ta b le .

C o m p a r in g th e re s u l t s o f R e c h e s ' a n d A n g e l ie r 's m e th o d s fo r c o n ju g a te fa u l t p o p u la t io n

1 3A C -0 1 ( ta b le 9 -4 ) s ho w s th e 9 0° e r ro r in th e o r ie n ta t io ns o f th e F a n d F p r in c ip a l s t re ss a xe s

fo r R e c h e s ' m e th o d . T h e d e v ia t io n s in m a g n i tu d e b e tw e e n th e in i t ia l a n d c a lc u la te d v a lu e s fo r

M ra n g e d fro m a lo w o f 0 .01 9 to a h ig h o f 0 .64 8 .

C o m p a r in g th e re s u l t s o f R e c h e s ' a n d A n g e l ie r 's m e th o d s fo r c o n ju g a te fa u l t p o p u la t io n

1 2 3A C -0 2 ( ta b le 9 -5 ) s ho w s l a rg e d ev ia t io ns in th e o r ie n ta t io ns o f th e F , F , a n d F p r inc ipa l s t re s s

2a x e s fo r in i t i a l M v a lu e s o f 0 .0 0 , 0 .2 5 , a nd 0 .5 0 a nd la rg e d e v ia t io ns in th e o r ie n ta t io ns o f th e F

3a n d F p r inc ipa l s t re ss a x e s fo r in i t i a l M v a lu e s o f 0 .7 5 a n d 1 .0 0 . T h e d e v ia t io n s in m a g n i tu d e

b e tw e e n the in i t i a l a n d c a lcu la ted va lue s fo r M w e re l a rge (0 .5 2 1 ) fo r an in i t i a l M v a lu e o f 0 .0 0

a n d un d e f ine d for a l l o th e r in i t ia l M v a lu e s .

A g e n e ra l o b s e rv a t io n se em s to be th a t bo th A n g e lie r 's a n d R e ch e s ' m e th o d s o f

p a le o s t re ss a na ly s is re tu rn m o re re a so na b le re su lt s fo r c on ju ga te f a u l t s e t s w h ic h p a ra l le l

p r in c ip a l s t r e s s a x e s .

215

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.00 1.000 1.000

Figure 9-31 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-01-

00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

216

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.25 0.695 0.305

Figure 9-32 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-01-

25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

217

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.50 0.485 0.515

Figure 9-33 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-01-

50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

218

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.75 0.274 0.726

Figure 9-34 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-01-

75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

219

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 1.00 0.089 0.911

Figure 9-35 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-01-

10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

220

Known Program Error

1F 90/000 90/051 0.0°

2F 00/090 00/269 1.0°

3F 00/000 00/179 1.0°

M 0.00 0.453 0.453

Figure 9-36 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-01-

00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

221

Known Program Error

1F 90/000 90/076 0.0°

2F 00/090 00/270 0.0°

3F 00/000 00/180 0.0°

M 0.25 0.477 0.227

Figure 9-37 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-01-

25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

222

Known Program Error

1F 90/000 90/050 0.0°

2F 00/090 00/270 0.0°

3F 00/000 00/180 0.0°

M 0.50 0.504 0.004

Figure 9-38 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-01-

50 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

223

Known Program Error

1F 90/000 90/130 0.0°

2F 00/090 00/270 0.0°

3F 00/000 00/360 0.0°

M 0.75 0.531 0.219

Figure 9-39 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-01-

75 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

224

Known Program Error

1F 90/000 90/102 0.0°

2F 00/090 00/270 0.0°

3F 00/000 00/360 0.0°

M 1.00 0.559 0.441

Figure 9-40 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-01-

10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

225

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.00 1.000 1.000

Figure 9-41 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-02-

00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

226

Known Program Error

1F 90/000 00/260 90.0°

2F 00/090 00/350 80.0°

3F 00/000 90/270 90.0°

M 0.25 1.358 ?

Figure 9-42 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-02-

25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

227

Known Program Error

1F 90/000 00/254 90.0°

2F 00/090 00/344 74.0°

3F 00/000 90/270 90.0°

M 0.50 2.732 ?

Figure 9-43 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-02-

50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

228

Known Program Error

1F 90/000 00/251 90.0°

2F 00/090 00/341 71.0°

3F 00/000 90/270 90.0°

M 0.75 6.133 ?

Figure 9-44 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-02-

75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

229

Known Program Error

1F 90/000 00/250 90.0°

2F 00/090 00/340 70.0°

3F 00/000 90/270 90.0°

M 1.00 1.312 ?

Figure 9-45 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-02-

10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

230

Known Program Error

1F 90/000 90/179 0.0°

2F 00/090 00/0 46.0°

3F 00/000 90/314 46.0°

M 0.00 0.479 0.479

Figure 9-46 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-02-

00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

231

Known Program Error

1F 90/000 90/192 0.0°

2F 00/090 00/060 30.0°

3F 00/000 00/330 30.0°

M 0.25 0.557 0.307

Figure 9-47 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-02-

25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

232

Known Program Error

1F 90/000 90/170 0.0°

2F 00/090 00/069 21.0°

3F 00/000 90/339 21.0°

M 0.50 0.772 0.272

Figure 9-48 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-02-

50 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

233

Known Program Error

1F 90/000 00/073 90.0°

2F 00/090 90/184 90.0°

3F 00/000 00/343 17.0°

M 0.75 0.905 0.155

Figure 9-49 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-02-

75 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

234

Known Program Error

1F 90/000 00/074 90.0°

2F 00/090 90/167 90.0°

3F 00/000 00/344 17.0°

M 1.00 0.676 0.324

Figure 9-50 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population AC-02-

10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

235

Reches' Angelier's Deviation

Known

M of

0.00

1F 00/000 90/051 90.0°

2F 00/090 00/269 1.0°

3F 90/270 00/179 90.0°

M 1.000 0.453 0.547

Known

M of

0.25

1F 00/000 90/076 90.0°

2F 00/090 00/270 0.0°

3F 90/270 00/180 90.0°

M 0.695 0.477 0.218

Known

M of

0.50

1F 00/000 90/050 90.0°

2F 00/090 00/270 0.0°

3F 90/270 00/180 90.0°

M 0.485 0.504 0.019

Known

M of

0.75

1F 00/000 90/130 90.0°

2F 00/090 00/270 0.0°

3F 90/270 00/360 90.0°

M 0.274 0.531 0.257

Known

M of

1.00

1F 00/000 90/102 90.0°

2F 00/090 00/270 0.0°

3F 90/270 00/360 90.0°

M 0.089 0.559 0.648

1 2 3Table 9-4 - Table demonstrating the deviation for the orientations of the F , F , and F principal stress axes

and the principal stress magnitude ratio M between Reches' and Angelier's methods of paleostress analysis

on fault population AC-01 at five different values of M.

236

Reches' Angelier's Deviation

Known

M of

0.00

1F 00/000 90/179 90.0°

2F 00/090 00/044 46.0°

3F 90/270 00/314 90.0°

M 1.000 0.479 0.521

Known

M of

0.25

1F 00/260 90/192 90.0°

2F 00/350 00/060 70.0°

3F 90/270 00/330 90.0°

M 1.358 0.557 ?

Known

M of

0.50

1F 00/254 90/170 90.0°

2F 00/344 00/069 85.0°

3F 90/270 00/339 90.0°

M 2.372 0.772 ?

Known

M of

0.75

1F 00/251 00/073 2.0°

2F 00/341 90/184 90.0°

3F 90/270 00/343 90.0°

M 6.133 0.905 ?

Known

M of

1.00

1F 00/250 00/074 4.0°

2F 00/340 90/167 90.0°

3F 90/270 00/344 90.0°

M 1.312 0.676 ?

1 2 3Table 9-5 - Table demonstrating the deviation for the orientations of the F , F , and F principal stress axes

and the principal stress magnitude ratio M between Reches' and Angelier's methods of paleostress analysis

on fault population AC-02 at five different values of M.

237

T h e n e x t sp e c ia l -c a s e fa u l t p o p u la t io n to b e e x a m in e d w a s th e o r th o r h o m b ic s ym m e tr y

p o p u la t io n O S -0 1 . T h e o r th o rh o m b ic sym m e try fa u l t s c r e a te d a s i tu a t io n ve ry s im i la r to th e

c o n ju ga te fa u l t p o p u la t io n A C -0 1 . F o r R e c he s ' m e th o d ( f ig u re s 9 -5 1 t h ro u g h 9 -5 5 ) , th e M

v a lu e s r e tu rn e d , o nc e a g a in , se e m ed to b e th e o p p o s i te o f w ha t o ne w o u ld ex p ec t . A M o f 1 .0 0

w a s re tu r n e d fo r a n in i t i a l M o f 0 .0 0 , a M o f 0 .7 6 w a s re tu r n e d fo r a n in i t i a l M o f 0 .2 5 , a M o f

0 .5 1 w a s re tu r n e d fo r a n in i t i a l M o f 0 .5 0 (w h ic h i s q u i t e g o o d ) , a M o f 0 .2 6 w a s re tu rn e d fo r

a n in i t i a l M o f 0 .7 5 , a nd a M o f 0 .0 2 w a s r e tu r n e d fo r a n in i t i a l M o f 1 .0 0 . N o t sur p r i s in g ly ,

1 3th e F a n d F w e re o n c e a g a in sw itc he d a nd a c o r re c t so lu t io n re su l t s i f th e y a re c ha ng e d .

U s in g A n g e l ie r 's m e th o d ( f ig u re s 9 -5 6 th ro u g h 9 -6 0 ) , th e o r ie n ta t io n s o f th e p r in c ip a l

1 2 3s t r e s s ax es F , F , a n d F w e re e x a c t ly m a tch ed fo r in i t ia l M v a lue s o f 0 .2 5 , 0 .5 0 , a n d 0 .7 5 . F o r

2 3a n in i t i a l M v a lu e o f 0 .0 0 , ho w e v e r , the o r ie n ta t io n s o f F a n d F w e re re v e r se d a nd fo r an

1 2i n i t i a l M v a lu e o f 1 .0 0 , th e o r ie n ta t io n s o f F a n d F w e re r e ve rse d . T h e e r ro r s in m a g n i tu d e

fo r th e c a lcu la ted va lue o f M w e re a l l l e ss th a n 0 .0 5 0 fo r e a c h in i t i a l M va lue .

C o m p a r i n g t h e re su l t s o f R e c h e s ' to A n g e l ie r 's m e tho d s fo r o r th o rh o m b ic fau l t

p o p u la t io n O S -0 1 ( tab le 9 -6 ) sho w s la r ge d ev ia t io ns in the o r i en ta t io ns o f the p r inc ip a l s t r e s s

a x e s a n d in th e c a lc u la te d v a lu e s fo r M b u t th is i s p r im a r i ly d u e to th e in a c c u ra c y o f R e c h e 's

m e tho d g iv e n th i s typ e o f fa u l t p o p u la t io n .

238

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.00 1.000 1.000

Figure 9-51 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population OS-01-

00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

239

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.25 0.755 0.505

Figure 9-52 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population OS-01-

25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

240

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.50 0.502 0.002

Figure 9-53 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population OS-01-

50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

241

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.75 0.261 0.489

Figure 9-54 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population OS-01-

75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

242

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 1.00 0.015 0.985

Figure 9-55 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population OS-01-

10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

243

Known Program Error

1F 90/000 90/196 0.0°

2F 00/090 00/360 90.0°

3F 00/000 00/090 90.0°

M 0.00 0.000 0.000

Figure 9-56 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population OS-01-

00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

244

Known Program Error

1F 90/000 90/131 0.0°

2F 00/090 00/270 0.0°

3F 00/000 00/000 0.0°

M 0.25 0.266 0.016

Figure 9-57 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population OS-01-

25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

245

Known Program Error

1F 90/000 90/126 0.0°

2F 00/090 00/270 0.0°

3F 00/000 00/000 0.0°

M 0.50 0.525 0.025

Figure 9-58 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population OS-01-

50 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

246

Known Program Error

1F 90/000 90/098 0.0°

2F 00/090 00/270 0.0°

3F 00/000 00/360 0.0°

M 0.75 0.776 0.026

Figure 9-59 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population OS-01-

75 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

247

Known Program Error

1F 90/000 00/270 90.0°

2F 00/090 90/090 90.0°

3F 00/000 00/180 0.0°

M 1.00 0.981 0.019

Figure 9-60 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population OS-01-

10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

248

Reches' Angelier's Deviation

Known

M of

0.00

1F 00/000 90/196 90.0°

2F 00/090 00/360 90.0°

3F 90/270 00/090 90.0°

M 1.000 0.000 1.000

Known

M of

0.25

1F 00/000 90/131 90.0°

2F 00/090 00/270 0.0°

3F 90/270 00/000 90.0°

M 0.755 0.266 0.489

Known

M of

0.50

1F 00/000 90/126 90.0°

2F 00/090 00/270 0.0°

3F 90/270 00/000 90.0°

M 0.502 0.525 0.023

Known

M of

0.75

1F 00/000 90/098 90.0°

2F 00/090 00/270 0.0°

3F 90/270 00/000 90.0°

M 0.261 0.776 0.515

Known

M of

1.00

1F 00/000 00/270 90.0°

2F 00/090 90/090 0.0°

3F 90/270 00/180 90.0°

M 0.015 0.981 0.966

1 2 3Table 9-6 - Table demonstrating the deviation for the orientations of the F , F , and F principal stress axes

and the principal stress magnitude ratio M between Reches' and Angelier's methods of paleostress analysis

on fault population OS-01 at five different values of M.

249

T h e ra d ia l sym m e t ry fau l t p o p u la t io n R S -0 1 w a s a l so ve ry s im i la r to the c o n ju g a te fau l t

p o p u la t io n A C -0 1 . T h e M v a lu e s r e tu rn e d b y R e c h e s ' m e th o d ( f ig u re s 9 -6 1 th ro u g h 9 -6 5 ) , o n c e

a g a in , se e m ed to b e th e o p p o s i t e o f w h a t o ne w o u ld ex p ec t . A M o f 1 .0 0 w a s re tu rn e d fo r an

in i t i a l M o f 0 .0 0 , a M o f 0 .7 5 w a s re tu r n e d fo r a n in i t i a l M o f 0 .2 5 , a M o f 0 . 5 8 w a s re tu rn e d

fo r a n in i t i a l M o f 0 .5 0 (w h ic h i s q u i te go o d ) , a M o f 0 .3 9 w a s re tu r n e d fo r a n in i t i a l M o f 0 .7 5 ,

1 3a n d a M o f 0 .1 8 w a s re tu r n e d fo r a n in i t i a l M o f 1 .0 0 . N o t su rp r is in g ly , th e F a n d F w e re o n ce

a ga in sw itc he d a nd a c o r re c t so lu t io n re su l t s i f th e y a re c ha ng e d .

U s in g A n g e l ie r 's m e th o d ( f ig u re s 9 -6 6 th ro u g h 9 -7 0 ) , th e o r ie n ta t io n s o f th e p r in c ip a l

1 2 3s t r e s s ax es F , F , a n d F w e re e x a c t ly m a tch e d fo r in i t ia l M v a lu e s o f 0 .5 0 , 0 .7 5 , a n d 1 .0 0 . F o r

2 3in i t i a l M va lu e s o f 0 .0 0 a n d 0 .2 5 , th e o r ie n ta t io n s o f F a n d F w e r e s t i l l q u i te s m a l l . T h e

e r r o rs in m a g n i tud e fo r th e c a lc u la te d v a lu e o f M w e re a l l l e ss th a n 0 .0 5 0 fo r e a c h in i t i a l M

v a lue .

C o m p a r in g the re su l t s o f R e c h e s ' to A n g e l ie r 's m e tho d s fo r ra d ia l sym m e t ry fau l t

p o p u la t io n R S -0 1 ( ta b le 9 -7 ) sh o w s la rg e d e v ia t io n s in th e o r ie n ta t io n s o f th e p r in c ip a l s t r e s s

a x e s a n d in th e c a lc u la te d v a l u e s fo r M b u t th is i s p r im a r i ly d u e to th e in a c c u ra c y o f R e c h e 's

m e tho d g iv e n th i s typ e o f fa u l t p o p u la t io n .

I t se e m s th a t fo r c o n j u g a te - typ e f a u l t se t s ( th e o r th o r h o m b ic a n d th e r a d i a l sym m e tr y

fau l t p o p u la t io n s a re b o th typ e s o f c o n ju g a te fau l t se t s ) , R e c h e s ' m e tho d p a le o s t r e s s a n a lys i s

1 3p r o g ra m re v e r se d th e o r ie n ta t io n s o f th e F an d F a xe s a n d c a lc u la te d M v a lu e s b a se d o n th a t

s w i tc h . T h is s e e m s t o b e a r e su l t o f th e m a th e m a t ic a l a lg o r i th m s u s e d to c a lc u la te th e

p a leo s t r e s s ax es . O the rw ise , the p ro gra m s d o r e tu rn the co r rec t o r i en ta t io ns fo r the p a l eo s t r e s s

a x e s a n d w o u l d y ie ld a c o r re c t so lu t io n . T h e M v a lu e s r e tu rn e d l ik e wise a re o n ly so m e w ha t

in c o r re c t . T h e M va lue re tu r n e d fo r a n in i t i a l M o f 0 .5 0 i s e s sen t ia l ly 0 .5 0 . F o r R ec he s '

m e th o d , th e M v a lu e r e tu rn e d fo r 0 .2 5 is e sse n t ia l ly 0 .7 5 (a n d v ic e v e rsa ) , a nd th e M v a lu e

250

r e tu rn e d fo r 0 .0 i s e x a c t ly 1 .0 ( a n d v ic e v e rsa ) . F o r A n g e l ie r 's m e th o d , th e M v a lu e s r e tu rn e d

a re e sse n t ia l ly co r r e c t .

251

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.00 1.000 1.000

Figure 9-61 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population RS-01-

00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

252

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.25 0.746 0.496

Figure 9-62 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population RS-01-

25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

253

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.50 0.583 0.083

Figure 9-63 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population RS-01-

50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

254

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 0.75 0.392 0.358

Figure 9-64 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population RS-01-

75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

255

Known Program Error

1F 90/000 00/000 90.0°

2F 00/090 00/090 0.0°

3F 00/000 90/270 90.0°

M 1.00 0.184 0.816

Figure 9-65 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population RS-01-

10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

256

Known Program Error

1F 90/000 90/102 0.0°

2F 00/090 00/263 7.0°

3F 00/000 00/353 7.0°

M 0.00 0.036 0.036

Figure 9-66 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population RS-01-

00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

257

Known Program Error

1F 90/000 90/012 0.0°

2F 00/090 00/269 1.0°

3F 00/000 00/179 1.0°

M 0.25 0.252 0.002

Figure 9-67 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population RS-01-

25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

258

Known Program Error

1F 90/000 90/081 0.0°

2F 00/090 00/270 0.0°

3F 00/000 00/180 0.0°

M 0.50 0.493 0.007

Figure 9-68 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population RS-01-

50 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

259

Known Program Error

1F 90/000 90/085 0.0°

2F 00/090 90/270 0.0°

3F 00/000 00/180 0.0°

M 0.75 0.742 0.008

Figure 9-69 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population RS-01-

75 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

260

Known Program Error

1F 90/000 00/090 0.0°

2F 00/090 90/270 0.0°

3F 00/000 00/180 0.0°

M 1.00 0.997 0.003

Figure 9-70 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population RS-01-

10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

261

Reches' Angelier's Deviation

Known

M of

0.00

1F 00/000 90/102 90.0°

2F 00/090 00/263 7.0°

3F 90/270 00/353 90.0°

M 1.000 0.036 0.964

Known

M of

0.25

1F 00/000 90/012 90.0°

2F 00/090 00/269 1.0°

3F 90/270 00/179 90.0°

M 0.746 0.252 0.494

Known

M of

0.50

1F 00/000 90/081 90.0°

2F 00/090 00/270 0.0°

3F 90/270 00/180 90.0°

M 0.583 0.493 0.090

Known

M of

0.75

1F 00/000 90/085 90.0°

2F 00/090 00/270 0.0°

3F 90/270 00/180 90.0°

M 0.392 0.742 0.350

Known

M of

1.00

1F 00/000 00/090 90.0°

2F 00/090 90/270 90.0°

3F 90/270 00/180 90.0°

M 0.184 0.997 0.813

1 2 3Table 9-7 - Table demonstrating the deviation for the orientations of the F , F , and F principal stress axes

and the principal stress magnitude ratio M between Reches' and Angelier's methods of paleostress analysis

on fault population RS-01 at five different values of M.

262

F i n a l ly , t h e t h re e f a u l t p o p u la t i o n s S O -0 1 , S O -0 2 , a n d S O -0 3 c o n s i s t i n g o f f a u l t p la n e s

o f s im i l a r o r i e n ta t i o n s w e re t e s t e d . T h e s e fa u l t s a l s o g a v e s o m e w h a t u n e x p e c t e d r e s u l t s w h ic h

w e re a b i t d i f f e r e n t f ro m th e r e s u l t s g iv e n fo r t h e o th e r s p e c ia l - c a s e fa u l t p o p u la t i o n s t e s te d .

F i r s t , c o n s id e r th e r e s u l t s fo r R e c h e s ' m e th o d o n fa u l t p o p u la t i o n S O -0 1 ( f i g u re s 9 -7 1

2t h ro u g h 9 -7 5 ) . T h e o r i e n ta t i o n s fo r th e F p r i n c i p a l s t r e s s a x e s a re c o r re c t , w h ic h i s n o t to o

1 3s u rp r i s in g c o n s id e r in g th a t t h e f a u l t s a re a l l p a ra l l e l t o th e e a s t -w e s t a x i s , b u t th e F a n d F

a x e s a r e q u i t e a b i t o f f (± 1 8 ° ) . T h e M v a lu e s r e tu rn e d b y th e p ro g ra m a re a l s o v e ry o d d . T h e

M v a l u e r e t u r n e d f o r a n i n i t i a l M o f 0 .0 0 i s n e g a t i v e a n d th e M v a l u e s r e t u r n e d f o r i n i t i a l M

v a lu e s o f 0 .7 5 a n d 1 .0 0 a r e b o th g re a te r t h a n 1 .0 . S in c e M i s d e f in e d a s b e in g b e tw e e n 0 .0 a n d

1 .0 i n c l u s i v e , t h e s e v a l u e s a r e o b v i o u s l y i n e r ro r . In t h i s c a s e , h o w e v e r , s w i t c h i n g t h e a x e s w i l l

n o t h e lp .

2F o r A n g e l i e r ' s m e th o d , i n a s im i l a r f a s h io n , t h e o r i e n ta t i o n s fo r th e F p r in c ip a l s t r e s s

1 3a x e s a re e s s e n t i a l l y c o r re c t a n d th e F a n d F a x e s a r e q u i t e a b i t o f f (± 1 6 ° ) . T h e e r ro r s i n

m a g n i t u d e f o r t h e c a l c u l a t e d v a l u e s o f M w e r e l a r g e s t ( a l m o s t 0 . 4 ) a t a n i n i t i a l M v a lu e o f 0 .5 0

a n d s o m e w h a t s m a l l e r f o r l a r g e r a n d s m a l l e r i n i t i a l M v a lu e s .

C o m p a r i n g t h e r e s u l t s o f R e c h e s ' t o A n g e l i e r ' s m e t h o d s f o r s i m i l a r o r i e n t a t i o n f a u l t

p o p u la t i o n S O -0 1 ( t a b le 9 -8 ) s h o w s l a rg e d e v ia t i o n s (± 3 6 ° ) in th e o r i e n ta t i o n s o f th e p r in c ip a l

1 2 3s t r e s s a x e s F , F , a n d F f o r a n i n i t i a l M v a lu e o f 0 .0 0 b u t r a th e r s m a l l d e v ia t i o n s ( l e s s th a n

1 0 ° ) f o r a l l o f th e p r i n c i p a l s t re s s a x i s o r i e n t a t i o n s a t in i t i a l M v a lu e s o f 0 .2 5 , 0 .5 0 , 0 .7 5 , a n d

1 .0 0 .

263

Known Program Error

1F 90/000 66/180 24.0°

2F 00/090 00/090 0.0°

3F 00/000 24/000 24.0°

M 0.00 -0.047 ?

Figure 9-71 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-01-

00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

264

Known Program Error

1F 90/000 72/000 18.0°

2F 00/090 00/090 0.0°

3F 00/000 18/180 18.0°

M 0.25 0.581 0.331

Figure 9-72 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-01-

25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

265

Known Program Error

1F 90/000 72/000 18.0°

2F 00/090 00/090 0.0°

3F 00/000 18/180 18.0°

M 0.50 0.847 0.347

Figure 9-73 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-01-

50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

266

Known Program Error

1F 90/000 72/000 18.0°

2F 00/090 00/090 0.0°

3F 00/000 18/180 18.0°

M 0.75 1.125 ?

Figure 9-74 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-01-

75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

267

Known Program Error

1F 90/000 72/000 18.0°

2F 00/090 00/090 0.0°

3F 00/000 18/180 18.0°

M 1.00 1.364 1.000

Figure 9-75 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-01-

10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

268

Known Program Error

1F 90/000 77/002 13.0°

2F 00/090 01/268 2.2°

3F 00/000 13/178 13.2°

M 0.00 0.136 0.136

Figure 9-76 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-01-

00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

269

Known Program Error

1F 90/000 81/000 9.0°

2F 00/090 00/270 0.0°

3F 00/000 09/180 9.0°

M 0.25 0.334 0.084

Figure 9-77 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-01-

25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

270

Known Program Error

1F 90/000 76/002 14.0°

2F 00/090 01/270 1.0°

3F 00/000 14/180 14.0°

M 0.50 0.880 0.380

Figure 9-78 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-01-

50 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

271

Known Program Error

1F 90/000 74/004 16.0°

2F 00/090 01/270 1.0°

3F 00/000 16/180 16.0°

M 0.75 0.939 0.189

Figure 9-79 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-01-

75 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

272

Known Program Error

1F 90/000 74/007 16.0°

2F 00/090 02/270 2.0°

3F 00/000 16/180 16.0°

M 1.00 0.967 0.033

Figure 9-80 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-01-

10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

273

Reches' Angelier's Deviation

Known

M of

0.00

1F 66/180 77/002 37.0°

2F 00/090 01/268 2.2°

3F 24/000 13/178 37.1°

M -0.047 0.136 ?

Known

M of

0.25

1F 72/000 81/000 9.0°

2F 00/090 00/270 0.0°

3F 18/180 09/180 9.0°

M 0.581 0.334 0.218

Known

M of

0.50

1F 72/000 76/002 4.0°

2F 00/090 01/270 1.0°

3F 18/180 14/180 4.0°

M 0.847 0.880 0.019

Known

M of

0.75

1F 72/000 74/004 2.3°

2F 00/090 01/270 1.0°

3F 18/180 16/000 2.0°

M 1.125 0.939 ?

Known

M of

1.00

1F 72/000 74/007 2.9°

2F 00/090 02/270 2.0°

3F 18/180 16/180 2.0°

M 1.364 0.967 ?

1 2 3Table 9-8 - Table demonstrating the deviation for the orientations of the F , F , and F principal stress axes

and the principal stress magnitude ratio M between Reches' and Angelier's methods of paleostress analysis

on fault population SO-01 at five different values of M.

274

T h e r e s u l t s f ro m R e c h e s ' m e th o d ( f i g u re s 9 -8 1 th ro u g h 9 -8 5 ) a n d A n g e l i e r ' s m e th o d

( f ig u re s 9 -8 6 th ro u g h 9 -9 0 ) fo r s im i l a r o r i e n ta t i o n f a u l t p o p u la t i o n S O -0 2 a r e e v e n w o rs e th a n

th o s e fo r S O -0 1 . N o n e o f t h e t h re e p r in c ip a l s t r e s s a x e s a re c o r re c t a n d n o n e o f th e M v a lu e s

a r e e v e n c l o s e t o b e i n g w h a t th e y s h o u l d b e . C o m p a r i n g R e c h e s ' t o A n g e l i e r ' s m e t h o d ( ta b l e

9 -9 ) s h o w s th a t , w h i l e b o th in c o r r e c t , th e y a re a l s o b o th c o n s i s te n t .

T h e r e s u l t s f ro m R e c h e s ' m e th o d ( f i g u re s 9 -9 0 th ro u g h 9 -9 5 ) a n d A n g e l i e r ' s m e th o d

( f ig u re s 9 -9 6 t h r o u g h 9 - 1 0 0 ) fo r s im i l a r o r i e n ta t i o n fa u l t p o p u la t i o n S O -0 3 h a s a s im i l a r

p ro b le m . N o n e o f th e t h re e p r in c ip a l s t r e s s a x e s a re c o r re c t a n d n o n e o f th e M v a lu e s a r e e v e n

c lo s e to b e in g w h a t th e y s h o u ld b e . C o m p a r in g R e c h e s ' t o A n g e l i e r ' s m e th o d ( t a b l e 9 -1 0 )

s h o w s th a t t h e s e re s u l t s a re a l s o c o n s i s te n t .

I a m n o t a b l e t o g iv e a s a t i s fa c t o ry e x p l a n a t io n o f w h y th e s e tw o f a u l t p o p u la t i o n s

s h o u l d b e s o f a r o f f . I t i s p r o b a b l y d u e t o t h e f a c t th a t w h e n y o u h a v e a p o p u l a t i o n o f f a u l t s

w h e re a l l o f th e m a re o f a s im i l a r o r i e n t a t i o n , t h e re i s n o t e n o u g h o f a c o n s t r a in t u p o n th e

lo c a t io n o f th e p r in c ip a l s t r e s s a x e s . T h e r a t i o n a le b e h in d a n e g a t iv e M v a lu e b e in g re tu rn e d

fo r S O -0 2 w h e n M i s i n i t i a l l y 0 .0 0 i s a m y s t e r y . I w a s n o t a b l e to a s c e r t a in w h y n e g a t iv e M

v a lu e s sh o u ld b e re tu rn e d . T h e r e a s o n i s u n d o u b ta b ly c o n ta in e d w i th in th e s o u rc e c o d e o f th e

p ro g ra m s a n d s im p le e r ro r c h e c k i n g s h o u ld h a v e b e e n a b l e t o c o n s t r a in M t o b e b e tw e e n 0 .0 a n d

1 .0 in c lu s iv e . A v a lu e o u ts id e o f t h a t r a n g e s h o u ld n o t b e a l l o w e d .

275

Known Program Error

1F 90/000 66/225 24.0°

2F 00/090 24/045 49.8°

3F 00/000 00/315 45.0°

M 0.00 0.045 0.045

Figure 9-81 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-02-

00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

276

Known Program Error

1F 90/000 81/175 9.0°

2F 00/090 01/272 2.2°

3F 00/000 09/002 9.2°

M 0.25 0.110 0.140

Figure 9-82 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-02-

25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

277

Known Program Error

1F 90/000 70/148 20.0°

2F 00/090 15/287 22.5°

3F 00/000 13/020 23.7°

M 0.50 0.275 0.225

Figure 9-83 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-02-

50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

278

Known Program Error

1F 90/000 55/135 35.0°

2F 00/090 30/282 32.1°

3F 00/000 16/021 26.2°

M 0.75 0.464 0.286

Figure 9-84 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-02-

75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

279

Known Program Error

1F 90/000 34/123 56.0°

2F 00/090 52/270 52.0°

3F 00/000 17/022 27.5°

M 1.00 0.469 0.531

Figure 9-85 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-02-

10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

280

Known Program Error

1F 90/000 7/047 13.0°

2F 00/090 01/313 43.0°

3F 00/000 13/223 44.6°

M 0.00 0.130 0.130

Figure 9-86 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-02-

00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

281

Known Program Error

1F 90/000 77/051 13.0°

2F 00/090 07/285 16.5°

3F 00/000 10/194 17.1°

M 0.25 0.252 0.002

Figure 9-87 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-02-

25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

282

Known Program Error

1F 90/000 75/082 15.0°

2F 00/090 14/284 19.7°

3F 00/000 05/192 13.0°

M 0.50 0.615 0.015

Figure 9-88 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-02-

50 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

283

Known Program Error

1F 90/000 61/103 29.0°

2F 00/090 29/279 30.2°

3F 00/000 01/010 10.0°

M 0.75 0.746 0.004

Figure 9-89 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-02-

75 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

284

Known Program Error

1F 90/000 37/101 53.0°

2F 00/090 52/270 52.0°

3F 00/000 05/0070 8.6°

M 1.00 0.786 0.214

Figure 9-90 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-02-

10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

285

Known Program Error

1F 90/000 49/210 41.0°

2F 00/090 41/030 67.8°

3F 00/000 00/120 60.0°

M 0.00 0.202 0.202

Figure 9-91 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-03-

00 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

286

Known Program Error

1F 90/000 59/203 31.0°

2F 00/090 30/036 59.4°

3F 00/000 06/303 57.2°

M 0.25 0.191 0.059

Figure 9-92 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-03-

25 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

287

Known Program Error

1F 90/000 59/191 31.0°

2F 00/090 20/065 31.6°

3F 00/000 23/326 40.3°

M 0.50 0.082 0.418

Figure 9-93 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-03-

50 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

288

Known Program Error

1F 90/000 57/175 33.0°

2F 00/090 05/273 5.8°

3F 00/000 33/007 33.7°

M 0.75 0.207 0.543

Figure 9-94 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-03-

75 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

289

Known Program Error

1F 90/000 50/155 40.0°

2F 00/090 19/270 19.0°

3F 00/000 33/013 35.2°

M 1.00 0.408 0.592

Figure 9-95 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-03-

10 using Reches' method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

290

Known Program Error

1F 90/000 80/202 10.0°

2F 00/090 02/302 32.1°

3F 00/000 10/032 33.4°

M 0.00 0.000 0.000

Figure 9-96 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-03-

00 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

291

Known Program Error

1F 90/000 79/189 11.0°

2F 00/090 02/287 17.1°

3F 00/000 11/017 20.2°

M 0.25 0.190 0.060

Figure 9-97 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-03-

25 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

292

Known Program Error

1F 90/000 79/184 11.0°

2F 00/090 01/090 1.0°

3F 00/000 11/360 11.0°

M 0.50 0.299 0.201

Figure 9-98 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-03-

50 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

293

Known Program Error

1F 90/000 79/187 11.0°

2F 00/090 01/090 1.0°

3F 00/000 11/359 11.0°

M 0.75 0.584 0.166

Figure 9-99 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-03-

75 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

294

Known Program Error

1F 90/000 69/130 21.0°

2F 00/090 16/270 16.0°

3F 00/000 13/004 13.6°

M 1.00 0.865 0.135

Figure 9-100 - Lower-hemisphere stereographic projection and table demonstrating the differences between

1 2 3the known and calculated principal stress axes F , F , and F and the value of M for fault population SO-03-

10 using Angelier's method of paleostress analysis. In the stereographic projection, the known principal stress

1 2 3axes F , F , and F are oriented up, east, and north respectively and the calculated principal stress axes are

denoted by the filled circles labelled 1, 2, and 3.

295

Reches' Angelier's Deviation

Known

M of

0.00

1F 66/225 77/047 37.0°

2F 24/045 01/313 88.6°

3F 00/315 13/223 88.1°

M 0.045 0.130 0.085

Known

M of

0.25

1F 81/175 77/051 19.5°

2F 01/272 07/285 14.3°

3F 09/002 10/194 22.4°

M 0.110 0.252 0.142

Known

M of

0.50

1F 70/148 75/082 19.3°

2F 15/287 14/284 3.1°

3F 13/020 05/192 19.7°

M 0.275 0.615 0.340

Known

M of

0.75

1F 55/135 61/103 17.8°

2F 30/282 29/279 2.8°

3F 16/021 01/010 18.5°

M 0.464 0.746 0.282

Known

M of

1.00

1F 34/123 37/101 18.1°

2F 52/270 52/270 0.0°

3F 17/022 05/007 19.0°

M 0.469 0.786 0.317

1 2 3Table 9-9 - Table demonstrating the deviation for the orientations of the F , F , and F principal stress axes

and the principal stress magnitude ratio M between Reches' and Angelier's methods of paleostress analysis

on fault population SO-02 at five different values of M.

296

Reches' Angelier's Deviation

Known

M of

0.00

1F 49/210 80/202 36.1°

2F 41/030 02/302 87.2°

3F 00/120 10/032 88.0°

M 0.202 0.000 0.202

Known

M of

0.25

1F 59/203 79/189 20.5°

2F 30/036 02/287 74.7°

3F 06/303 11/017 73.2°

M 0.191 0.190 0.001

Known

M of

0.50

1F 59/191 79/184 20.1°

2F 20/065 01/090 31.0°

3F 23/326 11/360 34.5°

M 0.082 0.299 0.217

Known

M of

0.75

1F 57/175 79/187 22.3°

2F 05/273 01/090 6.7°

3F 33/007 11/359 23.2°

M 0.202 0.584 0.382

Known

M of

1.00

1F 50/155 69/130 22.5°

2F 19/270 16/270 3.0°

3F 33/013 13/004 21.6°

M 0.408 0.865 0.457

1 2 3Table 9-10 - Table demonstrating the deviation for the orientations of the F , F , and F principal stress axes

and the principal stress magnitude ratio M between Reches' and Angelier's methods of paleostress analysis

on fault population SO-01 at five different values of M.

297

9 .4 O t h e r T e s t R e s u l t s

T h e p a l e o s t r e s s a n a ly s i s p ro g ra m s w e re n e x t c h e c k e d f o r th e i r s e n s i t i v i t y to a

v a r i a b i l i t y i n th e o r ie n t a t io n s o f t h e f a u l t p l a n e s a n d in t h e p i t c h a n g l e s o f th e s l i p v e c t o r s .

T h i s w a s d o n e b y a rb i t r a r i l y c h a n g in g th e o r i e n t a t i o n s o f o n e o r m o re o f th e f a u l t d a tu m s a n d

th e n r e c a l c u la t i n g th e p a l e o s t r e s s t e n s o r fo r th a t p o p u l a t i o n . T h e s e t e s t s w e re d o n e w i th th e

R P -0 1 , R P -0 2 , a n d R P -0 3 fa u l t p o p u la t i o n s . T h e p re l im in a ry r e s u l t s i n d i c a te th a t t h e p ro g ra m s

a re n o t v e ry s e n s i t i v e t o m i n o r c h a n g e s (± 5 ° ) in e i t h e r th e s t r i k e , d ip , o r p i t c h a n g l e s o f th e

fa u l t d a ta .

T h e p a l e o s t r e s s a n a l y s i s p r o g r a m s w e r e a l s o c h e c k e d f o r t h e i r s e n s i t i v i t y f o r ra n d o m l y

in s e r t i n g o r r e m o v in g a f a u l t p l a n e f ro m th e p o p u la t i o n . T h e s e t e s t s w e re p e r fo rm e d o n a l l o f

t h e f a u l t p o p u l a t i o n s d i s c u s s e d . A d d i n g o r r e m o v i n g a f a u l t p l a n e f ro m a p o p u l a t i o n u s u a l l y

h a d l i t t l e e f f e c t e x c e p t in c a s e s w h e re th e f a u l t p la n e s w e re p a ra l l e l t o o n e o f th e p r in c ip a l

p l a n e s o r i f t h e y w e r e t h e o n l y f a u l t p l a n e s a t s o m e s p e c i f ic o r i e n t a t i o n w h i c h w a s s u f f i c i e n t l y

fa r f r o m th e o th e r fa u l t p la n e s .

I n g e n e r a l , t h e t w o p a l e o s t r e s s a n a l y s i s p r o g r a m s t e s t e d r e t u r n e d c o n s i s t e n t re s u l t s

( w i t h s o m e n o t a b l e e x c e p t i o n s ) . T h i s i s im p o r t a n t s i n c e i f t w o s e p a r a t e p r o g r a m s r e t u r n w i d e l y

d i f fe r i n g re s u l t s , th e n o n e o r b o th o f t h e m a re w ro n g .

298

Known Program Error

1F ? 84/255 ?

2F ? 06/068 ?

3F ? 01/158 ?

M ? 0.050 ?

Figure 9-101 - Lower-hemisphere stereographic projection and table showing the calculated principal stress

1 2 3axes F , F , and F and the value of M for fault population FD-01-00 using Reches' method of paleostress

analysis. [38 Neogene-age normal faults from central Crete (Angelier, 1979); see p. 173, and Table 8-1, p. 175]

299

Known Program Error

1F ? 79/237 ?

2F ? 11/053 ?

3F ? 01/143 ?

M ? 0.225 ?

Figure 9-102 - Lower-hemisphere stereographic projection and table showing the calculated principal stress

1 2 3axes F , F , and F and the value of M for fault population FD-01-00 using Angelier's method of paleostress

analysis. [38 Neogene-age normal faults from central Crete (Angelier, 1979); see p. 173, and Table 8-1, p. 175]

300

C H A P T E R 1 0

C O N C L U S IO N S

N o w th a t th e r a t i o n a l e fo r th e t e s t s , t h e t e s t i n g p ro c e d u r e s , a n d th e t e s t r e s u l t s h a v e

b e e n e x p la in e d , i t i s t i m e to p u t i t a l l to g e th e r .

1 0 .1 W h a t d o th e R e su lt s M e a n ?

O n e m a y d ra w s e v e ra l c o n c lu s io n s f ro m th e d a ta p re s e n te d in c h a p te r 9 .

1 . T h e t w o m e t h o d s o f p a l e o s t r e s s a n a l y s i s e x a m i n e d s e e m t o w o r k f a i r ly w e l l f o r f a u l t

p o p u la t i o n s w i th m o d e ra te ly - s c a t t e re d fa u l t s s u c h a s t h o s e in p o p u la t i o n s R P -0 1 , R P -

0 2 , a n d R P - 0 3 . A p o p u l a t i o n o f f a u l t s w i th s o m e s c a t t e r e v id e n t ly a c t s t o c o n s t r a in th e

p o s s ib l e p o s i t i o n s o f th e p r in c ip a l s t re s s a x e s . W i th s u c h f a u l t p o p u la t i o n s , t h e

p ro g ra m s s e e m e d to r e tu rn b e t t e r s t r e s s a x e s o r i e n ta t i o n s a n d b e t t e r c a l c u la t e d v a lu e s

o f M f o r c a s e s w h e re M w a s n o t e q u a l to 0 . 0 o r 1 .0 . T h i s i s re a s o n a b l e s i n c e i t i s

im p o s s ib l e t o d i s t i n g u i s h b e tw e e n tw o o f th e s t r e s s a x e s w h e n th e y h a v e th e s a m e

2 3 2 1m a g n i tu d e s ( i . e . a t M = 0 .0 , F = F a n d a t M = 1 .0 , F = F ) .

2 . T h e tw o m e th o d s o f p a l e o s t r e s s a n a ly s i s e x a m in e d s e e m e d n o t to w o rk v e ry w e l l fo r

s p e c ia l - c a s e fa u l t p o p u la t i o n s . T h i s i s m o s t - l i k e ly d u e t o t h e f a c t t h a t s u c h p o p u la t i o n s

c a n n o t w e l l - c o n s t ra i n t h e p a l e o s t r e s s a x e s ( c h a p t e r 2 ) . W h i le s u c h s p e c i a l -c a s e

p o p u l a t i o n s w o u l d p r o b a b l y n e v e r b e u s e d f o r a p a l e o s t r e s s a n a l y s i s , m o r e w o r k i s

n e e d e d to d e t e rm in e i f c o n ju g a t e o r o r th o rh o m b ic f a u l t s e t s w i th i n m o d e ra t e ly -

s c a t t e re d fa u l t p o p u la t i o n s w o u ld h a v e a n a d v e rs e e f f e c t .

301

3 . T h e t w o m e t h o d s o f p a l e o s t r e s s a n a l y s i s e x a m i n e d s e e m e d t o b e f a i r l y i m m u n e t o m i l d

m e a s u r e m e n t e r r o r s a n d a s m a l l a m o u n t o f e x t r a n e o u s d a t a . M u c h o f t h e s e n s i t i v i t y i s

a r e s u l t o f e x a c t l y w h i c h p l a n e s a r e r e m o v e d o r a d d e d a n d m o r e w o r k i s n e e d e d t o

q u a n t i fy th i s . T h i s i s n e e d e d in o rd e r fo r p e o p le w h o u s e p a l e o s t r e s s a n a ly s i s p ro g ra m s

to re a l i z e w h a t ty p e o f a c c u ra c y th e i r r e s u l t s h a v e . T h e c a l c u la t i o n o f e r ro r c o n e s

a r o u n d th e r e t u r n e d p r in c ip a l s t r e s s a x e s w o u ld b e a u s e fu l a d d i t i o n t o p a l e o s t r e s s

p ro g ra m s .

4 . F i n a l ly , t h e tw o p a l e o s t r e s s a n a ly s i s p ro g ra m s e x a m in e d s e e m e d to c o m p a r e t o o n e

a n o th e r f a i r l y w e l l . T h e r e s u l t s r e t u rn e d fo r m o s t p o p u la t i o n s w e re c lo s e e n o u g h fo r

e i t h e r p r o g r a m t o b e u s e d w i t h a p p r o x i m a t e l y e q u a l a c c u r a c y . T h e e x c e p t i o n s t o t h i s

w e r e w h e n o n e o r t h e o t h e r o f t h e p r o g r a m s " b l e w u p " ( a s i n t h e c a s e o f c o n j u g a t e f a u l t

s e t s ) a n d r e t u r n e d t o t a l l y i n c o r re c t d a t a . M o r e w o r k i s n e e d e d t o s e e i f t h e s e f a v o r a b l e

c o m p a r i s o n s h o ld u p w i t h a d d i t io n a l t e s t s .

I n m o s t r e g a r d s , R e c h e s ' a n d A n g e l i e r ' s m e t h o d s o f p a l e o s t r e s s a n a l y s i s s e e m e d t o

p e r fo r m f a i r l y w e l l . C a u t i o n m u s t b e u s e d w h e n a p p l y i n g t h e s e m e t h o d s , h o w e v e r , a n d m o r e

s y s t e m a t i c t e s t s a re n e e d e d to fu r th e r o u t l i n e t h e tw o p ro g ra m 's l im i t a t i o n s fo r c e r t a in ty p e s

o f fa u l t p o p u l a t io n s .

1 0 .2 P r a c t ic a l P r o b le m s in E v a lu a t in g P a le o str e ss A n a ly s is P r o g r a m s

T h e r e a r e s e v e r a l i m p o r t a n t p r a c t i c a l p r o b l e m s w h i c h m a y a r i s e w h e n a t t e m p t i n g t o

c o m p a re a n d e v a lu a te p a le o s t r e s s a n a ly s i s p ro g ra m s . A fe w o f t h e m a re l i s t e d b e lo w .

1 . W h e n u s i n g a p r o g r a m w r i t t e n b y s o m e o n e e l s e f o r p e r fo r m i n g p a l e o s t r e s s a n a l y s i s

302

t e c h n i q u e s , o n e m u s t b e s u r e th a t t h e p r o g r a m d o e s w h a t i t 's s u p p o s e d t o d o . I t i s v i r t u a l l y

im p o s s ib le to t e s t a p ro g ra m s u c h th a t o n e w i l l h a v e 1 0 0 % c o n f id e n c e in i t s p e r fo rm a n c e .

T h e r e f o r e , i t i s u s u a l l y a d v i s a b l e t o c a r e f u l l y c h e c k t h e p r o g r a m 's s o u r c e c o d e f o r a n y p o s s i b l e

e r ro rs . T h i s m a y b e a n e x t r e m e ly d i f f i c u l t a n d t im e -c o n s u m in g p ro je c t s i n c e p ro g ra m m e rs m a y

n o t w r i t e th e i r s o u rc e c o d e i n a c l e a r a n d c o n s i s t e n t m a n n e r . P o o r ly d o c u m e n te d p ro g ra m s m a y

b e a l m o s t i m p o s s i b l e t o r e a d a n d u n d e r s t a n d s i n c e t h e s o u r c e c o d e f o r p a l e o s t r e s s a n a l y s i s

p ro g ra m s m a y e a s i l y ru n in to h u n d re d s o f p r in t e d p a g e s . T h e re i s a l s o th e p ro b le m o f

p r o g r a m m e r s w h o w i l l n o t a l lo w y o u to s e e th e i r s o u r c e c o d e ( s u c h a s A n g e l i e r ) . O n e m u s t

th e n m a k e a d e c i s io n a s to w h e th e r o r n o t t o u s e t h e i r p ro g ra m . S i n c e p u b l i s h e d f i e ld s tu d i e s

h a v e m a d e u s e o f A n g e l i e r ' s m e th o d " a s i s " , I c h o s e t o t e s t i t e v e n th o u g h I h a d n o a c c e s s t o th e

o r ig in a l s o u rc e c o d e . A p o s s ib l e w a y a ro u n d t h i s p ro b l e m m ig h t b e to w r i t e y o u r o w n

p a le o s t r e s s a n a ly s i s p ro g ra m s ba se d up o n th e i r pu b l i sh e d m a th e m a t i c a l a lg o r i t h m s . S in c e s u c h

p ro g ra m s w o u ld o f t e n u s e s im i l a r p ro c e d u r e s , a m o d u la r a n d h ig h ly - s t ru c tu re d p ro g ra m m in g

la n g u a g e s u c h a s C w o u ld b e p re f e r a b l e t o m o s t o th e r s s i n c e th a t w o u ld a l l o w th e s h a r in g o f

m a n y s u b ro u t in e s b y s e v e ra l d i f f e re n t p ro g ra m s . A d ra w b a c k o f t h i s s o lu t io n , h o w e v e r , i s t h a t

i t w o u ld b e v e ry t im e -c o n s u m in g a n d a l s o s o m e w h a t f ru s t r a t i n g s in c e p u b l i s h e d d e sc r ip t i o n s

o f th e m a th e m a t i c a l a lg o r i t h m s u s e d b y p a l e o s t r e s s a n a ly s i s p ro g ra m s a r e n o t a lw a y s c le a r a n d

e a s y to fo l l o w . I t i s o b v io u s ly a l e s s - a p p e a l i n g p r o sp e c t th a n o b ta in in g a w o rk in g (a n d

p re s u m a b ly te s te d ) p ro g ra m f ro m s o m e o n e e l s e .

2 . C lo se ly r e l a t e d to t h e a b o v e p ro b le m i s t h a t p a l e o s t r e s s a n a ly s i s p ro g ra m s a re w r i t t e n

in m a n y d i f f e r e n t c o m p u te r l a n g u a g e s fo r s e v e r a l d i f f e r e n t t y p e s o f c o m p u te r s . I h a v e

p ro g ra m s w r i t t e n in F O R T R A N f o r a n I B M P C , B A S I C fo r a n IB M P C , F O R T R A N fo r

a M a c in to sh I I , F O R T R A N fo r a V A X -8 6 5 0 m a in f ra m e , a n d a

303

p a le o s t r e s s a n a ly s i s p ro g ra m c a l l e d R O M S A f ro m L i s l e (1 9 8 8 ) in a n o d d v e r s io n o f B A S IC th a t

d o e s n o t s e e m to ru n c o r re c t ly o n a n y c o m p u te r I 'v e u se d . W h e n c o m p a r in g p ro g ra m s w r i t t e n

in d i f f e r e n t l a n g u a g e s fo r d i f f e r e n t m a c h i n e s , i t i s d i f f i c u l t t o d e t e rm in e i f a n e r ro r i s d u e to th e

m a th e m a t i c a l a lg o r i t h m u s e d , th e l a n g u a g e u s e d , o r th e m a c h i n e u s e d . D i f f e r e n t l a n g u a g e s a n d

m a c h i n e s w i l l h a v e th e i r o w n w a y s o f t ru n c a t in g n u m b e r s , ro u n d in g -o f f n u m b e r s , a n d e r ro r

h a n d l i n g .

3 . W h e n a p a l e o s t r e s s a n a l y s i s p ro g ra m re tu rn s a n i n c o r re c t r e s u l t , i t i s d i f f i c u l t t o

e v a l u a t e t h e s o u r c e o f t h a t e r r o r . I s t h e e r r o r a m e c h a n i c a l e r r o r ( a p l u s s i g n w h e r e

th e re s h o u ld b e a m i n u s s i g n in th e p ro g ra m ) o r th e r e s u l t o f a n in h e re n t f l a w in th e

t e c h n i q u e ? D id th e e r ro r a r i s e a s a re s u l t o f th e m a th e m a t i c a l t e c h n i q u e s u se d o r

b e c a u s e t h e i n i t i a l a s s u m p t i o n s u n d e r l y i n g t h e w h o l e c o n c e p t a r e i n c o r re c t . T h e s e a r e

v e ry d i f f i c u l t p ro b le m s to a d d re s s a n d o n l y b y th o ro u g h t e s t i n g c a n th e y b e e v a l u a t e d .

4 . A n o th e r p r o b l e m fa c e d w h e n a t t e m p t in g to c o m p a re v a r io u s m e t h o d s o f p a l e o s t r e s s

a n a ly s i s i s t h a t m o s t o f th e m , b a s e d u p o n p e r s o n a l e x p e r i e n c e , r e q u i r e th e i r i n i t i a l

f a u l t - s l i p d a t a t o b e fo rm a t t e d i n d i f f e r e n t w a y s . S h o u l d th e f a u l t o r i e n t a t i o n d a t a b e

e n t e r e d a s a s t r i k e , d ip , a n d d ip d i r e c t i o n fo r e a c h f a u l t p l a n e o r a s a s t r i k e a n d d ip fo r

e a c h fa u l t p l a n e w h e re t h e s t r i k e i s a s su m e d to fo l l o w a r i g h t -h a n d ru l e ( t h e s t r i k e i s t h e

t r e n d o f t h e f a u l t 's p o l e + 9 0 ° ) o r s i m p l y a s a p l u n g e a n d t r e n d f o r t h e p o l e t o e a c h f a u l t

p la n e ? S h o u ld th e o r i e n ta t i o n s o f th e s t r i a t i o n s o n th e f a u l t p la n e b e e n te re d a s p i t c h

a n g l e s o r a s p lu n g e a n d t r e n d v a l u e s o r s im p ly a s a t r e n d ( s in c e t h e p lu n g e w i l l b e

c o n s t r a in e d b y th e f a u l t ' s o r i e n t a t i o n )? S h o u ld t h e f a u l t ' s s e n s e o f s l i p b e g iv e n a s u p ,

d o w n , l e f t , o r r i g h t o r s h o u l d i t b e s p e c i f i e d b y th e p i t c h a n g l e o f th e s t r i a t i o n s o r

s h o u ld i t b e g i v e n a s a c lo c k w i s e o r c o u n te r c l o c k w is e r o t a t io n a b o u t s o m e a x i s ?

F i n a l ly , s h o u ld th e f a u l t d a t a b e a s s ig n e d s o m e ty p e o f w e ig h t in g s c h e m e ?

304

E v e ry o n e w r i t i n g p a l e o s t r e s s a n a ly s i s p ro g ra m s h a s th e i r o w n p re f e r e n c e s a n d , u n fo r tu n a t e ly ,

t h e y n e v e r s e e m t o c o r re s p o n d . A w a y a r o u n d t h i s m e s s w o u l d b e t o w r i te a l l o f th e a n a l y s i s

p ro g ra m s y o u r s e l f a n d u s e a c o n s i s te n t s c h e m e fo r e n t e r in g th e d a t a - - t h i s o p t io n h a s t h e

d ra w b a c k s l i s te d i n n u m b e r 1 a b o v e . A n o th e r p o s s ib l e s o lu t io n i s t o w r i t e a p ro g ra m to d o th e

c o n v e rs io n s a n d th e n w r i t e t h e c o n v e r t e d d a ta t o a n i n p u t f i l e fo r e a c h ty p e o f a n a ly s i s p ro g ra m

u s e d . S u c h a p r o g r a m w o u l d h a v e t h e a d v a n t a g e o f r e c e i v i n g d a t a i n a n y f o r m a t y o u w e r e

c o m fo r t a b l e w i th a n d a u to m a t i c a l l y c o n v e r t i n g i t fo r y o u . D o in g a l l o f th e c o n v e r s io n s b y h a n d

f o r s e v e r a l d i f fe r e n t p a l e o s t r e s s a n a l y s i s m e t h o d s c a n b e e x t r e m e l y t i m e - c o n s u m i n g a n d i s

o b v io u s ly m o re p ro n e to r a n d o m e r ro r s th a n i s a n a u to m a te d c o n v e r s io n s y s t e m .

5 . U s in g p ro g r a m s w r i t t e n b y s o m e o n e e l s e h a s o th e r p ro b le m s a s w e l l . I 'v e r e c e iv e d

p a l e o s t r e s s a n a ly s i s p ro g ra m s w i t h s e v e ra l p a g e s o f f a i r l y c l e a r d o c u m e n ta t io n , I 'v e

re c e iv e d p ro g ra m s w i th se v e ra l p a g e s o f d o c u m e n ta t io n in F re n c h , a n d I 'v e r e c e iv e d

p r o g r a m s w i th a b s o lu t e l y n o d o c u m e n ta t io n w h a t s o e v e r . A t t e m p t in g to u s e

u n d o c u m e n te d p ro g ra m s i s a " t r i a l a n d e r ro r" p ro c e d u re w h ic h in v o lv e s m u c h w a s t e d

t im e a n d e f fo r t . A n g e l i e r ' s p r o g r a m (c h a p t e r 6 ) i s p ro b a b ly th e w o rs t i n th a t r e g a r d .

I fo u n d h i s p ro g ra m to b e e x c e e d in g ly d i f f i c u l t t o u s e - - e v e n a f t e r h a v in g e x p e r i e n c e

w i th se v e ra l o th e r m e th o d s o f p a l e o s t r e s s a n a ly s i s . I t w a s a n u n d o c u m e n te d , c o m p i l e d

p r o g r a m w i t h u n c l e a r a n d m i s l e a d i n g i n t e r a c t i v e p r o m p t s a n d I f o u n d i t t o b e v e r y

c o u n t e r - in tu i t i v e i n th e w a y i t w o rk e d . T h e p ro g ra m u s in g R e c h e s ' m e th o d o f

p a le o s t r e s s a n a ly s i s w h ic h w a s w r i t t e n b y K e n n e th H a rd c a s t l e ( c h a p te r 7 ) , o n th e o th e r

h a n d , w a s v e ry e a s y t o u s e . M o s t p a le o s t r e s s a n a ly s i s p ro g ra m s l i e b e tw e e n th o s e tw o

e x t r e m e s .

6 . S o m e m e th o d s o f p a l e o s t re ss a n a ly s is a re v e ry c o m p u ta t io n a l ly - in t e n s iv e . G e p h a r t a n d

305

F o r sy th 's m e th o d (1 9 8 4 ) w a s n o t e x a m in e d in m y s tu d y fo r t h e s im p le r e a s o n th a t a p o p u la t i o n

o f 2 0 f a u l t s t a k e s a fu l l 2 4 -h o u r d a y to ru n ! T e s t i n g d o z e n s o f s u c h fa u l t s ( e s p e c i a l l y w i th o u t

o w n i n g a n a p p r o p r ia t e c o m p u te r ) i s a m a j o r p r o j e c t . T e s t in g n o n - l i n e a r in v e r s io n m e t h o d s ,

s u c h a s A n g e l i e r ' s , m a y a l s o b e v e r y t i m e - i n t e n s i v e f o r l a r g e f a u l t p o p u l a t i o n s . A s f a u l t s a r e

a d d e d to th e p o p u la t i o n s a r i t h m a t i c a l l y , t h e t im e n e e d e d to pe r fo rm a n a n a ly s i s in c re a se s

e x p o n e n t i a l l y d u e to th e m a th e m a t ic s in v o lv e d in p e r fo rm in g m a t r ix in v e r s io n s (w h e re t h e

m a t r ic e s m a y h a v e a ra n k o f 2 n w h e re n i s th e n u m b e r o f fa u l t s in th e p o p u la t i o n e x a m in e d ) .

7 . S i n c e m o s t o f t h e p io n e e r s i n p a l e o s t r e s s a n a l y s i s a r e F r e n c h , m a n y o f t h e i m p o r t a n t

p a p e r s a n d e v e n s o m e o f t h e p ro g ra m d o c u m e n ta t io n i s w r i t t e n in th a t l a n g u a g e . I f o n e

d o e s n o t p o s s e s s a r e a d i n g k n o w le d g e o f F r e n c h , i t i s d i f f i c u l t t o l e a r n a l l t h a t o n e

s h o u l d a b o u t p a l e o s t r e s s a n a l y s i s t e c h n i q u e s . I w a s f o r t u n a t e i n h a v i n g a c c e s s t o

s o m e o n e (D e b ra L e n a rd o f S U N Y A lb a n y ) w h o w a s a b l e to t r a n s l a t e F re n c h te c h n ic a l

p a p e r s i n to E n g l i s h w i th o u t t o o m u c h d i f f i c u l ty . T h e p ro c e s s d id , h o w e v e r , t a k e s o m e

t i m e a n d e f f o r t .

8 . F i n a l ly , i t i s v e ry d i f f i c u l t t o c h o o s e a r t i f i c i a l f a u l t p o p u l a t i o n s fo r t e s t i n g th e v a r io u s

m e th o d s o f p a l e o s t r e s s a n a ly s i s . S i n c e a n i n f in i t e v a r i e ty o f p o p u l a t i o n s m a y b e

c r e a t e d , c a re f u l t h o u g h t m u s t g o i n t o th e p r o b l e m . O b v io u s ly , i t i s d e s i ra b l e t o t e s t

s p e c i a l -c a s e s (e .g . a p o p u la t i o n c o n ta in in g a f a u l t p la n e p a ra l l e l t o o n e o f th e p r in c ip a l

s t r e s s a x e s ) a n d g e o lo g ic a l ly - re a l i s t i c f a u l t p o p u l a t io n s (e .g . o r t h o r h o m b i c s y m m e t r y

fa u l t s e t s ) . E v e ry p o s s ib l e t y p e o f f a u l t p o p u la t i o n c a n n o t b e t e s te d , h o w e v e r , s o t h e

b e s t o n e m a y h o p e fo r i s t o b e a b l e t o fo rm u la t e g e n e ra l ru l e s o r g u id e l in e s fo r u s in g

p a le o s t r e s s a n a l y s i s t e c h n iq u e s (e .g . s t a t i n g t h a t m e t h o d A i s b e t t e r f o r t e s t i n g s m a l l

p o p u la t i o n s o f fa u l t s w h i l e m e th o d B i s b e t t e r fo r l a rg e r o n e s o r m e th o d C c a n n o t b e

306

u s e d fo r fa u l t p o p u la t i o n s c o n ta in in g c o n ju g a te s e t s o f fa u l t s , e tc . ) .

A n t i c ip a t in g t h e o b l ig a to ry q u e s t io n " I f y o u h a d to d o i t a l l o v e r a g a in , w h a t w o u ld y o u

d o d i f f e r e n t ly ? " , I w o u ld re p ly a s fo l l o w s . I f I h a d to d o i t a l l o v e r a g a in , I w o u ld f i r s t t a k e t h e

t i m e t o w r i te m y o w n c o m p u t e r p r o g r a m s - - i n a l a n g u a g e s u c h a s C a n d f o r a n I B M P C - - t o

p e r fo r m s e v e r a l d i f fe r e n t m e t h o d s o f p a l e o s t r e s s a n a l y s i s . T h e p r o g r a m s w o u l d r e a d t h e d a t a

f ro m a s i n g l e t y p e o f A S C I I f a u l t - s l i p d a t a f i l e a n d w r i te t h e r e s u l t s in a s t a n d a r d i z e d f o r m a t .

O n c e th i s w e re d o n e (n o t a t r i v ia l t a s k ) , t h e t e s t i n g o f t h e se m e th o d s w o u ld b e m u c h e a s i e r th a n

i t i s b y u s in g o th e r p e o p le 's p ro g ra m s . I h a d no w a y o f k n o w in g th i s , h o w e v e r , b e fo re I b e g a n

th i s s tu d y .

1 0 .3 S u g g e s t io n s fo r F u t u r e W o r k

T h e r e i s a g r e a t n e e d f o r m o r e w o r k o n t h e p r o b l e m s o f p a l e o s t r e s s a n a l y s i s . A s m o r e

p e o p le u s e p a le o s t r e s s a n a ly s i s p ro g ra m s , s u c h a s th o s e w r i t t e n b y A n g e l i e r , a g re a te r n e e d

e x i s t s fo r p e o p le t o e v a lu a t e t h e i r e f f e c t i v e n e s s . W h i l e A n g e l i e r m a y b e a w a r e o f th e

l im i t a t i o n s o f h i s m e th o d , th o s e w h o u s e h i s p ro g ra m m a y n o t b e . I r e a l i z e t h a t t h i s t h e s i s s tu d y

i s o n l y a b e g in n in g in t h e s y s t e m a t i c e x a m in a t io n o f p a l e o s t r e s s a n a l y s i s , b u t a t l e a s t i t ' s a

b e g in n in g . S i n c e t h e o b v io u s t im e c o n s t r a in t s fo r m y th e s i s d e fe n s e h a v e p re v e n t e d m e f ro m

in c lu d in g m u c h m o re o f t h e p re l im in a ry d a ta I 'v e g a th e re d , I p la n t o c o n t in u e w i th th e a n a ly se s

o f th e se p a le o s t r e s s p ro g ra m s (p o s s ib ly w i th th e a d d i t io n o f o n e o r t w o m o r e s u c h a s

E t c h e c o p a r 's m e t h o d a n d / o r G e p h a r t a n d F o r s y t h ' s m e t h o d ) w i t h t h e g o a l o f s e n d i n g t h e r e s u l t s

fo r p u b l i c a t i o n b e fo re th e s u m m e r o f 1 9 9 1 .

T h e m a jo r s u g g e s t io n I w o u ld le a v e fo r a n y o n e ( i n c lu d in g m y se l f ) p la n n in g to fu r th e r

e x a m i n e p a l e o s t r e s s a n a l y s i s t e c h n i q u e s , i s to d o w h a t I o u t l in e d i n t h e p r e v i o u s s e c t i o n . W r i te

t h e p r o g r a m s y o u r s e l f a n d s t a n d a r d i z e t h e m . I w o u l d a l s o s u g g e s t q u a n t i fy i n g g r a p h i c a l

307

m e th o d s o f p a l e o s t r e s s a n a ly s i s s u c h a s L i s le 's (1 9 8 8 ) s o th a t t h e y m a y b e ru n o n a c o m p u te r

a s w e l l . F i n a l ly , t h e c o m p a r i s o n o f t h e d y n a m ic p a l e o s t r e s s a n a ly s i s t e c h n i q u e s t o th e v a r io u s

k i n e m a t i c a n a l y s i s t e c h n i q u e s w h i c h h a v e b e e n p r o p o s e d ( M a r re t t a n d A l l m e n d i n g e r , 1 9 9 0 ) i s

s u re to y i e ld so m e f ru i t fu l i n s ig h t s in to th e m e c h a n ic s o f f a u l t i n g a n d t h e r e l a t i o n s h ip s b e tw e e n

s t r e s s a n d s t r a in .

308

APPENDIX A

GLOSSARY OF SYMBOLS

T h e f o l l o w i n g i s a l i s t o f m a t h e m a t i c a l s y m b o l s u s e d i n t h i s t h e s i s . T h e s y m b o l s a r e

l i s t e d i n a l p h a b e t i c a l o r d e r w i t h t h e L a t i n a l p h a b e t l i s t e d b e f o r e t h e G r e e k a l p h a b e t . A r b i t r a r y

c o n s ta n t s a r e n o t l i s t e d a n d in c a s e s w h e r e t h e s a m e s y m b o l h a s b e e n u s e d in tw o d i f f e r e n t

c o n te x ts , b o th a re l i s t e d s e p a ra te ly .

0C = Cohesion term of the Coulomb failure criterion

d = Trend of a fault plane's dip direction

NF = Normal force acting upon a plane

SF = Shear force acting upon a plane

TF = Total force acting upon a plane

i = Pitch angle of a fault plane's slip vector

il = Direction cosine where i = 1, 2, or 3

1l = Direction cosine equivalent to l

el = Direction cosine between a fault normal and east

nl = Direction cosine between a fault normal and north

ul = Direction cosine between a fault normal and the vertical axis

2m = Direction cosine equivalent to l

N = Normal force acting upon a plane

N = Normal vector to a fault plane

n = Normal force acting upon a plane

3n = Direction cosine equivalent to l

O = Normal vector to a movement plane

p = A fault plane's dip angle

309

R = Ratio of the principal stress axes

r = Pitch of a slip vector on a plane

S = Shear force acting upon a plane

S = Slip vector in a fault plane

s = Shear force acting upon a plane

T = Total stress vector acting upon a plane

iT = Total stress vector component i where i = 1, 2, or 3

1t = A positive constant

2t = A positive constant

1,2 2,1" = The shear stress term F or F

2,3 3,2$ = The shear stress term F or F

1,3 3,1( = The shear stress term F or F

* = Tensor aspect ratio of the principal stress axes

* = Dip angle of a plane

, = Meaurement error

0, = Difference between average strike and true strike

S, = Strike measurement error

T, = Trend measurement error

: = Coefficient of friction term of the Coulomb failure criterion

F = The standard deviation of a variable x x

F = The geologic stress tensor

F' = The reduced geologic stress tensor

1F = Most compressive principal stress axis

2F = Intermediate principal stress axis

310

3F = Least compressive principal stress axis

i,jF = Stress tensor component (i,j) where i and j = 1, 2, or 3

nF = Normal stress acting upon a plane

sF = Shear stress acting upon a plane

xF = Principal stress axis in the X-direction

yF = Principal stress axis in the Y-direction

zF = Principal stress axis in the Z-direction

M = Ratio of the principal stress axes

R = Angular measure modulo 2B

311

A P P E N D IX B

A R T IF IC IA L F A U L T P O P U L A T I O N D A T A

T h i s i s a l i s t i n g o f a l l t h e a r t i f i c i a l fa u l t p o p u l a t i o n d a t a s h o w n i n s t e r e o g r a p h i c

p ro j e c t io n i n c h a p t e r 8 . T h e c h a n g e i n s l i p v e c to r o r i e n t a t i o n s i s s h o w n fo r e a c h o f th e f i v e

v a l u e s o f M e x a m i n e d ( 0 .0 0 , 0 . 2 5 , 0 . 5 0 , 0 . 7 5 , 1 . 0 0 ) a n d t h e f o r m a t fo r e a c h f a u l t d a t u m i s :

4 6 1 9 2 8 6

w h e re 4 6 ° i s t h e p lu n g e o f th e f a u l t ' s n o rm a l v e c to r , 1 9 2 ° i s t h e t r e n d o f th e f a u l t ' s n o rm a l

v e c t o r , a n d 8 6 ° i s t h e p i t c h o f th e s l i p v e c to r . T h e p i t c h a n g l e i s t h e a n g l e , i n th e p l a n e o f th e

fa u l t , b e tw e e n t h e s t r i k e v e c t o r a n d th e s l i p v e c to r . T h e s t r i k e v e c t o r p o in t s i n th e d i r e c t i o n

d e f in e d b y th e t r e n d o f th e f a u l t p l a n e 's n o r m a l v e c to r + 9 0 ° ( i . e . 2 8 2 ° ) . A p i t c h i s n e g a t i v e i f

t h e a n g l e i s m e a s u r e d f ro m t h e o p p o s i t e s i d e o f t h e s t r ik e v e c t o r ( i . e . t h e t re n d o f t h e f a u l t

p l a n e ' s n o rm a l v e c to r - 9 0 ° ) . A l l o f t h e f a u l t s a r e n o rm a l f a u l t s s o n o a d d i t i o n a l in fo rm a t io n

is n e e d e d re g a rd in g s e n s e -o f - s l i p .

312

R P -0 1 F A U L T P O P U L A T IO N

M = 0 .0 0 M = 0 .2 5 M = 0 .5 0 M = 0 .7 5 M = 1 .0 0

4 6 1 9 2 9 0 4 6 1 9 2 8 6 4 6 1 9 2 8 2 4 6 1 9 2 7 8 4 6 1 9 2 7 4

2 7 0 1 4 9 0 2 7 0 1 4 8 3 2 7 0 1 4 7 5 2 7 0 1 4 6 8 2 7 0 1 4 6 1

5 2 0 2 5 9 0 5 2 0 2 5 8 3 5 2 0 2 5 7 5 5 2 0 2 5 6 7 5 2 0 2 5 5 9

4 1 3 3 1 9 0 4 1 3 3 1 -8 0 4 1 3 3 1 -7 0 4 1 3 3 1 -5 9 4 1 3 3 1 -5 0

3 9 3 2 6 9 0 3 9 3 2 6 -7 9 3 9 3 2 6 -6 6 3 9 3 2 6 -5 4 3 9 3 2 6 -4 3

2 3 0 2 3 9 0 2 3 0 2 3 7 7 2 3 0 2 3 6 4 2 3 0 2 3 5 2 2 3 0 2 3 4 3

3 5 0 1 3 9 0 3 5 0 1 3 8 4 3 5 0 1 3 7 9 3 5 0 1 3 7 3 3 5 0 1 3 6 8

2 5 3 4 0 9 0 2 5 3 4 0 -7 9 2 5 3 4 0 -6 8 2 5 3 4 0 -5 8 2 5 3 4 0 -4 9

3 1 3 3 9 9 0 3 1 3 3 9 -8 0 3 1 3 3 9 -7 1 3 1 3 3 9 -6 2 3 1 3 3 9 -5 3

3 8 2 1 1 9 0 3 8 2 1 1 7 9 3 8 2 1 1 6 8 3 8 2 1 1 5 6 3 8 2 1 1 4 6

5 5 0 3 6 9 0 5 5 0 3 6 8 1 5 5 0 3 6 7 1 5 5 0 3 6 6 0 5 5 0 3 6 4 8

4 0 0 5 4 9 0 4 0 0 5 4 7 8 4 0 0 5 4 6 1 4 0 0 5 4 4 3 4 0 0 5 4 2 5

4 9 0 1 8 9 0 4 9 0 1 8 8 4 4 9 0 1 8 7 8 4 9 0 1 8 7 3 4 9 0 1 8 6 7

3 4 2 2 1 9 0 3 4 2 2 1 7 6 3 4 2 2 1 6 1 3 4 2 2 1 4 3 3 4 2 2 1 3 3

5 8 0 4 0 9 0 5 8 0 4 0 8 1 5 8 0 4 0 7 0 5 8 0 4 0 5 8 5 8 0 4 0 4 5

3 6 0 2 4 9 0 3 6 0 2 4 8 1 3 6 0 2 4 7 1 3 6 0 2 4 6 2 3 6 0 2 4 5 3

4 1 0 3 0 9 0 4 1 0 3 0 8 0 4 1 0 3 0 6 9 4 1 0 3 0 5 9 4 1 0 3 0 4 9

2 6 3 2 9 9 0 2 6 3 2 9 -7 5 2 6 3 2 9 -6 0 2 6 3 2 9 -4 7 2 6 3 2 9 -3 6

313

R P -0 2 F A U L T P O P U L A T IO N

M = 0 .0 0 M = 0 .2 5 M = 0 .5 0 M = 0 .7 5 M = 1 .0 0

3 6 0 0 2 9 0 3 6 0 0 2 8 9 3 6 0 0 2 8 8 3 6 0 0 2 8 7 3 6 0 0 2 8 7

2 4 0 2 2 9 0 2 4 0 2 2 7 8 2 4 0 2 2 6 5 2 4 0 2 2 5 4 2 4 0 2 2 4 5

5 8 1 4 3 9 0 5 8 1 4 3 -8 1 5 8 1 4 3 -7 1 5 8 1 4 3 -6 0 5 8 1 4 3 -4 8

6 1 0 3 0 9 0 6 1 0 3 0 8 2 6 1 0 3 0 7 4 6 1 0 3 0 6 5 6 1 0 3 0 5 7

2 8 2 3 2 9 0 2 8 2 3 2 7 3 2 8 2 3 2 5 3 2 8 2 3 2 3 5 2 8 2 3 2 2 0

5 1 3 5 9 9 0 5 1 3 5 9 9 0 5 1 3 5 9 9 0 5 1 3 5 9 -8 9 5 1 3 5 9 -8 9

5 6 2 2 0 9 0 5 6 2 2 0 8 1 5 6 2 2 0 8 9 5 6 2 2 0 5 7 5 6 2 2 0 4 5

3 5 2 0 5 9 0 3 5 2 0 5 8 0 3 5 2 0 5 6 9 3 5 2 0 5 6 0 3 5 2 0 5 5 1

6 5 1 8 4 9 0 6 5 1 8 4 8 9 6 5 1 8 4 8 8 6 5 1 8 4 8 7 6 5 1 8 4 8 6

4 0 2 2 0 9 0 4 0 2 2 0 7 8 4 0 2 2 0 6 4 4 0 2 2 0 5 0 4 0 2 2 0 3 7

6 0 1 5 2 9 0 6 0 1 5 2 -8 3 6 0 1 5 2 -7 5 6 0 1 5 2 -6 7 6 0 1 5 2 -5 8

3 6 3 4 2 9 0 3 6 3 4 2 -8 3 3 6 3 4 2 -7 5 3 6 3 4 2 -6 8 3 6 3 4 2 -6 1

3 2 3 3 6 9 0 3 2 3 3 6 -8 0 3 2 3 3 6 -6 9 3 2 3 3 6 -5 9 3 2 3 3 6 -5 0

5 0 1 3 6 9 0 5 0 1 3 6 -7 9 5 0 1 3 6 -6 7 5 0 1 3 6 -5 3 5 0 1 3 6 -3 8

3 1 1 6 9 9 0 3 1 1 6 9 -8 5 3 1 1 6 9 -8 0 3 1 1 6 9 -7 4 3 1 1 6 9 -6 9

5 3 1 3 9 9 0 5 3 1 3 9 -8 0 5 3 1 3 9 -6 8 5 3 1 3 9 -5 6 5 3 1 3 9 -4 3

2 8 2 3 5 9 0 2 8 2 3 5 7 3 2 8 2 3 5 5 3 2 8 2 3 5 3 4 2 8 2 3 5 1 8

5 0 1 3 8 9 0 5 0 1 3 8 -8 0 5 0 1 3 8 -6 7 5 0 1 3 8 -4 0 5 0 1 3 8 -4 0

314

R P -0 3 F A U L T P O P U L A T IO N

M = 0 .0 0 M = 0 .2 5 M = 0 .5 0 M = 0 .7 5 M = 1 .0 0

2 5 0 2 8 9 0 2 5 0 2 8 7 5 2 5 0 2 8 6 1 2 5 0 2 8 4 9 2 5 0 2 8 3 8

3 8 3 1 2 9 0 3 8 3 1 2 -7 7 3 8 3 1 2 -6 1 3 8 3 1 2 -4 4 3 8 3 1 2 -2 9

3 5 0 3 1 9 0 3 5 0 3 1 7 8 3 5 0 3 1 6 6 3 5 0 3 1 5 4 3 5 0 3 1 4 4

6 4 3 4 9 9 0 6 4 3 4 9 -8 7 6 4 3 4 9 -8 4 6 4 3 4 9 -8 1 6 4 3 4 9 -7 8

2 5 3 1 3 9 0 2 5 3 1 3 -7 1 2 5 3 1 3 -5 1 2 5 3 1 3 -3 4 2 5 3 1 3 -2 2

6 0 1 5 2 9 0 6 0 1 5 2 -8 3 6 0 1 5 2 -7 5 6 0 1 5 2 -6 7 6 0 1 5 2 -5 8

3 1 3 4 4 9 0 3 1 3 4 4 -8 3 3 1 3 4 4 -7 5 3 1 3 4 4 -6 8 3 1 3 4 4 -6 1

5 2 1 8 2 9 0 5 2 1 8 2 8 9 5 2 1 8 2 8 9 5 2 1 8 2 8 8 5 2 1 8 2 8 7

3 0 1 4 8 9 0 3 0 1 4 8 -7 6 3 0 1 4 8 -6 2 3 0 1 4 8 -5 0 3 0 1 4 8 -3 9

4 3 2 1 9 9 0 4 3 2 1 9 7 9 4 3 2 1 9 6 6 4 3 2 1 9 5 3 4 3 2 1 9 4 0

5 3 3 1 9 9 0 5 3 3 1 9 -8 0 5 3 3 1 9 -6 8 5 3 3 1 9 -5 6 5 3 3 1 9 -4 3

2 5 0 4 6 9 0 2 5 0 4 6 7 1 2 5 0 4 6 5 1 2 5 0 4 6 3 5 2 5 0 4 6 2 2

3 5 0 4 9 9 0 3 5 0 4 9 7 6 3 5 0 4 9 5 9 3 5 0 4 9 4 2 3 5 0 4 9 2 7

6 1 1 8 8 9 0 6 1 1 8 8 8 8 6 1 1 8 8 8 5 6 1 1 8 8 8 3 6 1 1 8 8 8 1

4 3 3 0 5 9 0 4 3 3 0 5 -7 8 4 3 3 0 5 -6 3 4 3 3 0 5 -4 4 4 3 3 0 5 -2 6

3 1 3 3 6 9 0 3 1 3 3 6 -7 9 3 1 3 3 6 -6 9 3 1 3 3 6 -5 3 3 1 3 3 6 -4 9

3 1 3 5 3 9 0 3 1 3 5 3 -8 7 3 1 3 5 3 -8 3 3 1 3 5 3 -8 0 3 1 3 5 3 -7 7

2 6 2 9 6 9 0 2 6 2 9 6 -7 4 2 6 2 9 6 -5 3 2 6 2 9 6 -3 0 2 6 2 9 6 -1 2

315

A C -0 1 F A U L T P O P U L A T IO N

M = 0 .0 0 M = 0 .2 5 M = 0 .5 0 M = 0 .7 5 M = 1 .0 0

3 0 0 0 0 9 0 3 0 0 0 0 9 0 3 0 0 0 0 9 0 3 0 0 0 0 9 0 3 0 0 0 0 9 0

3 0 0 0 5 9 0 3 0 0 0 5 8 8 3 0 0 0 5 8 5 3 0 0 0 5 8 3 3 0 0 0 5 8 0

3 0 3 5 5 9 0 3 0 3 5 5 -8 8 3 0 3 5 5 -8 5 3 0 3 5 5 -8 3 3 0 3 5 5 -8 0

3 0 1 8 0 9 0 3 0 1 8 0 9 0 3 0 1 8 0 9 0 3 0 1 8 0 9 0 3 0 1 8 0 9 0

3 0 1 7 5 9 0 3 0 1 7 5 -8 8 3 0 1 7 5 -8 5 3 0 1 7 5 -8 3 3 0 1 7 5 -8 0

3 0 1 8 5 9 0 3 0 1 8 5 8 8 3 0 1 8 5 8 5 3 0 1 8 5 8 3 3 0 1 8 5 8 0

2 5 0 0 0 9 0 2 5 0 0 0 9 0 2 5 0 0 0 9 0 2 5 0 0 0 9 0 2 5 0 0 0 9 0

2 5 0 0 5 9 0 2 5 0 0 5 8 7 2 5 0 0 5 8 4 2 5 0 0 5 8 1 2 5 0 0 5 7 8

2 5 3 5 5 9 0 2 5 3 5 5 -8 7 2 5 3 5 5 -8 4 2 5 3 5 5 -8 1 2 5 3 5 5 -7 8

2 5 1 8 0 9 0 2 5 1 8 0 9 0 2 5 1 8 0 9 0 2 5 1 8 0 9 0 2 5 1 8 0 9 0

2 5 1 7 5 9 0 2 5 1 7 5 -8 7 2 5 1 7 5 -8 4 2 5 1 7 5 -8 1 2 5 1 7 5 -7 8

2 5 1 8 5 9 0 2 5 1 8 5 8 7 2 5 1 8 5 8 4 2 5 1 8 5 8 1 2 5 1 8 5 7 8

3 5 0 0 0 9 0 3 5 0 0 0 9 0 3 5 0 0 0 9 0 3 5 0 0 0 9 0 3 5 0 0 0 9 0

3 5 0 0 5 9 0 3 5 0 0 5 8 8 3 5 0 0 5 8 6 3 5 0 0 5 8 3 3 5 0 0 5 8 1

3 5 3 5 5 9 0 3 5 3 5 5 -8 8 3 5 3 5 5 -8 6 3 5 3 5 5 -8 3 3 5 3 5 5 -8 1

3 5 1 8 0 9 0 3 5 1 8 0 9 0 3 5 1 8 0 9 0 3 5 1 8 0 9 0 3 5 1 8 0 9 0

3 5 1 7 5 9 0 3 5 1 7 5 -8 8 3 5 1 7 5 -8 6 3 5 1 7 5 -8 3 3 5 1 7 5 -8 1

3 5 1 8 5 9 0 3 5 1 8 5 8 8 3 5 1 8 5 8 6 3 5 1 8 5 8 3 3 5 1 8 5 8 1

316

A C -0 2 F A U L T P O P U L A T IO N

M = 0 .0 0 M = 0 .2 5 M = 0 .5 0 M = 0 .7 5 M = 1 .0 0

3 0 1 3 5 9 0 3 0 1 3 5 -7 4 3 0 1 3 5 -5 6 3 0 1 3 5 -4 0 3 0 1 3 5 -2 7

3 0 1 4 0 9 0 3 0 1 4 0 -7 5 3 0 1 4 0 -5 8 3 0 1 4 0 -4 3 3 0 1 4 0 -3 1

3 0 1 3 0 9 0 3 0 1 3 0 -7 4 3 0 1 3 0 -5 5 3 0 1 3 0 -3 7 3 0 1 3 0 -2 3

3 0 3 1 5 9 0 3 0 3 1 5 -7 4 3 0 3 1 5 -5 6 3 0 3 1 5 -4 0 3 0 3 1 5 -2 7

3 0 3 1 0 9 0 3 0 3 1 0 -7 4 3 0 3 1 0 -5 5 3 0 3 1 0 -3 7 3 0 3 1 0 -2 3

3 0 3 2 0 9 0 3 0 3 2 0 -7 5 3 0 3 2 0 -5 8 3 0 3 2 0 -4 3 3 0 3 2 0 -3 1

2 5 1 3 5 9 0 2 5 1 3 5 -7 1 2 5 1 3 5 -5 2 2 5 1 3 5 -3 5 2 5 1 3 5 -2 3

2 5 1 4 0 9 0 2 5 1 4 0 -7 2 2 5 1 4 0 -5 4 2 5 1 4 0 -3 8 2 5 1 4 0 -2 7

2 5 1 3 0 9 0 2 5 1 3 0 -7 1 2 5 1 3 0 -5 1 2 5 1 3 0 -3 3 2 5 1 3 0 -2 0

2 5 3 1 5 9 0 2 5 3 1 5 -7 1 2 5 3 1 5 -5 2 2 5 3 1 5 -3 5 2 5 3 1 5 -2 3

2 5 3 1 0 9 0 2 5 3 1 0 -7 1 2 5 3 1 0 -5 1 2 5 3 1 0 -3 3 2 5 3 1 0 -2 0

2 5 3 2 0 9 0 2 5 3 2 0 -7 2 2 5 3 2 0 -5 4 2 5 3 2 0 -3 8 2 5 3 2 0 -2 7

3 5 1 3 5 9 0 3 5 1 3 5 -7 6 3 5 1 3 5 -6 0 3 5 1 3 5 -4 4 3 5 1 3 5 -3 0

3 5 1 4 0 9 0 3 5 1 4 0 -7 7 3 5 1 4 0 -6 2 3 5 1 4 0 -4 7 3 5 1 4 0 -3 4

3 5 1 3 0 9 0 3 5 1 3 0 -7 6 3 5 1 3 0 -5 9 3 5 1 3 0 -4 1 3 5 1 3 0 -2 6

3 5 3 1 5 9 0 3 5 3 1 5 -7 6 3 5 3 1 5 -6 0 3 5 3 1 5 -4 4 3 5 3 1 5 -3 0

3 5 3 1 0 9 0 3 5 3 1 0 -7 6 3 5 3 1 0 -5 9 3 5 3 1 0 -4 1 3 5 3 1 0 -2 6

3 5 3 2 0 9 0 3 5 3 2 0 -7 7 3 5 3 2 0 -6 2 3 5 3 2 0 -4 7 3 5 3 2 0 -3 4

317

O S -0 1 F A U L T P O P U L A T IO N

M = 0 .0 0 M = 0 .2 5 M = 0 .5 0 M = 0 .7 5 M = 1 .0 0

3 0 0 4 5 9 0 3 0 0 4 5 7 4 3 0 0 4 5 5 6 3 0 0 4 5 4 0 3 0 0 4 5 2 7

3 0 1 3 5 9 0 3 0 1 3 5 -7 4 3 0 1 3 5 -5 6 3 0 1 3 5 -4 0 3 0 1 3 5 -2 7

3 0 2 2 5 9 0 3 0 2 2 5 7 4 3 0 2 2 5 5 6 3 0 2 2 5 4 0 3 0 2 2 5 2 7

3 0 3 1 5 9 0 3 0 3 1 5 -7 4 3 0 3 1 5 -5 6 3 0 3 1 5 -4 0 3 0 3 1 5 -2 7

3 0 0 5 0 9 0 3 0 0 5 0 7 4 3 0 0 5 0 5 5 3 0 0 5 0 3 7 3 0 0 5 0 2 3

3 0 0 4 0 9 0 3 0 0 4 0 7 5 3 0 0 4 0 5 8 3 0 0 4 0 4 3 3 0 0 4 0 3 1

2 5 0 4 5 9 0 2 5 0 4 5 7 1 2 5 0 4 5 5 2 2 5 0 4 5 3 5 2 5 0 4 5 2 3

3 5 0 4 5 9 0 3 5 0 4 5 7 6 3 5 0 4 5 6 0 3 5 0 4 5 4 4 3 5 0 4 5 3 0

3 0 1 3 0 9 0 3 0 1 3 0 -7 4 3 0 1 3 0 -5 5 3 0 1 3 0 -3 7 3 0 1 3 0 -2 3

3 0 1 4 0 9 0 3 0 1 4 0 -7 5 3 0 1 4 0 -5 8 3 0 1 4 0 -4 3 3 0 1 4 0 -3 1

2 5 1 3 5 9 0 2 5 1 3 5 -7 1 2 5 1 3 5 -5 2 2 5 1 3 5 -3 5 2 5 1 3 5 -2 3

3 5 1 3 5 9 0 3 5 1 3 5 -7 6 3 5 1 3 5 -6 0 3 5 1 3 5 -4 4 3 5 1 3 5 -3 0

3 0 2 2 0 9 0 3 0 2 2 0 7 5 3 0 2 2 0 5 8 3 0 2 2 0 4 3 3 0 2 2 0 3 1

3 0 2 3 0 9 0 3 0 2 3 0 7 4 3 0 2 3 0 5 5 3 0 2 3 0 3 7 3 0 2 3 0 2 3

2 5 2 2 5 9 0 2 5 2 2 5 7 1 2 5 2 2 5 5 2 2 5 2 2 5 3 5 2 5 2 2 5 2 3

3 5 2 2 5 9 0 3 5 2 2 5 7 6 3 5 2 2 5 6 0 3 5 2 2 5 4 4 3 5 2 2 5 3 0

3 0 3 1 0 9 0 3 0 3 1 0 -7 4 3 0 3 1 0 -5 5 3 0 3 1 0 -3 7 3 0 3 1 0 -2 3

3 0 3 2 0 9 0 3 0 3 2 0 -7 5 3 0 3 2 0 -5 8 3 0 3 2 0 -4 3 3 0 3 2 0 -3 1

2 5 3 1 5 9 0 2 5 3 1 5 -7 1 2 5 3 1 5 -5 2 2 5 3 1 5 -3 5 2 5 3 1 5 -2 3

3 5 3 1 5 9 0 3 5 3 1 5 -7 6 3 5 3 1 5 -6 0 3 5 3 1 5 -4 4 3 5 3 1 5 -3 0

318

R S -0 1 F A U L T P O P U L A T IO N

M = 0 .0 0 M = 0 .2 5 M = 0 .5 0 M = 0 .7 5 M = 1 .0 0

3 0 0 0 0 9 0 3 0 0 0 0 9 0 3 0 0 0 0 9 0 3 0 0 0 0 9 0 3 0 0 0 0 9 0

3 0 0 3 0 9 0 3 0 0 3 0 7 7 3 0 0 3 0 6 4 3 0 0 3 0 5 1 3 0 0 3 0 4 1

3 0 0 6 0 9 0 3 0 0 6 0 7 5 3 0 0 6 0 5 5 3 0 0 6 0 3 4 3 0 0 6 0 1 6

3 0 1 2 0 9 0 3 0 1 2 0 -7 5 3 0 1 2 0 -5 5 3 0 1 2 0 -3 4 3 0 1 2 0 -1 6

3 0 1 5 0 9 0 3 0 1 5 0 -7 7 3 0 1 5 0 -6 4 3 0 1 5 0 -5 1 3 0 1 5 0 -4 1

3 0 1 8 0 9 0 3 0 1 8 0 9 0 3 0 1 8 0 9 0 3 0 1 8 0 9 0 3 0 1 8 0 9 0

3 0 2 1 0 9 0 3 0 2 1 0 7 7 3 0 2 1 0 6 4 3 0 2 1 0 5 1 3 0 2 1 0 4 1

3 0 2 4 0 9 0 3 0 2 4 0 7 5 3 0 2 4 0 5 5 3 0 2 4 0 3 4 3 0 2 4 0 1 6

3 0 3 0 0 9 0 3 0 3 0 0 -7 5 3 0 3 0 0 -5 5 3 0 3 0 0 -3 4 3 0 3 0 0 -1 6

3 0 3 3 0 9 0 3 0 3 3 0 -7 7 3 0 3 3 0 -6 4 3 0 3 3 0 -5 1 3 0 3 3 0 -4 1

319

S O -0 1 F A U L T P O P U L A T IO N

M = 0 .0 0 M = 0 .2 5 M = 0 .5 0 M = 0 .7 5 M = 1 .0 0

3 0 0 0 0 9 0 3 0 0 0 0 9 0 3 0 0 0 0 9 0 3 0 0 0 0 9 0 3 0 0 0 0 9 0

3 5 0 0 0 9 0 3 5 0 0 0 9 0 3 5 0 0 0 9 0 3 5 0 0 0 9 0 3 5 0 0 0 9 0

2 5 0 0 0 9 0 2 5 0 0 0 9 0 2 5 0 0 0 9 0 2 5 0 0 0 9 0 2 5 0 0 0 9 0

3 0 0 0 6 9 0 3 0 0 0 6 8 7 3 0 0 0 6 8 4 3 0 0 0 6 8 1 3 0 0 0 6 7 8

3 5 0 0 6 9 0 3 5 0 0 6 8 7 3 5 0 0 6 8 5 3 5 0 0 6 8 2 3 5 0 0 6 8 0

2 5 0 0 6 9 0 2 5 0 0 6 8 6 2 5 0 0 6 8 3 2 5 0 0 6 7 9 2 5 0 0 6 7 6

3 0 3 5 4 9 0 3 0 3 5 4 -8 7 3 0 3 5 4 -8 4 3 0 3 5 4 -8 1 3 0 3 5 4 -7 8

3 5 3 5 4 9 0 3 5 3 5 4 -8 7 3 5 3 5 4 -8 5 3 5 3 5 4 -8 2 3 5 3 5 4 -8 0

2 5 3 5 4 9 0 2 5 3 5 4 -8 6 2 5 3 5 4 -8 3 2 5 3 5 4 -7 9 2 5 3 5 4 -7 6

3 0 0 0 3 9 0 3 0 0 0 3 8 9 3 0 0 0 3 8 7 3 0 0 0 3 8 6 3 0 0 0 3 8 4

3 5 0 0 3 9 0 3 5 0 0 3 8 9 3 5 0 0 3 8 7 3 5 0 0 3 8 6 3 5 0 0 3 8 5

2 5 0 0 3 9 0 2 5 0 0 3 8 8 2 5 0 0 3 8 6 2 5 0 0 3 8 5 2 5 0 0 3 8 3

3 0 3 5 7 9 0 3 0 3 5 7 -8 9 3 0 3 5 7 -8 7 3 0 3 5 7 -8 6 3 0 3 5 7 -8 4

3 5 3 5 7 9 0 3 5 3 5 7 -8 9 3 5 3 5 7 -8 7 3 5 3 5 7 -8 6 3 5 3 5 7 -8 5

2 5 3 5 7 9 0 2 5 3 5 7 -8 8 2 5 3 5 7 -8 6 2 5 3 5 7 -8 5 2 5 3 5 7 -8 3

320

S O -0 2 F A U L T P O P U L A T IO N

M = 0 .0 0 M = 0 .2 5 M = 0 .5 0 M = 0 .7 5 M = 1 .0 0

5 5 0 3 0 9 0 5 5 0 3 0 8 2 5 5 0 3 0 7 3 5 5 0 3 0 6 4 5 5 0 3 0 5 5

5 0 0 3 0 9 0 5 0 0 3 0 8 1 5 0 0 3 0 7 2 5 0 0 3 0 6 2 5 0 0 3 0 5 3

6 0 0 3 0 9 0 6 0 0 3 0 8 2 6 0 0 3 0 7 4 6 0 0 3 0 6 5 6 0 0 3 0 5 6

5 5 0 3 3 9 0 5 5 0 3 3 8 1 5 5 0 3 3 7 2 5 5 0 3 3 6 2 5 5 0 3 3 5 2

5 0 0 3 3 9 0 5 0 0 3 3 8 1 5 0 0 3 3 7 1 5 0 0 3 3 6 0 5 0 0 3 3 5 0

6 0 0 3 3 9 0 6 0 0 3 3 8 2 6 0 0 3 3 7 3 6 0 0 3 3 6 3 6 0 0 3 3 5 3

5 5 0 3 6 9 0 5 5 0 3 6 8 2 5 5 0 3 6 7 1 5 5 0 3 6 6 0 5 5 0 3 6 4 8

5 0 0 3 6 9 0 5 0 0 3 6 8 0 5 0 0 3 6 6 9 5 0 0 3 6 5 8 5 0 0 3 6 4 7

6 0 0 3 6 9 0 6 0 0 3 6 8 1 6 0 0 3 6 7 2 6 0 0 3 6 6 1 6 0 0 3 6 5 0

5 5 0 2 7 9 0 5 5 0 2 7 8 3 5 5 0 2 7 7 5 5 5 0 2 7 6 6 5 5 0 2 7 5 8

5 0 0 2 7 9 0 5 0 0 2 7 8 2 5 0 0 2 7 7 4 5 0 0 2 7 6 5 5 0 0 2 7 5 6

6 0 0 2 7 9 0 6 0 0 2 7 8 3 6 0 0 2 7 7 5 6 0 0 2 7 6 7 6 0 0 2 7 6 0

5 5 0 2 4 9 0 5 5 0 2 4 8 3 5 5 0 2 4 7 6 5 5 0 2 4 6 9 5 5 0 2 4 6 1

5 0 0 2 4 9 0 5 0 0 2 4 8 3 5 0 0 2 4 7 5 5 0 0 2 4 6 7 5 0 0 2 4 6 0

6 0 0 2 4 9 0 6 0 0 2 4 8 4 6 0 0 2 4 7 7 6 0 0 2 4 7 0 6 0 0 2 4 6 3

321

S O -0 3 F A U L T P O P U L A T IO N

M = 0 .0 0 M = 0 .2 5 M = 0 .5 0 M = 0 .7 5 M = 1 .0 0

3 0 0 4 5 9 0 3 0 0 4 5 7 4 3 0 0 4 5 5 6 3 0 0 4 5 4 0 3 0 0 4 5 2 7

2 5 0 4 5 9 0 2 5 0 4 5 7 1 2 5 0 4 5 5 2 2 5 0 4 5 3 5 2 5 0 4 5 2 3

3 5 0 4 5 9 0 3 5 0 4 5 7 6 3 5 0 4 5 6 0 3 5 0 4 5 4 4 3 5 0 4 5 3 0

3 0 0 4 8 9 0 3 0 0 4 8 7 4 3 0 0 4 8 5 6 3 0 0 4 8 3 8 3 0 0 4 8 2 4

2 5 0 4 8 9 0 2 5 0 4 8 7 1 2 5 0 4 8 5 1 2 5 0 4 8 3 4 2 5 0 4 8 2 1

3 5 0 4 8 9 0 3 5 0 4 8 7 6 3 5 0 4 8 5 9 3 5 0 4 8 4 2 3 5 0 4 8 2 7

3 0 0 5 1 9 0 3 0 0 5 1 7 4 3 0 0 5 1 5 5 3 0 0 5 1 3 7 3 0 0 5 1 2 2

2 5 0 5 1 9 0 2 5 0 5 1 7 1 2 5 0 5 1 5 0 2 5 0 5 1 3 2 2 5 0 5 1 1 9

3 5 0 5 1 9 0 3 5 0 5 1 7 6 3 5 0 5 1 5 9 3 5 0 5 1 4 1 3 5 0 5 1 2 5

3 0 0 4 2 9 0 3 0 0 4 2 7 4 3 0 0 4 2 5 7 3 0 0 4 2 4 2 3 0 0 4 2 2 9

2 5 0 4 2 9 0 2 5 0 4 2 7 2 2 5 0 4 2 6 3 2 5 0 4 2 3 7 2 5 0 4 2 2 5

3 5 0 4 2 9 0 3 5 0 4 2 7 6 3 5 0 4 2 6 1 3 5 0 4 2 4 6 3 5 0 4 2 3 3

3 0 0 3 9 9 0 3 0 0 3 9 7 5 3 0 0 3 9 5 9 3 0 0 3 9 4 4 3 0 0 3 9 3 2

2 5 0 3 9 9 0 2 5 0 3 9 7 3 2 5 0 3 9 5 4 2 5 0 3 9 3 9 2 5 0 3 9 2 8

3 5 0 3 9 9 0 3 5 0 3 9 7 6 3 5 0 3 9 6 2 3 5 0 3 9 4 8 3 5 0 3 9 3 5

322

A P P E N D IX C

S L IP V E C T O R C A L C U L A T IO N P R O G R A M

C o m p le t e l i s t i n g o f th e s l i p v e c t o r c a l c u l a t i o n p ro g ra m d i s c u s s e d in c h a p t e r f i v e . T h e

p ro g ra m c o n s i s t s o f th re e f i l e s - - t h e m a in p ro g ra m S L IP .P A S , t h e i n c lu d e f i l e D X F . IN C w h ic h

c o n ta in s A u to C A D D X F f i l e c r e a t i o n p ro c e d u re s , a n d th e h e lp f i l e S L IP .T X T . T h e p ro g ra m

is w r i t t e n in T u rb o P a s c a l v e rs io n 3 .0 1 fo r a n IB M P C o r c o m p a t i b le c o m p u te r .

program Slip;

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{ }

{ This is a program to calculate the slip vector and stress ratios }

{ on planes of random orientations in a stress field given the mean }

{ and deviatoric stresses. Read the help file SLIP.TXT to learn more }

{ about this program. }

{ }

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{ }

{ SLIP.PAS - Version 2.0 }

{ }

{ Copyright (C) 1989 -- Steven H. Schimmrich }

{ For educational and research purposes only }

{ All commercial rights reserved }

{ }

{ Steven H. Schimmrich }

{ Department of Geological Sciences }

{ State University of New York at Albany }

{ Albany, New York 12222 }

{ }

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{ Initializations }

label 1;

const

HELPFILE = 'SLIP.TXT';

PAGES = 5;

PI = 3.1415927;

type

RegisterList =

record

323

AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags : integer;

end;

linarray2d = array[1..3,1..51] of real;

chararray3 = array[1..3] of string[5];

linarray51 = array[1..51] of real;

linarray3 = array[1..3] of real;

string12 = string[12];

string78 = string[78];

var

Sigma1, Sigma3, Mu, Cohesion,

Plunge, Trend, CutOff : real;

DMin, DMax : char;

Choice, Intervals : integer;

Cosines : linarray3;

Sigma : chararray3;

Stresses, SlipVector : linarray2d;

Ratios, SlipAngle : linarray51;

QuitIt, IsThereData : boolean;

FileName : string12;

{ General program functions }

function Exists(FileName : string12): boolean;

{ Checks to see if a file exists on the disk }

var

Name : file;

begin

Assign(Name,FileName);

{$I-}

Reset(Name);

{$I+}

Exists := (IOResult = 0);

end;

function Zero(Value : real): boolean;

{ Checks to see if a value is essentially 0.0 }

begin

if (abs(Value) < 0.00001)

then Zero := true

else Zero := false;

end;

function DegToRad(DegreeMeasure : real): real;

{ Converts an angle in degrees to one in radians }

begin

DegToRad := ((DegreeMeasure * PI) / 180.0);

end;

function RadToDeg(RadianMeasure : real): real;

{ Converts an angle in radians to one in degrees }

begin

324

RadToDeg := ((RadianMeasure * 180.0) / PI);

end;

function Tan(Angle : real): real;

{ Returns the tangent of an angle }

begin

Tan := sin(Angle) / cos(Angle);

end;

function ArcCos(AValue : real): real;

{ Returns the arccosine of a value }

var

X, Y : real;

begin

if (AValue = 0.0)

then ArcCos := (PI / 2.0)

else if (AValue = 1.0)

then ArcCos := 0.0

else if (AValue = -1.0)

then ArcCos := PI

else

begin

X := (AValue / sqrt(1.0 - sqr(AValue)));

Y := arctan(abs(1.0 / X));

if (X > 0.0)

then ArcCos := Y

else ArcCos := (PI - Y);

end;

end;

function ArcSin(AValue : real): real;

{ Returns the arcsine of a value }

var

X, Y : real;

begin

if (AValue = 0.0)

then ArcSin := 0.0

else

if (AValue = 1.0)

then ArcSin := (PI / 2.0)

else

if (AValue = -1.0)

then ArcSin := (-PI / 2.0)

else

begin

X := (AValue / sqrt(1.0 - sqr(AValue)));

if (X = 0.0)

then ArcSin := 0.0

else

begin

Y := arctan(abs(X));

if (X > 0.0)

325

then ArcSin := Y

else ArcSin := -Y;

end;

end;

end;

{ General program procedures }

procedure Alarm;

{ Sounds an alarm }

var

Count : integer;

begin

for Count := 1 to 4 do

begin

sound(880);

delay(50);

sound(0);

delay(50);

nosound;

end;

end;

procedure Beep;

{ Sounds a beep }

begin

sound(880);

delay(50);

nosound;

end;

procedure HoldScreen(var QuitIt : boolean);

{ Holds the screen until any key is pressed }

var

Key : char;

begin

write(' Press any ');

textcolor(12);

write('key');

textcolor(14);

write(' to continue (');

textcolor(12);

write('Q');

textcolor(14);

write(' to quit)...');

read(kbd,Key);

if (upcase(Key) = 'Q')

then QuitIt := true

else QuitIt := false;

end;

procedure EndGraphics;

326

{ Ends a graphics display }

begin

Beep;

repeat until (keypressed);

textmode;

textcolor(11);

clrscr;

end;

procedure Cursor(On : boolean);

{ Turns cursor on and off }

var

Register : RegisterList;

begin

if (On)

then

if (mem[0:$449] = 7)

then

Register.CX := $0C0D

else

Register.CX := $0607

else

Register.CX := $2000;

Register.AX := $0100;

intr($10,Register);

end;

procedure DrawBox(ULX, ULY, LRX, LRY : integer);

{ Draws a box around text in text mode }

var

X, Y, XDistance : integer;

begin

gotoxy(ULX,ULY);

write(#201);

XDistance := LRX - ULX - 1;

for X := 1 to XDistance do

write(#205);

write(#187);

for Y := (ULY + 1) to (LRY - 1) do

begin

gotoxy(LRX,Y);

write(#186);

gotoxy(ULX,Y);

write(#186);

end;

gotoxy(ULX,LRY);

write(#200);

for X := 1 to XDistance do

write(#205);

write(#188);

end;

327

{ Error display procedure }

procedure ShowError(ErrorType : integer);

{ Displays appropriate error messages }

begin

clrscr;

Alarm;

gotoxy(28,2);

textcolor(12);

writeln('Slip Vector Plotting Program');

gotoxy(37,10);

textcolor(28);

writeln('* ERROR *');

textcolor(11);

case (ErrorType) of

1 : begin

gotoxy(21,14);

write('File ',HELPFILE,' does not exist on the disk');

end;

2 : begin

gotoxy(22,14);

writeln('F1 and F3 must be between -100 and +100');

end;

3 : begin

gotoxy(30,14);

writeln('F3 must be less than F1');

end;

4 : begin

gotoxy(26,14);

writeln(': must be between 0.0 and 100.0');

end;

5 : begin

gotoxy(26,14);

writeln('C must be between 0.0 and 100.0');

end;

6 : begin

gotoxy(20,14);

writeln('The plunge must be between 0 and 90 degrees');

end;

7 : begin

gotoxy(20,14);

writeln('The trend must be between 0 and 360 degrees');

end;

8 : begin

gotoxy(20,14);

writeln('Can only examine between 2 and 50 intervals');

end;

9 : begin

gotoxy(19,14);

writeln('Do not specify an extension for the filename');

end;

10 : begin

328

gotoxy(23,14);

writeln('That file already exists on this disk');

end;

11 : begin

gotoxy(29,14);

writeln('Data must be entered first');

end;

12 : begin

gotoxy(18,14);

writeln('The number entered must be a positive real value');

end;

13 : begin

gotoxy(21,14);

writeln('F1 and F3 cannot have the same orientation');

end;

end;

gotoxy(30,15);

write('Recheck and try again...');

delay(5000);

end;

{ Informational page display procedures }

procedure IntroPage;

{ Displays an introduction page }

begin

textmode;

clrscr;

cursor(false);

textcolor(12);

DrawBox(20,9,61,18);

textcolor(11);

gotoxy(27,10);

writeln('Slip Vector Plotting Program');

gotoxy(32,12);

writeln('Program written by');

gotoxy(31,14);

writeln('Steven H. Schimmrich');

gotoxy(24,15);

writeln('Department of Geological Sciences');

gotoxy(22,16);

writeln('State University of New York at Albany');

gotoxy(30,17);

writeln('Albany, New York 12222');

textcolor(11);

delay(5000);

cursor(true);

end;

procedure Working;

{ Displays a message that the program is working }

begin

329

clrscr;

Cursor(false);

textcolor(12);

DrawBox(26,10,57,16);

textcolor(11);

gotoxy(28,11);

writeln('Slip Vector Plotting Program');

gotoxy(36,13);

writeln('Don''t Panic!');

gotoxy(33,15);

writeln('I''m working on it');

delay(1000);

end;

procedure W riting(FileName : string12);

{ Displays a message that the program is writing to a file }

var

Len1, Len2 : integer;

begin

clrscr;

Len1 := length(FileName);

Len2 := trunc((12 - Len1) / 2);

cursor(false);

textcolor(12);

DrawBox((21 + Len2),9,(50 + Len1 + Len2),15);

textcolor(11);

gotoxy(28,10);

writeln('Slip Vector Plotting Program');

gotoxy(36,12);

writeln('Don''t Panic!');

gotoxy((23 + Len2),14);

write('Writing data to disk file ');

textcolor(12);

write(FileName);

textcolor(11);

delay(1000);

end;

procedure CreatePage(FileName : string12);

{ Displays a page that DXF is being created for AutoCAD }

var

Len1, Len2 : integer;

begin

clrscr;

Len1 := length(FileName);

Len2 := trunc((12 - Len1) / 2);

cursor(false);

textcolor(12);

DrawBox((18 + Len2),9,(52 + Len1 + Len2),15);

textcolor(11);

gotoxy(28,10);

writeln('Slip Vector Plotting Program');

330

gotoxy(36,12);

writeln('Don''t Panic!');

gotoxy((20 + Len2),14);

write('Writing data to AutoCAD DXFile ');

textcolor(12);

write(FileName);

textcolor(11);

delay(1000);

end;

procedure ExitPage;

{ Displays an exit page }

begin

textmode;

clrscr;

cursor(false);

textcolor(12);

DrawBox(26,10,57,16);

textcolor(11);

gotoxy(28,11);

writeln('Slip Vector Plotting Program');

gotoxy(35,13);

writeln('POET Software');

gotoxy(33,14);

writeln('Copyright (C) 1989');

gotoxy(32,15);

writeln('Steven H. Schimmrich');

delay(5000);

cursor(true);

textmode;

clrscr;

end;

{ Main menu procedures }

procedure MainMenuChoice(var Choice : integer);

{ Returns the number of the menu item selected }

var

Key : char;

begin

repeat

read(kbd,Key);

Choice := ord(Key) - 48;

if (not(Choice in [1..7]))

then Beep;

until (Choice in [1..7]);

end;

procedure MainMenu(var Choice : integer);

{ Displays main operations menu }

var

Count : integer;

331

begin

clrscr;

textcolor(12);

DrawBox(25,2,56,4);

textcolor(11);

gotoxy(27,3);

writeln('Slip Vector Plotting Program');

gotoxy(2,9);

writeln('What do you wish to do ?');

writeln;

for Count := 1 to 7 do

begin

textcolor(12);

write(' ',Count);

textcolor(11);

case (Count) of

1 : writeln(' - Learn more about the program');

2 : writeln(' - Perform the slip vector calculations');

3 : writeln(' - Display a graph of the results');

4 : writeln(' - Display a stereonet of the results');

5 : writeln(' - Display a listing of the results');

6 : writeln(' - Print the results');

7 : writeln(' - Exit the program');

end;

end;

writeln;

write(' Press the ');

textcolor(12);

write('number');

textcolor(11);

write(' of you choice...');

MainMenuChoice(Choice);

end;

{ Main menu option # 1 - Help pages display }

procedure HelpPages;

{ Sequentially displays help file }

label 1;

var

Line : string78;

Page, Row : integer;

Key : char;

DataFile : text[1024];

begin

assign(DataFile,HELPFILE);

reset(DataFile);

for Row := 1 to 5 do

readln(DataFile,Line);

for Page := 1 to PAGES do

begin

clrscr;

332

for Row := 1 to 23 do

begin

readln(DataFile,Line);

if (copy(Line,1,1) = '*')

then

begin

textcolor(12);

delete(Line,1,1);

end;

writeln(Line);

textcolor(11);

end;

write(' Press any ');

textcolor(12);

write('key');

textcolor(11);

write(' to continue (');

textcolor(12);

write('Q');

textcolor(11);

write(' to quit)...');

read(kbd,Key);

if (upcase(Key) = 'Q')

then goto 1;

end;

1:close(DataFile);

end;

{ Main menu option # 2 - Perform calculations }

procedure AskData(var Sigma : chararray3; var Sigma1, Sigma3, Mu, Cohesion, Plunge,

Trend : real; var DMin, DMax : char; var Intervals : integer);

{ Asks for user supplied data }

label 1;

begin

1:{Continue}

clrscr;

textcolor(12);

DrawBox(25,1,56,3);

gotoxy(27,2);

textcolor(11);

writeln('Slip Vector Plotting Program');

gotoxy(2,5);

writeln('What is the orientation of the maximum compressive');

gotoxy(2,6);

write('principal stress axis F1 (');

textcolor(12);

write('N');

textcolor(11);

write('orth, ');

textcolor(12);

write('E');

333

textcolor(11);

write('ast, or ');

textcolor(12);

write('U');

textcolor(11);

write('p) ? ');

repeat

read(kbd,DMax);

if (not(upcase(DMax) in ['N','E','U']))

then Beep;

until (upcase(DMax) in ['N','E','U']);

gotoxy(50,6);

textcolor(12);

writeln(upcase(DMax));

textcolor(11);

gotoxy(2,8);

writeln('What is the orientation of the minimum compressive');

gotoxy(2,9);

write('principal stress axis F3 (');

textcolor(12);

write('N');

textcolor(11);

write('orth, ');

textcolor(12);

write('E');

textcolor(11);

write('ast, or ');

textcolor(12);

write('U');

textcolor(11);

write('p) ? ');

repeat

read(kbd,DMin);

if (not(upcase(DMin) in ['N','E','U']))

then Beep;

until (upcase(DMin) in ['N','E','U']);

gotoxy(50,9);

textcolor(12);

writeln(upcase(DMin));

textcolor(11);

if (upcase(Dmax) = upcase(DMin))

then

begin

ShowError(13);

goto 1;

end;

case (upcase(DMax)) of

'N' : Sigma[1] := 'North';

'U' : Sigma[1] := ' Up';

'E' : Sigma[1] := ' East';

end;

case (upcase(DMin)) of

334

'N' : Sigma[3] := 'North';

'U' : Sigma[3] := ' Up';

'E' : Sigma[3] := ' East';

end;

if ((not(upcase(DMin) in ['N'])) and (not(upcase(DMax) in ['N'])))

then Sigma[2] := 'North';

if ((not(upcase(DMin) in ['U'])) and (not(upcase(DMax) in ['U'])))

then Sigma[2] := ' Up';

if ((not(upcase(DMin) in ['E'])) and (not(upcase(DMax) in ['E'])))

then Sigma[2] := ' East';

gotoxy(2,11);

write('Enter the value for F1 : ');

Sigma1 := -999.9;

textcolor(12);

readln(Sigma1);

textcolor(11);

if ((Sigma1 < -100.0) or (Sigma1 > 100.0))

then

begin

ShowError(2);

goto 1;

end;

gotoxy(2,12);

write('Enter the value for F3 : ');

Sigma3 := -999.9;

textcolor(12);

readln(Sigma3);

textcolor(11);

if ((Sigma3 < -100.0) or (Sigma3 > 100.0))

then

begin

ShowError(2);

goto 1;

end;

if (Sigma3 > Sigma1)

then

begin

ShowError(3);

goto 1;

end;

gotoxy(2,14);

write('Enter the coefficient of friction (:) : ');

textcolor(12);

Mu := -999.9;

readln(Mu);

textcolor(11);

if ((Mu < 0.0) or (Mu > 100.0))

then

begin

ShowError(4);

goto 1;

end;

335

gotoxy(2,15);

write('Enter the cohesion (C) : ');

textcolor(12);

Cohesion := -999.9;

readln(Cohesion);

textcolor(11);

if ((Cohesion < 0.0) or (Cohesion > 100.0))

then

begin

ShowError(5);

goto 1;

end;

gotoxy(2,17);

writeln('Now enter the plunge and trend of the normal');

writeln(' vector to the fault plane you wish to examine');

gotoxy(2,20);

write('Enter the plunge : ');

Plunge := -999.9;

textcolor(12);

readln(Plunge);

textcolor(11);

if ((Plunge < 0.0) or (Plunge >= 90.0))

then

begin

ShowError(6);

goto 1;

end;

gotoxy(2,21);

write('Enter the trend : ');

Trend := -999.9;

textcolor(12);

readln(Trend);

textcolor(11);

if ((Trend < 0.0) or (Trend >= 360.0))

then

begin

ShowError(7);

goto 1;

end;

if (Trend = 360.0)

then Trend := Trend - 360.0;

gotoxy(2,23);

write('How many values of F2 between F1 and F3 do you wish to examine ? ');

Intervals := -9;

textcolor(12);

readln(Intervals);

textcolor(11);

if ((Intervals < 2) or (Intervals > 50))

then

begin

ShowError(8);

goto 1;

336

end;

end;

procedure DirCosines(Plunge, Trend : real; DMin, DMax : char; var Cosines : linarray3);

{ Returns the direction cosines of the normal vector }

begin

Plunge := DegToRad(Plunge);

Trend := DegToRad(Trend);

if ((upcase(DMax) = 'N') and (upcase(DMin) = 'E'))

then

begin

Cosines[1] := (cos(Plunge) * cos(Trend));

Cosines[2] := sin(Plunge);

Cosines[3] := (cos(Plunge) * sin(Trend));

end;

if ((upcase(DMax) = 'N') and (upcase(DMin) = 'U'))

then

begin

Cosines[1] := (cos(Plunge) * cos(Trend));

Cosines[2] := (cos(Plunge) * sin(Trend));

Cosines[3] := sin(Plunge);

end;

if ((upcase(DMax) = 'E') and (upcase(DMin) = 'N'))

then

begin

Cosines[1] := (cos(Plunge) * sin(Trend));

Cosines[2] := sin(Plunge);

Cosines[3] := (cos(Plunge) * cos(Trend));

end;

if ((upcase(DMax) = 'E') and (upcase(DMin) = 'U'))

then

begin

Cosines[1] := (cos(Plunge) * sin(Trend));

Cosines[2] := (cos(Plunge) * cos(Trend));

Cosines[3] := sin(Plunge);

end;

if ((upcase(DMax) = 'U') and (upcase(DMin) = 'N'))

then

begin

Cosines[1] := sin(Plunge);

Cosines[2] := (cos(Plunge) * sin(Trend));

Cosines[3] := (cos(Plunge) * cos(Trend));

end;

if ((upcase(DMax) = 'U') and (upcase(DMin) = 'E'))

then

begin

Cosines[1] := sin(Plunge);

Cosines[2] := (cos(Plunge) * cos(Trend));

Cosines[3] := (cos(Plunge) * sin(Trend));

end;

end;

337

procedure Cauchy(Intervals : integer; Sigma1, Sigma3 : real; Cosines : linarray3;

var Stresses : linarray2d);

{ Uses Cauchy's Formula to calculate the total stress components }

var

Count, Value : integer;

Sigma2, Step, Temp, Deviator : real;

begin

Deviator := (Sigma1 - Sigma3);

Step := (Deviator / Intervals);

Sigma2 := Sigma3;

for Count := 1 to (Intervals + 1) do

begin

Stresses[1,Count] := Sigma1 * Cosines[1];

Stresses[2,Count] := Sigma2 * Cosines[2];

Stresses[3,Count] := Sigma3 * Cosines[3];

Sigma2 := Sigma2 + Step;

end;

end;

procedure CalculateStresses(Intervals : integer; Mu, Cohesion, Trend, Plunge : real;

Cosines : linarray3; Stresses : linarray2d;

var SlipVector : linarray2d; DMin, DMax : char;

var SlipAngle, Ratios : linarray51);

{ Calculates slip vector and shear to normal stress ratio for each phi }

var

Count : integer;

DotProduct, StressVectorNormalized, Angle,

ShearStress, NormalStress, Phi, Sigma1,

Sigma2, Sigma3, Beta, Strike : real;

begin

for Count := 1 to (Intervals + 1) do

begin

StressVectorNormalized := (sqrt(sqr(Stresses[1,Count]) + sqr(Stresses[2,Count]) +

sqr(Stresses[3,Count])));

DotProduct := ((Cosines[1] * Stresses[1,Count]) + (Cosines[2] * Stresses[2,Count]) +

(Cosines[3] * Stresses[3,Count]));

Angle := (ArcCos(DotProduct / StressVectorNormalized));

ShearStress := (abs(StressVectorNormalized * sin(Angle)));

NormalStress := (abs(StressVectorNormalized * cos(Angle)));

if (((Zero(NormalStress)) or (Zero(Mu))) and (Zero(Cohesion)))

then Ratios[Count] := 0.0

else Ratios[Count] := (ShearStress / ((NormalStress * Mu) + Cohesion));

if (Cosines[1] <> 0.0)

then Sigma1 := Stresses[1,Count] / Cosines[1]

else Sigma1 := 0.0;

if (Cosines[2] <> 0.0)

then Sigma2 := Stresses[2,Count] / Cosines[2]

else Sigma2 := 0.0;

if (Cosines[3] <> 0.0)

then Sigma3 := Stresses[3,Count] / Cosines[3]

else Sigma3 := 0.0;

if ((upcase(DMax) = 'N') and (upcase(DMin) = 'E'))

338

then

begin

Phi := ((Sigma2 - Sigma3) / (Sigma1 - Sigma3));

if (Zero(Cosines[2]))

then SlipAngle[Count] := 0.0;

if (Zero(Cosines[1]))

then SlipAngle[Count] := 0.0;

if (Zero(Cosines[3]))

then SlipAngle[Count] := (PI / 2.0);

if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and

(not(Zero(Cosines[3]))))

then SlipAngle[Count] := arctan(((sqr(Cosines[1]) * Cosines[2]) - (Phi * Cosines[2]) +

(Phi * sqr(Cosines[2] * Cosines[2])) / (Cosines[3] * Cosines[1]));

end;

if ((upcase(DMax) = 'N') and (upcase(DMin) = 'U'))

then

begin

if (Sigma1 = Sigma2)

then SlipAngle[Count] := (PI / 2.0)

else

begin

Phi := ((Sigma3 - Sigma2) / (Sigma1 - Sigma2));

if (Zero(Cosines[3]))

then SlipAngle[Count] := 0.0;

if (Zero(Cosines[1]))

then SlipAngle[Count] := 0.0;

if (Zero(Cosines[2]))

then SlipAngle[Count] := (PI / 2.0);

if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and

(not(Zero(Cosines[3]))))

then SlipAngle[Count] := arctan(((sqr(Cosines[1]) * Cosines[3]) - (Phi * Cosines[3])

+ (Phi * sqr(Cosines[3]) * Cosines[3])) /

(Cosines[2] * Cosines[1]));

end;

end;

if ((upcase(DMax) = 'U') and (upcase(DMin) = 'N'))

then

begin

if (Sigma3 = Sigma2)

then SlipAngle[Count] := (PI / 2.0)

else

begin

Phi := ((Sigma1 - Sigma2) / (Sigma3 - Sigma2));

if (Zero(Cosines[1]))

then SlipAngle[Count] := (PI / 2.0);

if (Zero(Cosines[2]))

then SlipAngle[Count] := (PI / 2.0);

if (Zero(Cosines[3]))

then SlipAngle[Count] := (PI / 2.0);

if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and

(not(Zero(Cosines[3]))))

then SlipAngle[Count] := arctan(((sqr(Cosines[3]) * Cosines[1]) - (Phi * Cosines[1])

339

+ (Phi * sqr(Cosines[1]) * Cosines[1])) /

(Cosines[2] * Cosines[3]));

end;

end;

if ((upcase(DMax) = 'U') and (upcase(DMin) = 'E'))

then

begin

if (Sigma2 = Sigma3)

then SlipAngle[Count] := (PI / 2.0)

else

begin

Phi := ((Sigma1 - Sigma3) / (Sigma2 - Sigma3));

if (Zero(Cosines[1]))

then SlipAngle[Count] := (PI / 2.0);

if (Zero(Cosines[2]))

then SlipAngle[Count] := (PI / 2.0);

if (Zero(Cosines[3]))

then SlipAngle[Count] := (PI / 2.0);

if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and

(not(Zero(Cosines[3]))))

then SlipAngle[Count] := arctan(((sqr(Cosines[2]) * Cosines[1]) - (Phi * Cosines[1])

+ (Phi * sqr(Cosines[1]) * Cosines[1])) /

(Cosines[3] * Cosines[2]));

end;

end;

if ((upcase(DMax) = 'E') and (upcase(DMin) = 'U'))

then

begin

if (Sigma1 = Sigma2)

then SlipAngle[Count] := (PI / 2.0)

else

begin

Phi := ((Sigma3 - Sigma1) / (Sigma2 - Sigma1));

if (Zero(Cosines[3]))

then SlipAngle[Count] := 0.0;

if (Zero(Cosines[1]))

then SlipAngle[Count] := 0.0;

if (Zero(Cosines[2]))

then SlipAngle[Count] := (PI / 2.0);

if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and

(not(Zero(Cosines[3]))))

then SlipAngle[Count] := arctan(((sqr(Cosines[2]) * Cosines[3]) - (Phi * Cosines[3])

+ (Phi * sqr(Cosines[3]) * Cosines[3])) /

(Cosines[1] * Cosines[2]));

end;

end;

if ((upcase(DMax) = 'E') and (upcase(DMin) = 'N'))

then

begin

Phi := ((Sigma2 - Sigma1) / (Sigma3 - Sigma1));

if (Zero(Cosines[2]))

then SlipAngle[Count] := 0.0;

340

if (Zero(Cosines[1]))

then SlipAngle[Count] := 0.0;

if (Zero(Cosines[3]))

then SlipAngle[Count] := (PI / 2.0);

if ((not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and (not(Zero(Cosines[3]))))

then SlipAngle[Count] := arctan(((sqr(Cosines[3]) * Cosines[2]) - (Phi * Cosines[2]) +

(Phi * sqr(Cosines[2]) * Cosines[2])) /

(Cosines[1] * Cosines[3]));

end;

SlipAngle[Count] := RadToDeg(SlipAngle[Count]);

if (not(Zero(SlipAngle[Count])))

then Beta := RadToDeg(arctan(cos(DegToRad(90 - Plunge)) *

Tan(DegToRad(SlipAngle[Count]))))

else Beta := 0.0;

Strike := Trend + 90.0;

if (Strike > 360.0)

then Strike := Strike - 180.0;

SlipVector[2,Count] := Strike + Beta;

if (not(Zero(abs(Beta) - 90.0)))

then SlipVector[1,Count] := RadToDeg(ArcCos(cos(DegToRad(SlipAngle[Count])) /

cos(DegToRad(Beta))))

else SlipVector[1,Count] := 90.0 - Plunge;

if ((SlipAngle[Count] < 0.0) or (SlipAngle[Count] = 90.0))

then SlipVector[2,Count] := SlipVector[2,Count] + 180.0;

if (Trend > 270)

then SlipVector[2,Count] := SlipVector[2,Count] + 180.0;

if (SlipVector[2,Count] > 360.0)

then SlipVector[2,Count] := SlipVector[2,Count] - 360.0;

end;

end;

{ Main menu option # 3 - Examine a graph of the results }

procedure Circle(XVal, YVal : integer; Radius : real);

{ Draws a circle of a given radius about a given center point }

var

Angle, X, Y : integer;

Radian : real;

begin

for Angle := 0 to 180 do

begin

Radian := (((Angle * 2.0) * PI) / 180.0);

Y := round(YVal - (Radius * cos(Radian)));

X := round(XVal + (Radius * (sin(Radian) / 0.416)));

plot(X,Y,1);

end;

end;

procedure AskCutOff(var CutOff : real);

{ Asks cutoff value for the shear to normal stress ratios }

begin

repeat

341

clrscr;

textcolor(12);

DrawBox(25,1,56,3);

textcolor(11);

gotoxy(27,2);

writeln('Slip Vector Plotting Program');

gotoxy(2,8);

write('Enter minimum shear to normal stress ratio (default is 0.0) : ');

textcolor(12);

CutOff := 0.0;

readln(CutOff);

textcolor(11);

if (CutOff < 0.0)

then ShowError(12);

until (CutOff >= 0.0);

end;

procedure DrawGraphAxes(CutOff, Trend, Plunge : real; Sigma : chararray3);

{ Draws the axes of the graph }

var

IntPlunge, IntTrend : integer;

begin

hires;

palette(1);

hirescolor(4);

gotoxy(2,1);

writeln('Slip Vector Plotting Program');

gotoxy(2,2);

IntPlunge := round(Plunge);

IntTrend := round(Trend);

writeln('Fault plane normal at ',IntPlunge:2,' / ',IntTrend:3);

gotoxy(2,3);

writeln('Cutoff value = ',CutOff:4:2);

gotoxy(40,1);

writeln('Fault Planes');

Circle(318,11,2.0);

gotoxy(42,2);

writeln(' = Slipped');

Circle(318,20,1.0);

gotoxy(42,3);

writeln(' = Locked');

gotoxy(62,1);

writeln('Sigma 1 = ',Sigma[1]);

gotoxy(62,2);

writeln('Sigma 2 = ',Sigma[2]);

gotoxy(62,3);

writeln('Sigma 3 = ',Sigma[3]);

draw(71,115,590,115,1);

gotoxy(2,24);

writeln('Phi');

gotoxy(9,24);

writeln('0.0');

342

draw(178,113,178,117,1);

gotoxy(22,24);

writeln('0.2');

draw(281,113,281,117,1);

gotoxy(35,24);

writeln('0.4');

draw(384,113,384,117,1);

gotoxy(48,24);

writeln('0.6');

draw(487,113,487,117,1);

gotoxy(61,24);

writeln('0.8');

draw(590,113,590,117,1);

gotoxy(74,24);

writeln('1.0');

draw(75,180,75,50,1);

gotoxy(2,5);

writeln('Pitch');

draw(79,180,71,180,1);

gotoxy(6,23);

writeln('-90');

draw(79,147,71,147,1);

gotoxy(6,19);

writeln('-45');

draw(79,115,71,115,1);

gotoxy(8,15);

writeln('0');

draw(79,83,71,83,1);

gotoxy(7,11);

writeln('45');

draw(79,50,71,50,1);

gotoxy(7,7);

writeln('90');

end;

procedure PlotPoints(Intervals : integer; CutOff, Sigma1, Sigma3 : real; Ratios,

SlipAngle : linarray51);

{ Plots the phi versus pitch points }

var

Count, XVal, YVal : integer;

Deviator, Phi, Step, Sigma2 : real;

begin

Deviator := (Sigma1 - Sigma3);

Step := (Deviator / Intervals);

Sigma2 := Sigma3;

for Count := 1 to (Intervals + 1) do

begin

Phi := ((Sigma2 - Sigma3) / (Sigma1 - Sigma3));

XVal := round(75.0 + (Phi * 515.0));

YVal := round(115.0 - ((SlipAngle[Count] * 130.0) / 180.0));

if (Ratios[Count] >= CutOff)

then Circle(XVal,YVal,2.0)

343

else Circle(XVal,YVal,1.0);

if (abs(abs(SlipAngle[Count]) - 90.0) < 0.0001)

then

begin

YVal := round(115.0 - ((abs(SlipAngle[Count]) * 130.0) / 180.0));

if (Ratios[Count] >= CutOff)

then Circle(XVal,YVal,2.0)

else Circle(XVal,YVal,1.0);

YVal := round(115.0 - ((-abs(SlipAngle[Count]) * 130.0) / 180.0));

if (Ratios[Count] >= CutOff)

then Circle(XVal,YVal,2.0)

else Circle(XVal,YVal,1.0);

end;

Sigma2 := Sigma2 + Step;

end;

end;

{ Main menu option # 4 - Display a stereonet of the results }

procedure DrawStereonet(CutOff, Plunge, Trend : real; Sigma : chararray3);

{ Draws stereonet on the screen }

var

Angle, X, Y, IntPlunge, IntTrend : integer;

Radian : real;

begin

hires;

palette(1);

hirescolor(4);

IntPlunge := round(Plunge);

IntTrend := round(Trend);

for Angle := 0 to 3600 do

begin

Radian := DegToRad(Angle / 10.0);

X := round(315.0 + (90.0 * (sin(Radian) / 0.416)));

Y := round(102.0 - (90.0 * cos(Radian)));

plot(X,Y,1);

end;

draw(315,100,315,104,1);

draw(313,102,317,102,1);

draw(315,14,315,10,1);

gotoxy(40,1);

writeln('N');

gotoxy(3,2);

writeln('Slip Vector');

gotoxy(3,3);

writeln('Plotting Program');

gotoxy(3,4);

writeln('Fault Plane Normal');

gotoxy(3,5);

writeln('at ',IntPlunge:2,' / ',IntTrend:3);

gotoxy(63,2);

writeln('Lower-Hemisphere');

344

gotoxy(66,3);

writeln('Stereographic');

gotoxy(69,4);

writeln('Projection');

gotoxy(63,22);

writeln('Sigma 1 = ',Sigma[1]);

gotoxy(63,23);

writeln('Sigma 2 = ',Sigma[2]);

gotoxy(63,24);

writeln('Sigma 3 = ',Sigma[3]);

gotoxy(5,22);

writeln('= Slip');

gotoxy(5,23);

writeln('= Locked');

gotoxy(3,24);

writeln('Cutoff Value = ',CutOff:4:2);

circle(18,170,2.0);

circle(18,179,1.0);

end;

procedure DrawFaultPlane(Plunge, Trend, Radius : real);

{ Draws a great circle on a Wulff net }

var

Step, XVal, YVal : integer;

Strike, Dip, ApparentDip, Distance, Beta : real;

begin

if (Plunge = 0.0)

then Plunge := Plunge + 0.0001;

Dip := DegToRad(90.0 - Plunge);

if ((Trend >= 90.0) and (Trend < 270.0))

then Strike := Trend - 90.0

else Strike := Trend + 90.0;

if (Strike >= 360.0)

then Strike := Strike - 360.0;

for Step := 0 to 1800 do

begin

Beta := DegToRad(Step / 10.0);

ApparentDip := arctan(Tan(Dip) * sin(Beta));

Distance := Radius * Tan((PI / 4.0) - (ApparentDip / 2.0));

if (Distance < 1.0)

then

begin

Distance := RadToDeg(Beta);

if (Distance > 90.0)

then Distance := 90.0 - Distance;

Beta := DegToRad(Strike);

Beta := (((5.0 * PI) / 2.0) - Beta);

if (Beta >= (2.0 * PI))

then Beta := (Beta - (2.0 * PI));

if (Beta < 0.0)

then Beta := (Beta + (2.0 * PI));

end

345

else

begin

if ((Trend >= 90.0) and (Trend < 270.0))

then Beta := DegToRad(Strike) - Beta

else Beta := DegToRad(Strike) + Beta;

if (Beta >= (2.0 * PI))

then Beta := (Beta - (2.0 * PI));

if (Beta < 0.0)

then Beta := (Beta + (2.0 * PI));

Beta := (((5.0 * PI) / 2.0) - Beta);

if (Beta >= (2.0 * PI))

then Beta := (Beta - (2.0 * PI));

if (Beta < 0.0)

then Beta := (Beta + (2.0 * PI));

end;

XVal := round(315.0 + ((Distance * cos(Beta)) / 0.416));

YVal := round(102.0 - (Distance * sin(Beta)));

plot(XVal,YVal,1);

end;

end;

procedure DataPlot(Intervals : integer; CutOff, Trend : real; Cosines : linarray3;

SlipVector : linarray2d; Ratios : linarray51);

{ Plots slip vectors on the fault plane }

var

Count, XVal, YVal : integer;

Distance, Theta, ZeroTrend : real;

begin

for Count := 1 to (Intervals + 1) do

begin

Distance := (90.0 * Tan((PI / 4.0) - (DegToRad(SlipVector[1,Count]) / 2.0)));

if (SlipVector[1,Count] = 0.0)

then

begin

ZeroTrend := (SlipVector[2,Count] + 180.0);

if (ZeroTrend >= 360.0)

then ZeroTrend := ZeroTrend - 360.0;

Theta := (((5.0 * PI) / 2.0) - DegToRad(ZeroTrend));

XVal := round(315.0 + ((Distance * cos(Theta)) / 0.416));

YVal := round(102.0 - (Distance * sin(Theta)));

if (Ratios[Count] >= CutOff)

then Circle(XVal,YVal,2.0)

else Circle(XVal,YVal,1.0);

end;

Theta := (((5.0 * PI) / 2.0) - DegToRad(SlipVector[2,Count]));

XVal := round(315.0 + ((Distance * cos(Theta)) / 0.416));

YVal := round(102.0 - (Distance * sin(Theta)));

if (Ratios[Count] >= CutOff)

then Circle(XVal,YVal,2.0)

else Circle(XVal,YVal,1.0);

if ((Count = 1) and (not(Zero(Cosines[1]))) and (not(Zero(Cosines[2]))) and

(not(zero(Cosines[3]))))

346

then

begin

if ((Trend > 337.5) or (Trend <= 22.5))

then gotoxy(round(XVal/8),round((YVal-15)*3/25));

if ((Trend > 22.5) and (Trend <= 67.5))

then gotoxy(round((XVal+30)/8),round((Yval-15)*3/25));

if ((Trend > 67.5) and (Trend <= 112.5))

then gotoxy(round((XVal+30)/8),round(YVal*3/25));

if ((Trend > 112.5) and (Trend <= 157.5))

then gotoxy(round((XVal+30)/8),round((Yval+15)*3/25));

if ((Trend > 157.5) and (Trend <= 202.5))

then gotoxy(round(XVal/8),round((YVal+15)*3/25));

if ((Trend > 202.5) and (Trend <= 247.5))

then gotoxy(round((XVal-30)/8),round((Yval+15)*3/25));

if ((Trend > 247.5) and (Trend <= 292.5))

then gotoxy(round((XVal-30)/8),round(YVal*3/25));

if ((Trend > 292.5) and (Trend <= 337.5))

then gotoxy(round((XVal-30)/8),round((Yval-15)*3/25));

writeln(chr(232),' = 0');

end;

if ((Count = (Intervals + 1)) and (not(Zero(Cosines[1]))) and

(not(Zero(Cosines[2]))) and (not(Zero(Cosines[3]))))

then

begin

if ((Trend > 337.5) or (Trend <= 22.5))

then gotoxy(round(XVal/8),round((YVal-15)*3/25));

if ((Trend > 22.5) and (Trend <= 67.5))

then gotoxy(round((XVal+30)/8),round((Yval-15)*3/25));

if ((Trend > 67.5) and (Trend <= 112.5))

then gotoxy(round((XVal+30)/8),round(YVal*3/25));

if ((Trend > 112.5) and (Trend <= 157.5))

then gotoxy(round((XVal+30)/8),round((Yval+15)*3/25));

if ((Trend > 157.5) and (Trend <= 202.5))

then gotoxy(round(XVal/8),round((YVal+15)*3/25));

if ((Trend > 202.5) and (Trend <= 247.5))

then gotoxy(round((XVal-30)/8),round((Yval+15)*3/25));

if ((Trend > 247.5) and (Trend <= 292.5))

then gotoxy(round((XVal-30)/8),round(YVal*3/25));

if ((Trend > 292.5) and (Trend <= 337.5))

then gotoxy(round((XVal-30)/8),round((Yval-15)*3/25));

writeln(chr(232),' = 1');

end;

end;

end;

{ Main menu option # 5 - Display a numerical listing of the results }

procedure W riteList(Intervals : integer; Sigma1, Sigma3, Trend, Plunge : real;

SlipAngle, Ratios : linarray51; Sigma : chararray3);

{ Displays a numerical listing of the results }

label 1;

var

347

Count, IntPlunge, IntTrend, Page : integer;

Deviator, Step, Sigma2, Pages, Phi : real;

begin

Sigma2 := Sigma3;

Pages := ((Intervals + 1.0) / 12.0);

if ((Pages - trunc(Pages)) > 0.00001) then Pages := Pages + 1.0;

for Page := 0 to (trunc(Pages) - 1) do

begin

clrscr;

writeln;

textcolor(12);

writeln(' Slip Vector Plotting Program Results');

textcolor(11);

writeln;

write(' Data for a plane with a normal oriented at : ');

IntPlunge := round(Plunge);

IntTrend := round(Trend);

writeln(IntPlunge:2,' / ',IntTrend:3);

writeln;

write(' Sigma 1 = ',Sigma[1],' Sigma 2 = ',Sigma[2]);

writeln(' Sigma 3 = ',Sigma[3]);

writeln;

writeln(' Sigma 1 Sigma 2 Sigma 3 Phi Pitch Shear/Normal');

writeln;

Deviator := (Sigma1 - Sigma3);

Step := (Deviator / Intervals);

for Count := ((Page * 12) + 1) to ((Page * 12) + 12) do

begin

Phi := ((Sigma2 - Sigma3) / (Sigma1 - Sigma3));

if (Count > (Intervals + 1)) then goto 1;

write(Sigma1:6:2,' ',Sigma2:6:2,' ',Sigma3:6:2,' ');

writeln(Phi:6:2,' ',SlipAngle[Count]:6:2,' ',Ratios[Count]:6:2);

Sigma2 := Sigma2 + Step;

1: end;

gotoxy(2,24);

write('Press any ');

textcolor(12);

write('key');

textcolor(11);

write(' to continue...');

repeat until (keypressed);

end;

end;

{ Main menu option # 6 - Procedures to print the results }

procedure AskDiskFileName(var FileName : String12);

{ Asks for the name of a disk data file }

var

FileLength, Count : integer;

Extension : boolean;

Key : char;

348

begin

repeat

clrscr;

textcolor(12);

DrawBox(25,1,56,3);

textcolor(11);

gotoxy(27,2);

writeln('Slip Vector Plotting Program');

gotoxy(2,10);

write('Enter a filename (');

textcolor(12);

write('.DAT');

textcolor(11);

write(') : ');

textcolor(12);

readln(FileName);

textcolor(11);

FileLength := length(FileName);

Extension := false;

for Count := 1 to FileLength do

if (copy(FileName,Count,1) = '.')

then

Extension := true;

FileName := FileName + '.dat';

if ((Exists(FileName)) or (Extension))

then

if (Extension)

then

ShowError(9)

else

ShowError(10);

until ((not(Exists(FileName))) and (not(Extension)));

end;

procedure AskAcadFileName(var FileName : String12);

{ Asks for the name of a disk data file }

var

FileLength, Count : integer;

Extension : boolean;

Key : char;

begin

repeat

clrscr;

textcolor(12);

DrawBox(25,1,56,3);

textcolor(11);

gotoxy(27,2);

writeln('Slip Vector Plotting Program');

gotoxy(2,10);

write('Enter a filename (');

textcolor(12);

write('.DXF');

349

textcolor(11);

write(') : ');

textcolor(12);

readln(FileName);

textcolor(11);

FileLength := length(FileName);

Extension := false;

for Count := 1 to FileLength do

if (copy(FileName,Count,1) = '.')

then

Extension := true;

FileName := FileName + '.dxf';

if ((Exists(FileName)) or (Extension))

then

if (Extension)

then

ShowError(9)

else

ShowError(10);

until ((not(Exists(FileName))) and (not(Extension)));

end;

procedure PrintMenuChoice(var Choice : integer);

{ Returns the number of the print menu item selected }

var

Key : char;

begin

repeat

read(kbd,Key);

Choice := ord(Key) - 48;

if (not(Choice in [1..4]))

then Beep;

until (Choice in [1..4]);

end;

procedure PrintMenu(var Choice : integer);

{ Displays the print menu }

var

Count : integer;

begin

clrscr;

textcolor(12);

DrawBox(25,2,56,4);

textcolor(11);

gotoxy(27,3);

writeln('Slip Vector Plotting Program');

gotoxy(2,10);

writeln('What do you wish to do ?');

writeln;

for Count := 1 to 4 do

begin

textcolor(12);

350

write(' ',Count);

textcolor(11);

case (Count) of

1 : writeln(' - Write the numerical results to a disk file');

2 : writeln(' - Create a DXFile of the stereonet for AutoCAD');

3 : writeln(' - Create a DXFile of the graph for AutoCAD');

4 : writeln(' - Return to the main menu');

end;

end;

writeln;

write(' Press the ');

textcolor(12);

write('number');

textcolor(11);

write(' of you choice...');

MainMenuChoice(Choice);

end;

{ Procedure to write the results to a disk file }

procedure WriteFile(Intervals : integer; Sigma1, Sigma3, Mu, Cohesion, Trend,

Plunge : real; SlipAngle, Ratios : linarray51;

FileName : string12; Sigma : chararray3);

{ W rites a disk data file of the results }

var

Count, IntPlunge, IntTrend : integer;

Deviator, Phi, Step, Sigma2 : real;

DataFile : text;

begin

assign(DataFile,FileName);

rewrite(DataFile);

writeln(DataFile,' ');

writeln(DataFile,' ');

writeln(DataFile,' ');

writeln(DataFile,' Slip Vector Plotting Program');

writeln(DataFile,' ');

writeln(DataFile,' ');

writeln(DataFile,' ');

write(DataFile,' Data for a plane with a normal oriented at : ');

IntPlunge := round(Plunge);

IntTrend := round(Trend);

writeln(DataFile,IntPlunge:2,' / ',IntTrend:3);

writeln(DataFile,' ');

writeln(DataFile,' ');

write(DataFile,' Sigma 1 = ',Sigma[1],' Sigma 1 = ',Sigma1:5:2);

writeln(DataFile,' Coefficient of friction = ',Mu:5:2);

write(DataFile,' Sigma 2 = ',Sigma[2],' Sigma 3 = ',Sigma3:5:2);

writeln(DataFile,' Cohesion = ',Cohesion:5:2);

write(DataFile,' Sigma 3 = ',Sigma[3]);

writeln(DataFile,' ');

writeln(DataFile,' ');

writeln(DataFile,' ');

351

write(DataFile,' Sigma 1 Sigma 2 Sigma 3 Phi');

writeln(DataFile,' Pitch Stress ratio');

writeln(DataFile,' ');

Deviator := (Sigma1 - Sigma3);

Step := (Deviator / Intervals);

Sigma2 := Sigma3;

for Count := 1 to (Intervals + 1) do

begin

Phi := ((Sigma2 - Sigma3) / (Sigma1 - Sigma3));

write(DataFile,Sigma1:6:2,' ',Sigma2:6:2,' ',Sigma3:6:2,' ');

write(DataFile,Phi:6:2,' ',SlipAngle[Count]:6:2,' ');

writeln(DataFile,Ratios[Count]:6:2);

Sigma2 := Sigma2 + Step;

end;

writeln(DataFile,' ');

close(DataFile);

end;

{ AutoCAD DXFile creation procedures }

{$I DXF.INC}

{ Main Program }

begin

QuitIt := false;

IsThereData := false;

IntroPage;

repeat

MainMenu(Choice);

case (Choice) of

1 : HelpPages;

2 : begin

AskData(Sigma,Sigma1,Sigma3,Mu,Cohesion,Plunge,Trend,DMin,DMax,Intervals);

Working;

DirCosines(Plunge,Trend,Dmin,DMax,Cosines);

Cauchy(Intervals,Sigma1,Sigma3,Cosines,Stresses);

CalculateStresses(Intervals,Mu,Cohesion,Trend,Plunge,Cosines,

Stresses,SlipVector,DMin,DMax,SlipAngle,Ratios);

Cursor(true);

IsThereData := true;

Beep;

end;

3 : begin

if (IsThereData)

then

begin

AskCutOff(CutOff);

DrawGraphAxes(CutOff,Trend,Plunge,Sigma);

PlotPoints(Intervals,CutOff,Sigma1,Sigma3,Ratios,SlipAngle);

EndGraphics;

end

352

else

ShowError(11);

end;

4 : begin

if (IsThereData)

then

begin

AskCutOff(CutOff);

DrawStereonet(CutOff,Plunge,Trend,Sigma);

DrawFaultPlane(Plunge,Trend,90.0);

DataPlot(Intervals,CutOff,Trend,Cosines,SlipVector,Ratios);

EndGraphics;

end

else

ShowError(11);

end;

5 : begin

if (IsThereData)

then

WriteList(Intervals,Sigma1,Sigma3,Trend,

Plunge,SlipAngle,Ratios,Sigma)

else

ShowError(11);

end;

6 : begin

if (IsThereData)

then

begin

Printmenu(Choice);

case (Choice) of

1 : begin

AskDiskFileName(FileName);

Writing(FileName);

WriteFile(Intervals,Sigma1,Sigma3,Mu,Cohesion,Trend,

Plunge,SlipAngle,Ratios,FileName,Sigma);

Cursor(true);

Beep;

end;

2 : begin

AskCutOff(CutOff);

AskAcadFileName(FileName);

CreatePage(FileName);

DXFileNet(Intervals,CutOff,Plunge,Trend,Cosines,

SlipVector,Ratios,FileName,Sigma);

Cursor(true);

Beep;

end;

3 : begin

AskCutOff(CutOff);

AskAcadFileName(FileName);

CreatePage(FileName);

DXFileGraph(Intervals,CutOff,Plunge,Trend,Sigma1,

353

Sigma3,Ratios,SlipAngle,FileName);

Cursor(true);

Beep;

end;

4 : {Continue}

end;

end

else

ShowError(11);

end;

7 : QuitIt := true;

end;

Until (QuitIt);

ExitPage;

end.

354

Listing of the include file DXF.INC which creates AutoCAD DXF files.

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{ }

{ DXF.INC }

{ }

{ Procedures to create AutoCAD DXFiles for SLIP.PAS }

{ }

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{ }

{ Procedures available: }

{ }

{ DXFileNet - Creates an AutoCAD DXfile for the stereonet }

{ DXFileGraph - Creates an AutoCAD DXFile for the graph }

{ }

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

procedure DXFileNet(Intervals : integer; CutOff, Plunge, Trend : real;

Cosines : linarray3; SlipVector : linarray2d;

Ratios : linarray51; FileName : string12;

Sigma : chararray3);

{ Creates an AutoCAD DXFile for the stereonet }

var

Count, IntPlunge, IntTrend : integer;

Strike, Dip, ApparentDip, Theta,

Distance, Beta, XVAl, YVAl, ZeroTrend : real;

DataFile : text;

begin

IntPlunge := round(Plunge);

IntTrend := round(Trend);

assign(DataFile,FileName);

rewrite(DataFile);

writeln(DataFile,'0');

writeln(DataFile,'SECTION');

writeln(DataFile,'2');

writeln(DataFile,'HEADER');

writeln(DataFile,'9');

writeln(DataFile,'$TEXTSTYLE');

writeln(DataFile,'7');

writeln(DataFile,'SIMPLEX');

writeln(DataFile,'0');

writeln(DataFile,'ENDSEC');

writeln(DataFile,'0');

writeln(DataFile,'SECTION');

writeln(DataFile,'2');

writeln(DataFile,'ENTITIES');

writeln(DataFile,'0');

writeln(DataFile,'CIRCLE');

writeln(DataFile,'8');

writeln(DataFile,'0');

355

writeln(DataFile,'10');

writeln(DataFile,'7.500');

writeln(DataFile,'20');

writeln(DataFile,'4.500');

writeln(DataFile,'40');

writeln(DataFile,'4.000');

writeln(DataFile,'0');

writeln(DataFile,'LINE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'7.350');

writeln(DataFile,'20');

writeln(DataFile,'4.500');

writeln(DataFile,'11');

writeln(DataFile,'7.650');

writeln(DataFile,'21');

writeln(DataFile,'4.500');

writeln(DataFile,'0');

writeln(DataFile,'LINE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'7.500');

writeln(DataFile,'20');

writeln(DataFile,'4.350');

writeln(DataFile,'11');

writeln(DataFile,'7.500');

writeln(DataFile,'21');

writeln(DataFile,'4.650');

writeln(DataFile,'0');

writeln(DataFile,'LINE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'7.500');

writeln(DataFile,'20');

writeln(DataFile,'8.350');

writeln(DataFile,'11');

writeln(DataFile,'7.500');

writeln(DataFile,'21');

writeln(DataFile,'8.650');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'7.45');

writeln(DataFile,'20');

writeln(DataFile,'8.800');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

356

writeln(DataFile,'1');

writeln(DataFile,'N');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'0.500');

writeln(DataFile,'20');

writeln(DataFile,'8.300');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Slip Vector');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'0.500');

writeln(DataFile,'20');

writeln(DataFile,'7.900');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Plotting Program');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'0.500');

writeln(DataFile,'20');

writeln(DataFile,'7.500');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Fault Plane Normal');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'0.500');

writeln(DataFile,'20');

writeln(DataFile,'7.100');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'at ',IntPlunge:2,' / ',IntTrend:3);

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

357

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'11.000');

writeln(DataFile,'20');

writeln(DataFile,'8.300');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Lower-Hemisphere');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'11.600');

writeln(DataFile,'20');

writeln(DataFile,'7.900');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Stereographic');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'12.200');

writeln(DataFile,'20');

writeln(DataFile,'7.500');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Projection');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'11.200');

writeln(DataFile,'20');

writeln(DataFile,'1.300');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Sigma 1 = ',Sigma[1]);

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'11.200');

358

writeln(DataFile,'20');

writeln(DataFile,'0.900');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Sigma 2 = ',Sigma[2]);

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'11.200');

writeln(DataFile,'20');

writeln(DataFile,'0.500');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Sigma 3 = ',Sigma[3]);

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'0.800');

writeln(DataFile,'20');

writeln(DataFile,'1.300');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,' = Slip');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'0.800');

writeln(DataFile,'20');

writeln(DataFile,'0.900');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,' = Locked');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'0.500');

writeln(DataFile,'20');

writeln(DataFile,'0.500');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

359

writeln(DataFile,'1');

writeln(DataFile,'Cutoff Value = ',CutOff:4:2);

writeln(DataFile,'0');

writeln(DataFile,'CIRCLE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'0.600');

writeln(DataFile,'20');

writeln(DataFile,'1.400');

writeln(DataFile,'40');

writeln(DataFile,'0.150');

writeln(DataFile,'0');

writeln(DataFile,'CIRCLE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'0.600');

writeln(DataFile,'20');

writeln(DataFile,'1.000');

writeln(DataFile,'40');

writeln(DataFile,'0.050');

if (Plunge = 0.0)

then Plunge := Plunge + 0.0001;

Dip := DegToRad(90.0 - Plunge);

if ((Trend >= 90.0) and (Trend < 270.0))

then Strike := Trend - 90.0

else Strike := Trend + 90.0;

if (Strike >= 360.0)

then Strike := Strike - 360.0;

for Count := 0 to 1800 do

begin

Beta := DegToRad(Count / 10.0);

ApparentDip := arctan(Tan(Dip) * sin(Beta));

Distance := 4.000 * Tan((PI / 4.0) - (ApparentDip / 2.0));

if (Distance < 0.05)

then

begin

Distance := (RadToDeg(Beta) * (2.0 / 45.0));

if (Distance > 4.000)

then Distance := 4.000 - Distance;

Beta := DegToRad(Strike);

Beta := (((5.0 * PI) / 2.0) - Beta);

if (Beta >= (2.0 * PI))

then Beta := (Beta - (2.0 * PI));

if (Beta < 0.0)

then Beta := (Beta + (2.0 * PI));

end

else

begin

if ((Trend >= 90.0) and (Trend < 270.0))

then Beta := DegToRad(Strike) - Beta

360

else Beta := DegToRad(Strike) + Beta;

if (Beta >= (2.0 * PI))

then Beta := (Beta - (2.0 * PI));

if (Beta < 0.0)

then Beta := (Beta + (2.0 * PI));

Beta := (((5.0 * PI) / 2.0) - Beta);

if (Beta >= (2.0 * PI))

then Beta := (Beta - (2.0 * PI));

if (Beta < 0.0)

then Beta := (Beta + (2.0 * PI));

end;

XVal := (7.500 + (Distance * cos(Beta)));

YVal := (4.500 + (Distance * sin(Beta)));

writeln(DataFile,'0');

writeln(DataFile,'POINT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,XVAL);

writeln(DataFile,'20');

writeln(DataFile,YVAL);

end;

for Count := 1 to (Intervals + 1) do

begin

Distance := (4.000 * Tan((PI / 4.0) - (DegToRad(SlipVector[1,Count]) / 2.0)));

if (SlipVector[1,Count] = 0.0)

then

begin

ZeroTrend := (SlipVector[2,Count] + 180.0);

if (ZeroTrend >= 360.0)

then ZeroTrend := ZeroTrend - 360.0;

Theta := (((5.0 * PI) / 2.0) - DegToRad(ZeroTrend));

XVal := (7.500 + (Distance * cos(Theta)));

YVal := (4.500 + (Distance * sin(Theta)));

writeln(DataFile,'0');

writeln(DataFile,'CIRCLE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,XVAL);

writeln(DataFile,'20');

writeln(DataFile,YVAL);

writeln(DataFile,'40');

if (Ratios[Count] >= CutOff)

then writeln(DataFile,'0.150')

else writeln(DataFile,'0.050');

end;

Theta := (((5.0 * PI) / 2.0) - DegToRad(SlipVector[2,Count]));

XVal := (7.500 + (Distance * cos(Theta)));

YVal := (4.500 + (Distance * sin(Theta)));

writeln(DataFile,'0');

writeln(DataFile,'CIRCLE');

361

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,XVAL);

writeln(DataFile,'20');

writeln(DataFile,YVAL);

writeln(DataFile,'40');

if (Ratios[Count] >= CutOff)

then writeln(DataFile,'0.150')

else writeln(DataFile,'0.050');

if ((Count = 1) and (not(Zero(Cosines[1]))) and (not(Zero(Cosines[2])))

and (not(Zero(Cosines[3]))))

then

begin

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

if ((Trend > 337.5) or (Trend <= 22.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL));

writeln(DataFile,'20');

writeln(DataFile,(YVAL+0.50));

end;

if ((Trend > 22.5) and (Trend <= 67.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL+0.50));

writeln(DataFile,'20');

writeln(DataFile,(YVAL+0.50));

end;

if ((Trend > 67.5) and (Trend <= 112.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL+0.50));

writeln(DataFile,'20');

writeln(DataFile,(YVAL));

end;

if ((Trend > 112.5) and (Trend <= 157.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL+0.50));

writeln(DataFile,'20');

writeln(DataFile,(YVAL-0.50));

end;

if ((Trend > 157.5) and (Trend <= 202.5))

then

362

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL));

writeln(DataFile,'20');

writeln(DataFile,(YVAL-0.50));

end;

if ((Trend > 202.5) and (Trend <= 247.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL-0.50));

writeln(DataFile,'20');

writeln(DataFile,(YVAL-0.50));

end;

if ((Trend > 247.5) and (Trend <= 292.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL-0.50));

writeln(DataFile,'20');

writeln(DataFile,(YVAL));

end;

if ((Trend > 292.5) and (Trend <= 337.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL-0.50));

writeln(DataFile,'20');

writeln(DataFile,(YVAL+0.50));

end;

writeln(DataFile,'40');

writeln(DataFile,'0.15');

writeln(DataFile,'1');

writeln(DataFile,'Phi = 0');

end;

if ((Count = (Intervals + 1)) and (not(Zero(Cosines[1]))) and

(not(Zero(Cosines[2]))) and (not(Zero(Cosines[3]))))

then

begin

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

if ((Trend > 337.5) or (Trend <= 22.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL));

writeln(DataFile,'20');

writeln(DataFile,(YVAL+0.50));

end;

if ((Trend > 22.5) and (Trend <= 67.5))

363

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL+0.50));

writeln(DataFile,'20');

writeln(DataFile,(YVAL+0.50));

end;

if ((Trend > 67.5) and (Trend <= 112.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL+0.50));

writeln(DataFile,'20');

writeln(DataFile,(YVAL));

end;

if ((Trend > 112.5) and (Trend <= 157.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL+0.50));

writeln(DataFile,'20');

writeln(DataFile,(YVAL-0.50));

end;

if ((Trend > 157.5) and (Trend <= 202.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL));

writeln(DataFile,'20');

writeln(DataFile,(YVAL-0.50));

end;

if ((Trend > 202.5) and (Trend <= 247.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL-0.50));

writeln(DataFile,'20');

writeln(DataFile,(YVAL-0.50));

end;

if ((Trend > 247.5) and (Trend <= 292.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL-0.50));

writeln(DataFile,'20');

writeln(DataFile,(YVAL));

end;

if ((Trend > 292.5) and (Trend <= 337.5))

then

begin

writeln(DataFile,'10');

writeln(DataFile,(XVAL-0.50));

364

writeln(DataFile,'20');

writeln(DataFile,(YVAL+0.50));

end;

writeln(DataFile,'40');

writeln(DataFile,'0.15');

writeln(DataFile,'1');

writeln(DataFile,'Phi = 1');

end;

end;

writeln(DataFile,'0');

writeln(DataFile,'ENDSEC');

writeln(DataFile,'0');

writeln(DataFile,'EOF');

close(DataFile);

end;

procedure DXFileGraph(Intervals : integer; CutOff, Plunge, Trend, Sigma1, Sigma3 : real;

Ratios, SlipAngle : linarray51; FileName : string12);

{ Creates an AutoCAD DXFile for the graph }

var

Count, IntPlunge, IntTrend : integer;

Deviator, Phi, Step, Sigma2, XVal, YVal : real;

DataFile : text;

begin

assign(DataFile,FileName);

rewrite(DataFile);

writeln(DataFile,'0');

writeln(DataFile,'SECTION');

writeln(DataFile,'2');

writeln(DataFile,'HEADER');

writeln(DataFile,'9');

writeln(DataFile,'$TEXTSTYLE');

writeln(DataFile,'7');

writeln(DataFile,'SIMPLEX');

writeln(DataFile,'0');

writeln(DataFile,'ENDSEC');

writeln(DataFile,'0');

writeln(DataFile,'SECTION');

writeln(DataFile,'2');

writeln(DataFile,'ENTITIES');

writeln(DataFile,'0');

writeln(DataFile,'LINE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'3.000');

writeln(DataFile,'20');

writeln(DataFile,'2.000');

writeln(DataFile,'11');

writeln(DataFile,'3.000');

writeln(DataFile,'21');

writeln(DataFile,'7.000');

365

writeln(DataFile,'0');

writeln(DataFile,'LINE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'3.000');

writeln(DataFile,'20');

writeln(DataFile,'4.5');

writeln(DataFile,'11');

writeln(DataFile,'13.000');

writeln(DataFile,'21');

writeln(DataFile,'4.5');

for Count := 0 to 5 do

begin

XVal := ((2.0 * Count) + 3.000);

writeln(DataFile,'0');

writeln(DataFile,'LINE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,XVAL);

writeln(DataFile,'20');

writeln(DataFile,'4.35');

writeln(DataFile,'11');

writeln(DataFile,XVAL);

writeln(DataFile,'21');

writeln(DataFile,'4.65');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,(XVal - 0.20));

writeln(DataFile,'20');

writeln(DataFile,'1.600');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,(Count * 0.2):2:1);

end;

for Count := 0 to 4 do

begin

YVal := ((1.25 * Count) + 2.000);

writeln(DataFile,'0');

writeln(DataFile,'LINE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'2.850');

writeln(DataFile,'20');

writeln(DataFile,YVAL);

writeln(DataFile,'11');

366

writeln(DataFile,'3.150');

writeln(DataFile,'21');

writeln(DataFile,YVAL);

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'2.05');

writeln(DataFile,'20');

writeln(DataFile,(YVal - 0.1));

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

case (Count) of

0 : writeln(DataFile,'-90');

1 : writeln(DataFile,'-45');

2 : writeln(DataFile,' 0');

3 : writeln(DataFile,' 45');

4 : writeln(DataFile,' 90');

end;

end;

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'1.800');

writeln(DataFile,'20');

writeln(DataFile,'8.800');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Slip Vector Plotting Program');

IntPlunge := round(Plunge);

IntTrend := round(Trend);

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'1.800');

writeln(DataFile,'20');

writeln(DataFile,'8.500');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Fault Plane Normal at ',IntPlunge:2,' / ',IntTrend:3);

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

367

writeln(DataFile,'10');

writeln(DataFile,'1.800');

writeln(DataFile,'20');

writeln(DataFile,'8.200');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Cutoff Value = ',CutOff:4:2);

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'1.800');

writeln(DataFile,'20');

writeln(DataFile,'7.600');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Pitch');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'8.000');

writeln(DataFile,'20');

writeln(DataFile,'8.800');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Fault Plane');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'8.200');

writeln(DataFile,'20');

writeln(DataFile,'8.500');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,' = Slip');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'8.200');

writeln(DataFile,'20');

writeln(DataFile,'8.200');

368

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,' = Locked');

writeln(DataFile,'0');

writeln(DataFile,'CIRCLE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'8.000');

writeln(DataFile,'20');

writeln(DataFile,'8.550');

writeln(DataFile,'40');

writeln(DataFile,'0.150');

writeln(DataFile,'0');

writeln(DataFile,'CIRCLE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'8.000');

writeln(DataFile,'20');

writeln(DataFile,'8.250');

writeln(DataFile,'40');

writeln(DataFile,'0.050');

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'11.000');

writeln(DataFile,'20');

writeln(DataFile,'8.800');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Sigma 1 = ',Sigma[1]);

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'11.000');

writeln(DataFile,'20');

writeln(DataFile,'8.500');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Sigma 2 = ',Sigma[2]);

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

369

writeln(DataFile,'10');

writeln(DataFile,'11.000');

writeln(DataFile,'20');

writeln(DataFile,'8.200');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Sigma 3 = ',Sigma[3]);

writeln(DataFile,'0');

writeln(DataFile,'TEXT');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,'7.800');

writeln(DataFile,'20');

writeln(DataFile,'1.000');

writeln(DataFile,'40');

writeln(DataFile,'0.20');

writeln(DataFile,'1');

writeln(DataFile,'Phi');

Deviator := (Sigma1 - Sigma3);

Step := (Deviator / Intervals);

Sigma2 := Sigma3;

for Count := 1 to (Intervals + 1) do

begin

Phi := ((Sigma2 - Sigma3) / (Sigma1 - Sigma3));

XVal := (3.000 + (Phi * 10.0));

YVal := (4.500 + ((SlipAngle[Count] * 5.0) / 180.0));

writeln(DataFile,'0');

writeln(DataFile,'CIRCLE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,XVAL);

writeln(DataFile,'20');

writeln(DataFile,YVAL);

writeln(DataFile,'40');

if (Ratios[Count] >= CutOff)

then writeln(DataFile,'0.150')

else writeln(DataFile,'0.050');

if (abs(abs(SlipAngle[Count]) - 90.0) < 0.0001)

then

begin

YVal := (4.500 + ((SlipAngle[Count] * 5.0) / 180.0));

writeln(DataFile,'0');

writeln(DataFile,'CIRCLE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,XVAL);

writeln(DataFile,'20');

writeln(DataFile,YVAL);

370

writeln(DataFile,'40');

if (Ratios[Count] >= CutOff)

then writeln(DataFile,'0.150')

else writeln(DataFile,'0.050');

YVal := (4.500 - ((SlipAngle[Count] * 5.0) / 180.0));

writeln(DataFile,'0');

writeln(DataFile,'CIRCLE');

writeln(DataFile,'8');

writeln(DataFile,'0');

writeln(DataFile,'10');

writeln(DataFile,XVAL);

writeln(DataFile,'20');

writeln(DataFile,YVAL);

writeln(DataFile,'40');

if (Ratios[Count] >= CutOff)

then writeln(DataFile,'0.150')

else writeln(DataFile,'0.050');

end;

Sigma2 := Sigma2 + Step;

end;

writeln(DataFile,'0');

writeln(DataFile,'ENDSEC');

writeln(DataFile,'0');

writeln(DataFile,'EOF');

close(DataFile);

end;

371

Listing of the help file SLIP.TXT called by SLIP.PAS, the program listed above.

SLIP.TXT - A 6 page help file for the program SLIP.PAS

An asterisk before a line causes it to be highlighted when the help option

is chosen in the program. The first five lines of this file are not read.

1.

* Slip Vector Plotting Program

This is a program to calculate the slip vector and the stress ratios

acting upon a fault plane of any arbitrary orientation with a varying

magnitude of F2 given fixed magnitudes for F1 and F3 where the principal

stress axes may be oriented either north/south, east/west, or vertical at

your choosing. The results of this program are then displayed as a graph

of the ratio of the principal stresses versus the pitch of the slip vector

from the strike of the fault plane, as a lower-hemisphere stereographic

projection of the fault plane and the slip vectors resulting from differing

values of F2, or as a numerical listing of the values of F1, F2, and F3 and

the pitch of the slip vectors and the stress ratios which are associated

with them. The stress ratios are defined as [Fs / (:Fn + C)] where Fs is

the shear stress, Fn is the normal stress, : is the coefficient of friction,

and C is the cohesion.

The idea for this program came from a paper in volume 96 of Geological

Magazine by M. H. P. Bott entitled "The Mechanics of Oblique Slip Faulting"

published in 1959. Bott showed that the position of the slip vector in the

fault plane is dependant upon the ratios of the three principal stresses.

2.

* Slip Vector Plotting Program

When you begin program execution, you will be asked to provide a value

for F1 and F3. The program will accept any positive real numbers as valid

values provided, of course, that the value for F1 is greater than that for

F3. A value for the coefficient of friction (:) and the cohesion must then

be supplied. Next, the values of the plunge and trend of the normal to the

fault plane you wish to examine must be entered. The plunge may be any real

number between 0 and 89.9 inclusive and the trend may be any real number

between 0 and 359.9 inclusive. The program will then ask for the number of

intervals of F2 you wish to examine as F2 varies between F3 and F1 in

however many increments you specify. The program will accept any integer

between 2 and 50 inclusive for this value.

Although the program will accept any real numbers greater than or equal

to zero for the values of F1, F3, :, and C, it must be kept in mind that

there are many values which could be entered which may not have any real

geological significance. Always try to keep in mind as to what might be

realistic values for the deviatoric stress (F1 - F3) and for the isotropic

stress [(F1 + F2 + F3) / 3.0].

372

3.

* Slip Vector Plotting Program

After this program has run, you may examine the data in several ways.

First, you may examine a graph plotting M versus the pitch of the slip

vector from the strike direction. M is defined as [(F2 - F3) / (F1 - F3)]

and the pitch varies from -90.0 to +90.0 degrees as an angle from the strike

direction which is always between 0.0 and 180.0 degrees inclusive. Second,

a lower-hemisphere stereograph projection may be examined which plots the

fault plane and the positions of the different slip vectors on it for the

differing values of F2. Third, the numerical values of F1, F2, and F3 may

be written along with the values for the pitch of the slip vectors and the

ratio of the shear to normal stresses associated with them. This data may

also be printed by writing it to a disk data file and then using the DOS

command:

* PRINT filename.ext

The graph and the stereonet may also be written to an AutoCAD drawing

interchange file (DXF).

4.

* Slip Vector Plotting Program

To create and print an AutoCAD drawing interchange file, first write the

data to a file with the extension .DXF and then read that file into AutoCAD

using the DXFIN command. Once in AutoCAD, changes may be made if desired and

the drawing may then be plotted using a laser printer or pen plotter.

Before creating the graph or stereonet plots, the program will ask for a

cutoff value for the shear to normal stress ratio. When a value greater than

0.0 is specified, any slip vector with a stress ratio above the cutoff will

be plotted as a circle and any slip vector with a value below the cutoff will be

plotted as a square. The rational for doing this is that faulting will occur

only when the stress ratio exceeds a certain value. When a geologically

reasonable value is entered, it may be assumed that any vector plotting as

a circle may initiate slip while any vector plotting as a square will leave

the fault remaining locked.

The main purpose of this program is to generate a data set of known fault

orientations and their slip directions given a specified stress field. This

data will then be used to test and evaluate different computer methods for

determining principal stress orientations from faults and their slip vectors.

5.

* Slip Vector Plotting Program

This program was written by Steven H. Schimmrich in Turbo Pascal (Borland,

Inc. - registered trademark) for an IBM AT personal computer with a numeric

373

coprocessor, 512 K memory, and color graphics capabilities. The program may

not run properly on other machines. Version 1.0 of this program was written

in April of 1988, version 2.0 in July of 1988. This help file that you are

reading is called SLIP.TXT and must be on the same disk as the main program

SLIP.PAS is. The compiled version of this program is called SLIP.COM and may

be run from the DOS level by simply typing SLIP at the DOS prompt.

If at any time during the program execution it becomes "stuck" or the

keyboard freezes, pressing the Ctrl key and the C letter key at the same

time will usually return you to the DOS level. If that fails try pressing

the Ctrl, Alt, and Del keys all at the same time to reboot the computer.

* SLIP.PAS

* Copyright (C) 1988

* Steven H. Schimmrich

374

APPENDIX D

FAULT PLANE PLOTTING PROGRAM

Complete listing of the fault plane plotting program discussed in chapters six and seven. The

program FPLANE.PAS is written in Turbo Pascal version 3.01 for an IBM PC or compatible computer.

program FPlane;

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *}

{ }

{ This is a program to create an AutoCAD script file of planes and }

{ their associated slip directions for plotting on a lower-hemisphere }

{ equal-angle stereographic projection. }

{ }

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *}

{ }

{ FPLANE.PAS - Version 1.0 }

{ }

{ Copyright (C) 1989 -- Steven H. Schimmrich }

{ For educational and research purposes only }

{ All commercial rights reserved }

{ }

{ Steven H. Schimmrich }

{ Department of Geological Sciences }

{ State University of New York at Albany }

{ Albany, New York 12222 }

{ }

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *}

{ Initializations }

type

RegisterList =

record

AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags : integer;

end;

RArr = array[1..100] of real;

String25 = string[25];

var

Plunge, Trend, Pitch : RArr;

Number : integer;

FileName : String25;

375

{General program functions }

function Exists(FileName : String25): boolean;

{ Checks to see if a file exists on the disk }

var

Name : file;

begin

Assign(Name,FileName);

{$I-}

Reset(Name);

{$I+}

Exists := (IOResult = 0);

end;

procedure Cursor(On : boolean);

{ Turns cursor on and off }

var

Register : RegisterList;

begin

if (On)

then

if (mem[0:$449] = 7)

then

Register.CX := $0C0D

else

Register.CX := $0607

else

Register.CX := $2000;

Register.AX := $0100;

intr($10,Register);

end;

function Zero(Value : real): boolean;

{ Checks to see if a value is essentially 0.0 }

begin

if (abs(Value) < 0.00001)

then Zero := true

else Zero := false;

end;

function DegToRad(DegreeMeasure : real): real;

{ Converts an angle in degrees to one in radians }

begin

DegToRad := ((DegreeMeasure * PI) / 180.0);

end;

function RadToDeg(RadianMeasure : real): real;

{ Converts an angle in radians to one in degrees }

begin

RadToDeg := ((RadianMeasure * 180.0) / PI);

end;

376

function Tan(Angle : real): real;

{ Returns the tangent of an angle }

begin

Tan := sin(Angle) / cos(Angle);

end;

function ArcCos(AValue : real): real;

{ Returns the arccosine of a value }

var

X, Y : real;

begin

if (AValue = 0.0)

then ArcCos := (PI / 2.0)

else if (AValue = 1.0)

then ArcCos := 0.0

else if (AValue = -1.0)

then ArcCos := PI

else

begin

X := (AValue / sqrt(1.0 - sqr(AValue)));

Y := arctan(abs(1.0 / X));

if (X > 0.0)

then ArcCos := Y

else ArcCos := (PI - Y);

end;

end;

{ General program procedures }

procedure DrawBox(ULX, ULY, LRX, LRY : integer);

{ Draws a box around text in text mode }

var

X, Y, XDistance : integer;

begin

gotoxy(ULX,ULY);

write(#201);

XDistance := LRX - ULX - 1;

for X := 1 to XDistance do

write(#205);

write(#187);

for Y := (ULY + 1) to (LRY - 1) do

begin

gotoxy(LRX,Y);

write(#186);

gotoxy(ULX,Y);

write(#186);

end;

gotoxy(ULX,LRY);

write(#200);

for X := 1 to XDistance do

write(#205);

write(#188);

377

end;

procedure DisplayPage;

{ Displays an introduction page }

begin

textmode;

clrscr;

cursor(false);

textcolor(12);

DrawBox(20,9,61,18);

textcolor(11);

gotoxy(27,10);

writeln('Fault Plane Plotting Program');

gotoxy(32,12);

writeln('Program written by');

gotoxy(31,14);

writeln('Steven H. Schimmrich');

gotoxy(24,15);

writeln('Department of Geological Sciences');

gotoxy(22,16);

writeln('State University of New York at Albany');

gotoxy(30,17);

writeln('Albany, New York 12222');

delay(5000);

cursor(true);

clrscr;

end;

procedure IntroPage;

{ Displays a short introduction to the program }

var

Key : char;

begin

gotoxy(27,2);

textcolor(12);

writeln('Fault Plane Plotting Program');

textcolor(11);

writeln;

writeln;

writeln(' This is a quick and dirty program to plot fault planes and their associated');

writeln(' slip directions onto an equal-angle stereographic projection using an AutoCAD');

writeln(' SCRipt file. This program was written because the RockWare stereonet program');

writeln(' on this computer can not plot planes as great circles easily.');

writeln(' This program first asks for a filename of a disk file containing the fault');

writeln(' data. This data must have the following format : ');

writeln;

textcolor(12);

writeln(' 25 125 13');

textcolor(11);

writeln;

writeln(' where 25 is the plunge and 125 is the trend of the fault plane normal and 13');

writeln(' is the pitch of the slip vector within the fault plane. The pitch is the angle');

378

writeln(' between the strike (the trend of the normal + 90 degrees) and the slip vector');

writeln(' which varies from -90 to 90 degrees. If you do not wish to plot the slip');

writeln(' vectors, enter a 99 for the pitch. Entering a 999 for the pitch will treat');

writeln(' the plunge and trend values as an axis and plot a circle.');

write(' The program will then create an AutoCAD file named FPLANE.SCR ');

writeln('overwriting');

writeln(' any old versions of FPLANE.SCR if they exist on the disk. The file may then');

writeln(' be read into AutoCAD and plotted using the laser printer. If any text is');

writeln(' desired, it may be added while in AutoCAD.');

writeln;

gotoxy(2,25);

write('Press any ');

textcolor(12);

write('key');

textcolor(11);

write(' to continue...');

read(kbd,Key);

clrscr;

end;

procedure AskFileName(var FileName : String25);

{ Asks for the name of the data file }

begin

gotoxy(27,2);

textcolor(12);

writeln('Fault Plane Plotting Program');

textcolor(11);

writeln;

writeln;

writeln(' The program now needs the name of the disk file');

writeln(' containing the fault normals and slip directions.');

repeat

writeln;

write(' Enter the name of the data file : ');

textcolor(12);

readln(FileName);

textcolor(11);

if (not(Exists(FileName)))

then

begin

sound(880);

delay(50);

nosound;

writeln;

textcolor(12);

writeln(' * ERROR * That file does not exist on this disk');

textcolor(11);

end;

until (Exists(FileName));

clrscr;

end;

379

procedure ReadData(FileName : String25; var Number : integer;

var Plunge, Trend, Pitch : RArr);

{ Reads in the data from a disk file }

var

DataFile : text;

begin

Number := 0;

gotoxy(27,2);

textcolor(12);

writeln('Fault Plane Plotting Program');

textcolor(11);

gotoxy(2,8);

write('Creating AutoCAD file...');

assign(DataFile,FileName);

reset(DataFile);

while (not(EOF(DataFile))) do

begin

Number := Number + 1;

readln(DataFile,Plunge[Number],Trend[Number],Pitch[Number]);

end;

close(DataFile);

end;

procedure CreatePlot(var Number : integer; var Plunge, Trend, Pitch : RArr);

{ Creates the AutoCAD plot of data }

label 1;

label 2;

const

ACADFILE = 'FPLANE.SCR';

var

Strike, Dip, ApparentDip, Theta,

Distance, Beta, XVal, YVal, XVal1,

Yval1, XVal2, YVal2, XVal3, YVal3,

ZeroTrend, SlipTrend, SlipPlunge : real;

Count, Counter : integer;

DataFile : text;

begin

assign(DataFile,ACADFILE);

rewrite(DataFile);

writeln(DataFile,'CIRCLE');

writeln(DataFile,'7.500,4.500');

writeln(DataFile,'4.000');

writeln(DataFile,'LINE');

writeln(DataFile,'7.350,4.500');

writeln(DataFile,'7.650,4.500');

writeln(DataFile,' ');

writeln(DataFile,'LINE');

writeln(DataFile,'7.500,4.350');

writeln(DataFile,'7.500,4.650');

writeln(DataFile,' ');

writeln(DataFile,'LINE');

writeln(DataFile,'7.500,8.350');

380

writeln(DataFile,'7.500,8.650');

writeln(DataFile,' ');

writeln(DataFile,'TEXT');

writeln(DataFile,'MIDDLE');

writeln(DataFile,'7.500,8.800');

writeln(DataFile,'0.200');

writeln(DataFile,'0');

writeln(DataFile,'N');

for Count := 1 to Number do

begin

if (Pitch[Count] = 999.0) then goto 1;

if (Plunge[Count] = 0.0)

then Plunge[Count] := Plunge[Count] + 0.0001;

Dip := DegToRad(90.0 - Plunge[Count]);

if ((Trend[Count] >= 90.0) and (Trend[Count] < 270.0))

then Strike := Trend[Count] - 90.0

else Strike := Trend[Count] + 90.0;

if (Strike >= 360.0)

then Strike := Strike - 360.0;

for Counter := 0 to 2 do

begin

Beta := DegToRad(Counter * 90.0);

ApparentDip := arctan(Tan(Dip) * sin(Beta));

Distance := 4.000 * Tan((PI / 4.0) - (ApparentDip / 2.0));

if (Distance < 0.05)

then

begin

Distance := (RadToDeg(Beta) * (2.0 / 45.0));

if (Distance > 4.000)

then Distance := 4.000 - Distance;

Beta := DegToRad(Strike);

Beta := (((5.0 * PI) / 2.0) - Beta);

if (Beta >= (2.0 * PI))

then Beta := (Beta - (2.0 * PI));

if (Beta < 0.0)

then Beta := (Beta + (2.0 * PI));

end

else

begin

if ((Trend[Count] >= 90.0) and (Trend[Count] < 270.0))

then Beta := DegToRad(Strike) - Beta

else Beta := DegToRad(Strike) + Beta;

if (Beta >= (2.0 * PI))

then Beta := (Beta - (2.0 * PI));

if (Beta < 0.0)

then Beta := (Beta + (2.0 * PI));

Beta := (((5.0 * PI) / 2.0) - Beta);

if (Beta >= (2.0 * PI))

then Beta := (Beta - (2.0 * PI));

if (Beta < 0.0)

then Beta := (Beta + (2.0 * PI));

end;

381

XVal := (7.500 + (Distance * cos(Beta)));

YVal := (4.500 + (Distance * sin(Beta)));

case (Counter) of

0 : begin

XVal1 := XVal;

YVal1 := YVal;

end;

1 : begin

XVal2 := XVal;

YVal2 := YVal;

end;

2 : begin

XVal3 := XVal;

YVal3 := YVal;

end;

end;

end;

if ((abs(XVal1 - XVal2) >= 0.01) or (abs(YVal1 - YVal2) >= 0.001))

then

begin

writeln(DataFile,'ARC');

writeln(DataFile,XVal1:5:3,',',YVal1:5:3);

writeln(DataFile,XVal2:5:3,',',YVal2:5:3);

writeln(DataFile,XVal3:5:3,',',YVal3:5:3);

end

else

begin

writeln(DataFile,'LINE');

writeln(DataFile,XVal1:5:3,',',YVal1:5:3);

writeln(DataFile,XVal3:5:3,',',YVal3:5:3);

writeln(DataFile,' ');

end;

if (Pitch[Count] = 99.0) then goto 2;

if (not(Zero(Pitch[Count])))

then Beta := RadToDeg(arctan(cos(DegToRad(90 - Plunge[Count])) *

Tan(DegToRad(Pitch[Count]))))

else Beta := 0.0;

Strike := Trend[Count] + 90.0;

if (Strike > 360.0)

then Strike := Strike - 180.0;

SlipTrend := Strike + Beta;

if (not(Zero(abs(Beta) - 90.0)))

then SlipPlunge := RadToDeg(ArcCos(cos(DegToRad(Pitch[Count])) /

cos(DegToRad(Beta))))

else SlipPlunge := 90.0 - Plunge[Count];

if ((Pitch[Count] < 0.0) or (Pitch[Count] = 90.0))

then SlipTrend := SlipTrend + 180.0;

if (Trend[Count] > 270)

then SlipTrend := SlipTrend + 180.0;

if (SlipTrend > 360.0)

then SlipTrend := SlipTrend - 360.0;

Distance := (4.000 * Tan((PI / 4.0) - (DegToRad(SlipPlunge) / 2.0)));

382

if (SlipPlunge = 0.0)

then

begin

ZeroTrend := (SlipTrend + 180.0);

if (ZeroTrend >= 360.0)

then ZeroTrend := ZeroTrend - 360.0;

Theta := (((5.0 * PI) / 2.0) - DegToRad(ZeroTrend));

XVal := (7.500 - (Distance * cos(Theta)));

YVal := (4.500 - (Distance * sin(Theta)));

writeln(DataFile,'CIRCLE');

writeln(DataFile,XVAL:5:3,',',YVAL:5:3);

writeln(DataFile,'0.060');

end;

Theta := (((5.0 * PI) / 2.0) - DegToRad(SlipTrend));

if (Pitch[Count] = 90.0)

then

begin

XVal := (7.500 - (Distance * cos(Theta)));

YVal := (4.500 - (Distance * sin(Theta)));

end

else

begin

XVal := (7.500 + (Distance * cos(Theta)));

YVal := (4.500 + (Distance * sin(Theta)));

end;

writeln(DataFile,'CIRCLE');

writeln(DataFile,XVAL:5:3,',',YVAL:5:3);

writeln(DataFile,'0.060');

goto 2;

1: {continue};

Distance := (4.000 * Tan((PI / 4.0) - (DegToRad(Plunge[Count]) / 2.0)));

Theta := (((5.0 * PI) / 2.0) - DegToRad(Trend[Count]));

XVal := (7.500 + (Distance * cos(Theta)));

YVal := (4.500 + (Distance * sin(Theta)));

writeln(DataFile,'CIRCLE');

writeln(DataFile,XVAL:5:3,',',YVAL:5:3);

writeln(DataFile,'0.090');

2: {continue};

end;

writeln(DataFile,'REGEN');

close(DataFile);

gotoxy(2,12);

write('AutoCAD file ');

textcolor(12);

write('FPLANE.SCR');

textcolor(11);

write(' created...');

sound(880);

delay(50);

nosound;

delay(5000);

end;

383

{ Main program }

begin

DisplayPage;

IntroPage;

AskFileName(FileName);

ReadData(FileName,Number,Plunge,Trend,Pitch);

CreatePlot(Number,Plunge,Trend,Pitch);

DisplayPage;

end.

384

A P P E N D IX E

V E C T O R A N G L E C A L C U L A T IO N P R O G R A M

C o m p le t e l i s t i n g o f th e v e c t o r a n g le c a l c u l a t i o n p ro g ra m d isc usse d in c h a p te r n in e . T h e

p r o g r a m A N G L E .P A S i s w r i t t e n i n T u r b o P a s c a l v e r s i o n 3 . 0 1 f o r a n I B M P C o r c o m p a t i b l e

c o m p u te r .

program Angle;

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{ }

{ This is a program to calculate the angles between two vectors }

{ given their stereographic plunges and trends in degrees. }

{ }

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{ }

{ ANGLE.PAS - Version 1.0 }

{ }

{ Copyright (C) 1989 -- Steven H. Schimmrich }

{ For educational and research purposes only }

{ All commercial rights reserved }

{ }

{ Steven H. Schimmrich }

{ Department of Geological Sciences }

{ State University of New York at Albany }

{ Albany, New York 12222 }

{ }

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{ Initializations }

var

Plunge1, Plunge2, Trend1, Trend2 : integer;

Angle, DotProduct, X1, Y1, Z1, X2, Y2, Z2 : real;

Loop : boolean;

Key : char;

function DegtoRad(DegreeMeasure : real): real;

{ Converts an angle in degrees to one in radians }

begin

DegtoRad := ((DegreeMeasure * PI) / 180.0);

end;

function RadtoDeg(RadianMeasure : real): real;

{ Converts an angle in radians to one in degrees }

385

begin

RadtoDeg := ((RadianMeasure * 180.0) / PI);

end;

function ArcCos(AValue : real): real;

{ Returns the arccosine of a value }

var

X, Y : real;

begin

if (AValue = 0.0)

then ArcCos := (PI / 2.0)

else if (AValue = 1.0)

then ArcCos := 0.0

else if (AValue = -1.0)

then ArcCos := PI

else

begin

X := (AValue / sqrt(1.0 - sqr(AValue)));

Y := arctan(abs(1.0 / X));

if (X > 0.0)

then ArcCos := Y

else ArcCos := (PI - Y);

end;

end;

{ Main program }

begin

Loop := true;

while (Loop) do

begin

clrscr;

textcolor(12);

writeln(' Angle Calculation Program');

textcolor(14);

writeln;

writeln;

writeln(' Given the plunge and trend values in degrees of two');

writeln('vectors, this program will calculate the angle between');

writeln('them in degrees.');

writeln;

writeln;

write('Vector');

textcolor(12);

writeln(' 1');

textcolor(14);

writeln;

write(' Enter the plunge : ');

textcolor(12);

readln(Plunge1);

textcolor(14);

write(' Enter the trend : ');

386

textcolor(12);

readln(Trend1);

textcolor(14);

writeln;

write('Vector');

textcolor(12);

writeln(' 2');

textcolor(14);

writeln;

write(' Enter the plunge : ');

textcolor(12);

readln(Plunge2);

textcolor(14);

write(' Enter the trend : ');

textcolor(12);

readln(Trend2);

textcolor(14);

if ((Plunge1 > 90) or (Plunge1 < 0) or (Plunge2 > 90) or (Plunge2 < 0)

or (Trend1 > 360) or (Trend1 < 0) or (Trend2 > 360) or (Trend2 < 0))

then

begin

writeln;

writeln;

sound(880);

delay(100);

nosound;

textcolor(12);

write('ERROR');

textcolor(14);

writeln(' - An incorrect plunge or trend has been entered!');

exit;

end;

X1 := (cos(DegtoRad(Plunge1)) * cos(DegtoRad(Trend1)));

Y1 := (sin(DegtoRad(Plunge1)));

Z1 := (cos(DegtoRad(Plunge1)) * sin(DegtoRad(Trend1)));

X2 := (cos(DegtoRad(Plunge2)) * cos(DegtoRad(Trend2)));

Y2 := (sin(DegtoRad(Plunge2)));

Z2 := (cos(DegtoRad(Plunge2)) * sin(DegtoRad(Trend2)));

DotProduct := ((X1 * X2) + (Y1 * Y2) + (Z1 * Z2));

Angle := (RadtoDeg(ArcCos(DotProduct)));

if (Angle > 90.0)

then Angle := 180.0 - Angle;

writeln;

writeln;

write('The angle between vectors');

textcolor(12);

write(' 1');

textcolor(14);

write(' and');

textcolor(12);

write(' 2');

textcolor(14);

387

write(' is');

textcolor(12);

write(Angle:6:1);

textcolor(14);

writeln(' degrees.');

writeln;

writeln;

write('Do another calculation (');

textcolor(12);

write('Y');

textcolor(14);

write(' or');

textcolor(12);

write(' N');

textcolor(14);

write(') ? ');

read(kbd,Key);

if (Key in ['y','Y'])

then Loop := true

else Loop := false;

end;

clrscr;

end.

388

R E F E R E N C E S

A le k s a n d ro w s k i , P . 1 9 8 5 . G ra p h i c a l d e t e rm in a t io n o f p r in c ip a l s t r e s s d i r e c t i o n s fo r

s l i c k e n s id e l i n e a t i o n p o p u la t i o n s : A n a t t e m p t t o m o d i f y A r th a u d 's m e th o d . J o u rn a l

o f S tru c tu ra l G e o lo g y . 7 : 7 3 -8 2 .

A l l m e n d i n g e r , R . W . 1 9 8 9 . P e r s o n a l c o m m u n i c a t i o n w i t h R i c h a r d A l l m e n d i n g e r o f C o r n e l l

U n iv e rs i t y .

A n d e rs o n , E . M . 1 9 5 1 . T h e D y n a m ics o f F a u l t in g a n d D y k e F o rm a t io n w i th A p p l ica t io n s to

B r i ta in . 2 n d e d i t i o n . O l iv e r a n d B o y d : E d i n b u rg h . 2 0 6 p a g e s .

A n g e l i e r , J . 1 9 7 5 . S u r l 'a n a l y s e d e m e s u re s r e c u e i l l i e s d a n s d e s s i t e s f a i l l é s : L 'u t i l i t é d 'u n e

c o n f r o n ta t i o n e n t r e l e s m é th o d e s d y n a m i q u e s e t c in è m a t i q u e s . C o m p te s R e n d u s

H e b d o m a d a ire s d e L 'A c a d é m ie d e s S c ie n c e s F ra n c e , S é r ie D . 2 8 1 :1 8 0 5 -1 8 0 8 .

A n g e l i e r , J . a n d M e c h le r , P . 1 9 7 7 . S u r u n e m é th o d e g ra p h iq u e d e re c h e rc h e d e s c o n s t r a in te s

é g a l e m e n t u t i l i s a b l e e n t e c t o n iq u e e t e n s é i s m o l o g i e : L a m é t h o d e d e s d i è d r e s d r o i t s .

B u l le t in d e la S o c ié té G é o lo g iq u e d e F r a n c e . 1 9 : 1 3 0 9 -1 3 1 8 .

A n g e l i e r , J . 1 9 7 9 . D e t e r m i n a t i o n o f t h e m e a n p r i n c i p a l d i r e c t i o n s o f s t re s s e s f o r a g i v e n f a u l t

p o p u la t i o n . T e c to n o p h y s ic s . 5 6 :T 1 7 -T 2 6 .

A n g e l i e r , J . a n d G o g u e l , J . 1 9 7 9 . S u r u n e m é t h o d e s im p le d e d é te rm in a t io n d e s a x e s

p r i n c ip a u x d e s c o n s t r a in te s p o u r u n e p o p u la t i o n d e fa i l l e s . C o m p te s R e n d u s

H e b d o m a d a ire s d e L 'A c a d é m ie d e s S c ie n c e s F ra n c e , S é r ie D . 2 8 8 : 3 0 7 -3 1 0 .

A n g e l i e r , J . a n d M a n o u ss i s , S . 1 9 8 0 . C la s s i f i c a t i o n a u t o m a t iq u e e t d i s t i n c t io n d e s p h a s e s

s u p e rp o s é e s e n te c to n iq u e d e fa i l l e s . C o m p te s R e n d u s H e b d o m a d a ire s d e L 'A c a d é m ie

d e s S c ie n c e s F ra n c e , S é r ie D . 2 9 0 :6 5 1 -6 5 4 .

A n g e l i e r , J . , T a r a n t o l a , A . , V a l e t t e , B . , a n d M a n o u s s i s , S . 1 9 8 2 . In v e r s i o n o f f i e l d d a t a i n

fa u l t t e c to n i c s t o o b t a in t h e r e g io n a l s t r e s s . I . S i n g l e p h a s e f a u l t p o p u la t i o n s : A n e w

m e th o d o f c o m p u t i n g th e s t r e s s t e n s o r . G e o p h ys ic a l J o u rn a l o f th e R o y a l A s tro n o m ic a l

389

S o c ie ty . 6 9 : 6 0 7 -6 2 1 .

A n g e l i e r , J . 1 9 8 4 . T e c to n ic a n a ly s i s o f fa u l t s l i p d a ta s e t s . J o u r n a l o f G e o p h y s ic a l R e se a rc h .

8 9 : 5 8 3 5 -5 8 4 8 .

A n g e l i e r , J . , C o l l e t t a , B . , a n d A n d e r s o n , R . E . 1 9 8 5 . N e o g e n e p a l e o s t r e s s c h a n g e s i n t h e B a s i n

a n d R a n g e : A c a s e s tu d y a t H o o v e r D a m , N e v a d a -A r i z o n a . G e o lo g ic a l S o c ie ty o f

A m e r ic a B u l le t in . 9 6 :3 4 7 -3 6 1 .

A n g e l i e r , J . 1 9 8 9 . F r o m o r i e n t a t i o n t o m a g n i t u d e s i n p a l e o s t r e s s d e t e r m i n a t i o n s u s i n g f a u l t

s l i p d a ta . J o u rn a l o f S tru c tu ra l G e o lo g y . 1 1 : 3 7 -5 0 .

A rm i jo , R . a n d C i s t e rn a s , A . 1 9 7 8 . U n p r o b l è m e in v e rs e e n m ic ro te c to n iq u e c a s s a n te .

C o m p tes R en du s H e b d o m a d a ire s d e L 'A c a d é m ie d e s S c ie n c e s F ra n c e , S é r ie D . 2 8 7 :5 9 5 -

5 9 8 .

A rm i jo , R . , C a re y , E . , a n d C i s te rn a s , A . 1 9 8 2 . T h e in v e r s e p ro b le m in m ic ro t e c t o n ic s a n d th e

s e p a ra t i o n o f t e c to n ic p h a s e s . T e c to n o p h y s ic s . 8 2 :1 4 5 -1 6 0 .

A t h a u d , F . 1 9 6 9 . M é t h o d e d e d é t e r m i n a t i o n g r a p h i q u e d e s d i r e c t i o n s d e r a c c o u r c i s s e m e n t ,

d 'a l l o n g e m e n t e t i n te rm é d ia i r e d 'u n e p o p u la t i o n d e fa i l l e s . B u l le t in d e la S o c ié té

G é o lo g iq u e d e F r a n c e . 1 1 : 7 2 9 -7 3 7 .

A r th a u d , F . a n d M a t t a u e r , M . 1 9 6 9 . E x a m p le s d e s ty lo l i t e s d 'o r ig in e t e c t o n iq u e d a n s l e

L a n g u e d o c , l e u r s re l a t i o n s a v e c l a t e c t o n i q u e c a s s a n t e . B u l le t in d e la S o c ié té

G é o lo g iq u e d e F r a n c e . 1 1 : 7 3 8 -7 4 4 .

A y d in , A . 1 9 7 7 . F a u l t in g in S a n d s to n e . P h .D . d i s s e r t a t i o n . S ta n fo rd U n iv e rs i t y .

A y d i n , A . 1 9 8 0 . D e t e r m i n a t i o n o f t h e o r i e n t a t i o n o f t h e p r i n c i p a l s t r e s s e s f ro m t h r e e o r m o r e

s e t s o f c o n te m p o ra n e o u s fa u l t s (a b s t r a c t ) . E O S : T ra n sa c t io n s o f th e A m e ric a n

G e o p h ys ic a l U n io n . 6 1 :1 1 1 7 .

A y d in , A . a n d R e c h e s , Z . 1 9 8 2 . N u m b e r a n d o r i e n t a t i o n o f f a u l t s e t s i n t h e f i e l d a n d i n

e x p e r i m e n ts . G e o lo g y . 1 0 : 1 0 7 -1 1 2 .

B a h a t , D . a n d R a b i n o v i c h , A . 1 9 8 8 . P a l e o s t r e s s d e t e r m i n a t i o n i n a r o c k b y a f ra c t o g r a p h i c

390

m e th o d . J o u rn a l o f S tru c tu ra l G e o lo g y . 1 0 : 1 9 3 -1 9 9 .

B a r t o n , N . a n d C h o u b e y , V . 1 9 7 7 . T h e s h e a r s t r e n g th o f ro c k s in th e o ry a n d p ra c t i c e . R o c k

M e c h a n ic s . 1 0 :1 -5 4 .

B e r g e r , A . R . 1 9 7 1 . D y n a m ic a n a ly s i s u s i n g d y k e s w i th o b l iq u e i n t e rn a l fo l i a t io n s .

G e o lo g ica l S o c ie ty o f A m e r ic a B u l le t in . 8 2 : 7 8 1 -7 8 6 .

B i l l i n g s , M . P . 1 9 7 2 . S tru c tu ra l G e o lo g y . 3 rd e d i t i o n . P r e n t i c e -H a l l : E n g le w o o d C l i f f s , N J .

6 0 6 p a g e s .

B o r ra d a i l e , G . J . 1 9 8 6 . T h e in te rn a l t e c to n i c f a b r i c o f m in o r in t ru s io n s a n d th e i r p o t e n t i a l a s

re g io n a l p a le o s t r e s s in d ic a to rs . G e o lo g ic a l M a g a z in e . 1 2 3 : 6 6 5 -6 7 1 .

B o t t , M . H . P . 1 9 5 9 . T h e m e c h a n ic s o f o b l i q u e -s l i p fa u l t in g . G e o lo g ic a l M a g a z in e .

9 6 : 1 0 9 -1 1 7 .

B r a c e , W . F . a n d K o h l s t e d t , D . L . 1 9 8 0 . L i m i t s o n l i t h o s p h e r i c s t r e s s i m p o s e d b y l a b o r a t o r y

e x p e r i m e n ts . J o u r n a l o f G e o p h y s ic a l R e se a rc h . 8 5 : 6 2 4 8 -6 2 5 2 .

B ro w n , S . R . a n d S c h o lz , C . H . 1 9 8 5 . B ro a d b a n d w id th s tu d y o f t h e t o p o g ra p h y o f n a tu ra l ro c k

s u r f a c e s . J o u r n a l o f G e o p h y s ic a l R e se a rc h . 9 0 :1 2 ,5 7 5 -1 2 ,5 8 2 .

B u c h n e r , F . 1 9 8 1 . R h in e g ra b e n : H o r i z o n t a l s t y lo l i t e s in d i c a t in g s t r e s s r e g im e s o f e a r l i e r

s ta te s o f r i f t in g . T e c to n o p h y s ic s . 7 3 : 1 1 3 -1 1 8 .

B e u tn e r , E . C . 1 9 7 2 . R e v e r s e g ra v i t a t i o n a l m o v e m e n t o n e a r l i e r o v e r th ru s t s , L e m h i R a n g e ,

Id a h o . G e o lo g ica l S o c ie ty o f A m e r ic a B u l le t in . 8 3 : 8 3 9 -8 4 7

B y e r l e e , J . D . 1 9 6 8 . B r i t t l e -d u c t i l e t ra n s i t io n in ro c k s . J o u r n a l o f G e o p h y s ic a l R e se a rc h .

7 3 : 4 7 4 1 -4 7 5 0 .

B y e r l e e , J . D . 1 9 7 8 . F r i c t i o n o f ro c k s . P u r e a n d A p p l ie d G e o p h y s ic s . 1 1 6 :6 1 5 -6 2 6 .

B y e r l e e , J . D . , M ja c h k i n , V . , S u m m e rs , R . , a n d V o e v o d a , O . 1 9 7 8 . S t ru c tu re s d e v e l o p e d i n

fa u l t g o u g e d u r i n g s ta b le s l i d in g a n d s t i c k -s l i p . T e c to n o p h y s ic s . 4 4 :1 6 1 -1 7 1 .

C a p u to , M . a n d C a p u to , R . 1 9 8 8 . S t ru c tu ra l a n a ly s i s : N e w a n a ly t i c a l a p p ro a c h a n d

a p p l i c a t i o n s . A n n a le s T e c to n ic æ . 2 : 8 4 -8 9 .

391

C a re y , E . a n d B ru n ie r , B . 1 9 7 4 . A n a l y s e t h é o r iq u e e t n u m é r iq u e d 'u n m o d è l e m é c h a n i q u e

é lé m e n ta i r e a p p l i q u é à l 'é tu d e d 'u n e p o p u la t i o n d e fa i l l e s . C o m p te s R e n d u s

H e b d o m a d a ire s d e L 'A c a d é m ie d e s S c ie n c e s F ra n c e , S é r ie D . 2 7 9 : 8 9 1 -8 9 4 .

C a re y , E . 1 9 7 6 . A n a ly s e n u m é r iq u e d 'u n m o d è l e m é c h a n i q u e é lé m e n ta i r e a p p l iq u é à l 'é t u d e

d 'u n e p o p u l a t i o n d e f a i l l e s : C a l c u l d 'u n t e n s e u r m o y e n d e s c o n s t r a in t e s a p a r t i r d e

s t r i e s d e g l i s se m e n t . T h è s e 3 è m e c y c l e . U n iv e r s i t é d e P a r i s S u d .

C a r t e r , N . L . a n d R a l e i g h , C . B . 1 9 6 9 . P r in c ip a l s t r e s s d i re c t i o n s f ro m p l a s t i c f lo w in c ry s t a l s .

G e o lo g ica l S o c ie ty o f A m e r ic a B u l le t in . 8 0 : 1 2 3 1 -1 2 6 4 .

C é l é r i e r , B . 1 9 8 8 . H o w m u c h d o e s s l i p o n a r e a c t i v a t e d f a u l t p l a n e c o n s t r a i n t h e s t r e s s t e n s o r ?

T e c to n ic s . 7 : 1 2 5 7 -1 2 7 8 .

C h e e n e y , R . F . 1 9 8 3 . S ta t i s t ic a l M e th o d s in G e o lo g y . G e o rg e A l l e n & U n w in : L o n d o n . 1 6 9

p a g e s .

C o m p to n , R . R . 1 9 6 2 . M a n u a l o f F ie ld G e o lo g y . Jo h n W i l e y : N e w Y o rk , N Y . 3 7 8 p a g e s .

C o u lo m b , C . A . 1 7 7 6 . S u r u n e a p p l i c a t i o n d e s r è g le s d e m a x im is e t m in im is à q u e lq u e s

p ro b lè m e s d e s ta t i q u e , re la t i f s à l ' a rc h i t e c tu re . A ca d em ie R o ya le d es Sc ien ce s , P a r is .

M e m o ire s d e M a th e m a t iq u e e t d e P h y s iq u e . 7 : 3 4 3 -3 8 2 .

C o x , A . a n d H a r t , R . B . 1 9 8 6 . P la te T ec to n ic s : H o w i t W o r k s . B l a c k w e l l S c i e n t i f i c : P a l o

A l to , C A . 3 9 2 p a g e s .

D a v id s o n , L . M . a n d P a rk , R . G . 1 9 7 8 . L a t e N a g s su g to q id i a n s t r e s s o r i e n t a t i o n d e r iv e d f ro m

d e fo rm e d g ra n o d io r i t e d y k e s n o r t h o f H o ls te in s b o rg , W e s t G re e n la n d . J o u rn a l o f th e

G e o lo g ic a l S o c ie ty o f L o n d o n . 1 3 5 : 2 8 3 -2 8 9 .

D a v is , G . H . 1 9 8 4 . S tru c tu ra l G e o lo g y o f R o c ks a n d R e g io n s . J o h n W i le y & S o n s : N e w Y o rk ,

N Y . 4 9 2 p a g e s .

D e n n is , J . G . 1 9 8 7 . S tru c tu ra l G e o lo g y : A n In tro d u c t io n . W m . C . B ro w n : D u b u q u e , I o w a .

4 4 8 p a g e s .

D ie te r i c h , J . H . a n d C a r t e r , N . L . 1 9 6 9 . S t r e s s -h i s to ry o f fo ld in g . A m e ric a n J o u rn a l o f

392

S c ie n c e . 2 6 7 : 1 2 9 -1 5 4 .

D o n a th , F . A . 1 9 6 2 . A n a ly s i s o f B a s in -R a n g e s t r u c tu re . G e o lo g ic a l S o c ie ty o f A m e r ic a

B u l le t in . 7 3 :1 -1 6 .

D o n a th , F . A . 1 9 6 4 . S t r e n g th v a r i a t i o n a n d d e fo rm a t i o n a l b e h a v io r i n a n i s o t r o p ic ro c k . I n

J u d d , W . R . 1 9 6 4 . S ta te o f S tre s s in th e E a r th 's C ru s t . A m e r i c a n E l s e v ie r : N e w Y o rk ,

N Y . P a g e s 2 8 1 -2 9 9 .

D u rn e y , D . W . a n d R a m s a y , J . G . 1 9 7 3 . In c re m e n ta l s t r a in s m e a su re d b y s y n te c to n ic c ry s t a l

g ro w th s . I n D e J o n g , K . A . a n d S c h o l t e n , R . 1 9 7 3 . G ra v i ty a n d T e c to n ic s . P a g e s 6 7 -

9 6 .

E d e lm a n , S . H . 1 9 8 9 . L im i t a t i o n s o n th e c o n c e p t o f s t r e s s in s t r u c tu ra l a n a ly s i s . J o u rn a l o f

G e o lo g ic a l E d u c a t io n . 3 7 : 1 0 2 -1 0 6 .

E l l s w o r th , W . L . a n d Z h o n g h u a i , X . 1 9 8 0 . D e te rm in a t io n o f th e s t r e s s t e n s o r f ro m fo c a l

m e c h a n is m d a ta (a b s t r a c t ) . E O S : T ra n sa c t io n s o f th e A m e ric a n G e o p h ys ic a l U n io n .

6 1 : 1 1 1 7 .

E n g e ld e r , T . a n d G e i s e r , P . 1 9 8 0 . O n th e u s e o f r e g io n a l jo in t s e t s a s t r a j e c t o r i e s o f

p a l e o s t r e s s f i e l d s d u r in g th e d e v e l o p m e n t o f th e A p p a l a c h i a n P l a te a u , N e w Y o rk .

J o u r n a l o f G e o p h y s ic a l R e se a rc h . 8 5 : 6 3 1 9 -6 3 4 1 .

E n g e ld e r , T . 1 9 8 2 . I s t h e re a g e n e t i c r e l a t i o n s h i p b e tw e e n s e le c t e d r e g io n a l jo in t s a n d

c o n te m p o ra ry s t r e s s w i th in th e l i t h o s p h e re o f N o r th A m e r i c a ? T e c to n ic s . 1 : 1 6 1 -1 7 7 .

E tc h e c o p a r , A . , V a s s e u r , G . , a n d D a ig n ie re s , M . 1 9 8 1 . A n in v e rse p ro b le m in m ic ro te c to n ic s

fo r t h e d e te rm in a t i o n o f s t r e s s t e n s o rs f ro m fa u l t s t r i a t i o n a n a ly s i s . J o u rn a l o f

S tru c tu ra l G e o lo g y . 3 : 5 1 -6 5 .

F le u ty , M . J . 1 9 7 5 . S l i c k e n s id e s a n d s l i c k e n l i n e s . G e o lo g ic a l M a g a z in e . 1 1 2 :3 1 9 -3 2 2 .

F r i e d m a n , M . 1 9 6 4 . P e t ro f a b r i c t e c h n iq u e s f o r th e d e t e r m in a t io n o f t h e p r i n c i p a l s t r e s s

d i r e c t i o n s in ro c k s . I n J u d d , W . R . 1 9 6 4 . S ta te o f S t re ss in th e E a r th ' s C r u s t .

A m e r i c a n E l s e v ie r : N e w Y o rk , N Y . P a g e s 4 5 1 -5 5 0 .

393

F r i z z e l l , V . A . a n d Z o b a c k , M . L . 1 9 8 7 . S t r e s s o r i e n t a t i o n d e t e r m i n e d f ro m f a u l t s l i p d a t a i n

H a m p e l W a s h a re a , N e v a d a , a n d i t s r e l a t i o n to c o n te m p o ra ry re g io n a l s t r e s s f i e l d .

T ec to n ic s . 6 : 8 9 -9 8 .

F rö b e rg , C . E . 1 9 8 5 . N u m e ric a l M a th e m a t ic s: T h e o ry a n d C o m p u te r A p p l ic a t io n s .

B e n ja m in /C u m m in g s : M e n o P a rk , C A . 4 3 6 p a g e s .

G a l in d o -Z a ld iv a r , J . a n d G o n z a l e z - L o d e i ro , F . 1 9 8 8 . F a u l t p h a s e d i f f e r e n t i a t i o n b y m e a n s o f

c o m p u te r s e a rc h o n a g r i d p a t t e rn . A n n a le s T e c to n ic æ . 2 :9 0 -9 7 .

G a m o n d , J . F . 1 9 8 3 . D i s p la c e m e n t f e a t u re s a s s o c ia t e d w i t h f a u l t z o n e s : A c o m p a r i s o n

b e tw e e n o b s e rv e d e x a m p le s a n d e x p e r i m e n ta l m o d e ls . J o u rn a l o f S tru c tu ra l G e o lo g y .

5 :3 3 -4 5 .

G a m o n d , J . F . 1 9 8 7 . B r id g e s t ru c tu r e s a s s e n s e o f d i sp l a c e m e n t c r i t e r i a i n b r i t t l e f a u l t z o n e s .

J o u rn a l o f S tru c tu ra l G e o lo g y . 9 :6 0 9 -6 2 0 .

G a y , N . C . 1 9 7 0 . T h e fo rm a t i o n o f s te p s t r u c tu re s o n s l i c k e n s id e d s h e a r s u r f a c e s . J o u rn a l o f

G e o lo g y . 7 8 :5 2 3 -5 3 2 .

G a y , N . L . a n d W e i s s , L . E . 1 9 7 4 . T h e r e l a t i o n s h ip b e tw e e n p r in c ip a l s t r e s s d i r e c t i o n a n d th e

g e o m e t r y o f k in k s in fo l i a te d ro c k s . T e c to n o p h y s ic s . 2 1 : 2 8 7 -3 0 0 .

G e p h a r t , J . W . a n d F o r s y th , D . W . 1 9 8 4 . A n im p ro v e d m e th o d fo r d e t e rm in in g th e r e g io n a l

s t r e s s t e n s o r u s in g e a r th q u a k e fo c a l m e c h a n i sm d a t a : A p p l i c a t i o n to th e S a n F e r n a n d o

e a r t h q u a k e s e q u e n c e . J o u r n a l o f G e o p h y s ic a l R e se a rc h . 8 9 :9 3 0 5 -9 3 2 0 .

G e p h a r t , J . W . 1 9 9 0 . P e rs o n a l c o m m u n ic a t i o n w i t h J o h n G e p h a r t o f C o rn e l l U n iv e rs i t y .

H a fn e r , W . 1 9 5 1 . S t r e s s d i s t r ib u t i o n s a n d fa u l t in g . G e o lo g ica l S o c ie ty o f A m e r ic a B u l le t in .

6 2 :3 7 3 -3 9 8 .

H a n c o c k , P . L . 1 9 8 5 . B r i t t l e m ic ro te c to n ic s : P r i n c ip le s a n d p ra c t i c e . J o u rn a l o f S tru c tu ra l

G e o lo g y . 7 : 4 3 7 -4 5 7 .

H a n c o c k , P . L . , A l -K a h d i , A . , B a rk a , A . A . , a n d B e v a n , T . G . 1 9 8 7 . A s p e c t s o f a n a ly z in g

b r i t t l e s t r u c tu re s . A n n a le s T e c to n ic æ . 1 : 5 -1 9 .

394

H a n d in , J . 1 9 6 9 . O n th e C o u lo m b -M o h r fa i l u re c r i t e r i o n . J o u r n a l o f G e o p h y s ic a l R e se a rc h .

7 4 : 5 3 4 3 -5 3 4 8 .

H a n se n , K . M . a n d M o u n t , V . S . 1 9 9 0 . S m o o th in g a n d e x t r a p o la t i o n o f c r u s t a l s t r e s s

o r i e n ta t i o n m e a s u re m e n ts . J o u r n a l o f G e o p h y s ic a l R e se a rc h . 9 5 : 1 1 5 5 -1 1 6 5

H a r d c a s t l e , K . C . 1 9 8 9 . P o s s i b l e p a l e o s t r e s s t e n s o r c o n f i g u r a t i o n s d e r i v e d f ro m f a u l t - s l i p

d a ta in e a s te rn V e rm o n t a n d w e s te rn N e w H a m p s h i r e . T e c to n ic s . 8 : 2 6 5 -2 8 4 .

H a r d c a s t l e , K . C . 1 9 9 0 . P e r s o n a l c o m m u n i c a t i o n w i t h K e n n e t h H a r d c a s t l e o f th e U n i v e r s i ty

o f M a s s a c h u s e t t s a t A m h e rs t .

H a r t m a n n . 1 8 9 6 . D is t r ib u t io n d e s D é fo rm a t io n s d a n s l e s M é ta u x S o u m is à d e s E f fo r t s . B e r g e r -

L e u ra u l t : P a r i s .

H a t z o r , Y . a n d R e c h e s , Z . 1 9 9 0 . S t r u c t u r e a n d p a l e o s t r e s s e s i n t h e G i l b o a r e g i o n , w e s t e r n

m a rg in s o f t h e D e a d S e a t r a n s fo rm . T e c to n o p h y s ic s . 1 8 0 :8 7 -1 0 0 .

H o b b s , B . E . , M e a n s , W . D . , a n d W i l l i a m s , P . F . 1 9 7 6 . A n O u t l in e o f S tru c tu ra l G e o lo g y . J o h n

W il e y : N e w Y o rk , N Y . 5 7 1 p a g e s .

H u a n g , Q . a n d A n g e l i e r , J . 1 9 8 7 . L e s sy s tè m e s d e fa i l l e s c o n ju g u é e s : U n m é th o d e

d ' id e n t i f i c a t i o n , d e s é p a ra t i o n e t d e c a lc u l d e s a x e s d e c o n t r a in t . C o m p te s R e n d u s

H e b d o m a d a ire s d e L 'A c a d é m ie d e s S c ie n c e s F ra n c e , S é r ie 2 . 3 0 4 :4 6 5 -4 6 8 .

H u a n g , Q . 1 9 8 8 . C o m p u t e r -b a s e d m e t h o d t o s e p a r a t e h e t e r o g e n e o u s s e t s o f f a u l t - s l i p d a t a i n t o

s u b -s e t s . J o u rn a l o f S tru c tu ra l G e o lo g y . 1 0 :2 9 7 -2 9 9 .

J a e g e r , J . C . 1 9 6 0 . S h e a r fa i l u re o f a n i s o t r o p ic ro c k s . G e o lo g ic a l M a g a z in e . 9 7 : 6 5 -7 2 .

J a e g e r , J . C . 1 9 6 9 . E la s t ic i ty , F ra c tu re a n d F lo w w i th E n g in e er in g a n d G e o lo g ic a l

A p p l ic a t io n s . 3 rd e d i t i o n . M e t h u e n : L o n d o n . 2 6 8 p a g e s .

J a e g e r , J . C . a n d C o o k , N . G . W . 1 9 7 9 . F u n d a m e n ta l s o f R o c k M e c h a n ic s . 3 rd e d i t i o n .

C h a p m a n a n d H a l l : L o n d o n . 5 9 3 p a g e s .

J a n g , B . , W a n g , H . F . , R e n , X . , a n d K o w a l l i s , B . J . 1 9 8 9 . P r e c a m b r i a n p a l e o s t r e s s f ro m

m ic ro c ra c k s a n d f l u id i n c l u s i o n s in th e W o l f R iv e r b a th o l i t h o f c e n t r a l W is c o n s in .

395

G e o lo g ica l S o c ie ty o f A m e r ic a B u l le t in . 1 0 1 :1 4 5 7 -1 4 6 4 .

J a ro s z e w sk i , W . 1 9 8 4 . F a u l t a n d F o ld T e c to n ic s . Jo h n W i l e y , N e w Y o rk , N Y . 5 6 5 p a g e s .

J o n e s , L . 1 9 8 8 . F o c a l m e c h a n i s m s a n d t h e s t a t e o f s t r e s s o n t h e S a n A n d r e a s f a u l t i n s o u t h e r n

C a l i fo rn ia . J o u r n a l o f G e o p h y s ic a l R e se a rc h . 9 3 :8 8 6 9 -8 8 9 1 .

J u l i e n , P . a n d C o r n e t , F . 1 9 8 7 . S t r e s s d e t e rm in a t io n f ro m a f t e r s h o c k s o f th e C a m p a n ia -

L u c a n ia e a r t h q u a k e o f N o v e m b e r 2 3 , 1 9 8 0 . A n n a le s G e o p h y s ic æ . 5 B : 2 8 9 -3 0 0 .

K o w a l l i s , B . J . , W a n g , H . F . , a n d J a n g , B . 1 9 8 7 . H e a l e d m i c r o c r a c k o r i e n t a t i o n s i n g r a n i t e

f ro m I l l i n o i s b o re h o l e U P H -3 a n d th e i r r e l a t i o n s h ip t o t h e r o c k 's s t r e s s h i s to ry .

T e c to n o p h y s ic s . 1 3 5 : 2 9 7 -3 0 6 .

K ra n tz , R . W . 1 9 8 6 . O r th o rh o m b i c fa u l t p a t t e r n s a n d t h re e -d i m e n s io n a l s t r a i n a n a l y s i s ,

n o r t h e rn S a n R a fa e l S w e l l , U ta h (a b s t r a c t ) . G e o lo g ica l S o c ie ty o f A m e r ic a A b s t ra c t s

w i th P ro g ra m s . 1 8 : 1 2 5 .

K ra n t z , R . W . 1 9 8 8 . M u l t i p l e f a u l t s e t s a n d th re e - d im e n s io n a l s t r a i n : T h e o ry a n d a p p l i c a t i o n .

J o u rn a l o f S tru c tu ra l G e o lo g y . 1 0 : 2 2 5 -2 3 7 .

K ra n t z , R . W . 1 9 8 9 . O r th o rh o m b ic f a u l t p a t t e rn s : T h e o d d a x i s m o d e l a n d s l i p v e c to r

o r i e n ta t i o n s . T ec to n ic s . 8 : 4 8 3 -4 9 5 .

L a r ro q u e , J . M . a n d L a u re n t , P . 1 9 8 8 . E v o lu t io n o f t h e s t r e s s f i e l d p a t t e rn in th e s o u th o f th e

R h in e G ra b e n f ro m th e E o c e n e to th e p re s e n t . T e c to n o p h y s ic s . 1 4 8 : 4 1 -5 8 .

L a u b a c h , S . E . 1 9 8 9 . P a le o s t r e s s d i r e c t i o n s f ro m th e p re fe r r e d o r i e n ta t i o n o f c lo se d

m ic ro f ra c tu re s ( f l u id - in c lu s io n p l a n e s ) in s a n d s to n e , E a s t T e x a s b a s in , U .S .A . J o u rn a l

o f S tru c tu ra l G e o lo g y . 1 1 : 6 0 3 -6 1 1 .

L a u re n t , P . , B e rn a rd , P . , V a s se u r , G . , a n d E tc h e c o p a r , A . 1 9 8 1 . S t r e s s t e n s o r d e t e rm in a t io n

f r o m th e s tu d y o f e - t w in s in c a lc i t e : A l in e a r p ro g ra m m in g m e th o d . T e c to n o p h y s ic s .

7 8 : 6 5 1 -6 6 0 .

L e e , Y . J . 1 9 9 0 . S l i c k e n s id e p e t r o g ra p h y : S e n s e -o f - s l i p in d ic a to rs (a b s t r a c t ) . G e o lo g ic a l

S o c ie t y o f A m er ica A b s tra c t s w i th P ro g ra m s . 2 2 :A 1 8 2 .

396

L e s p in a s se , M . a n d P ê c h e r , A . 1 9 8 6 . M ic ro f ra c t u r in g a n d re g io n a l s t r e s s f i e l d : A s tu d y o f th e

p r e f e r re d o r i e n t a t i o n s o f f l u i d i n c l u s i o n p l a n e s i n a g r a n i t e f r o m t h e M a s s i f C e n t r a l ,

F ra n c e . J o u rn a l o f S tru c tu ra l G e o lo g y . 8 : 1 6 9 -1 8 0 .

L is le , R . J . 1 9 8 7 . P r i n c ip a l s t r e s s o r i e n ta t i o n s f ro m f a u l t s : A n a d d i t io n a l c o n s t r a in t . A n n a le s

T e c to n ic æ . 1 : 1 5 5 -1 5 8 .

L i s le , R . J . 1 9 8 8 . R O M S A : A B A S I C p ro g ra m fo r p a l e o s t r e s s a n a ly s i s u s in g fa u l t - s t r i a t i o n

d a ta . C o m p u te rs & G e o sc ie n c e s . 1 4 : 2 5 5 -2 5 9 .

L is le , R . J . 1 9 8 9 . P a le o s t r e s s a n a ly s i s f ro m s h e a re d d ik e s e t s . G e o lo g ic a l S o c ie ty o f A m e r ic a

B u l le t in . 1 0 1 : 9 6 8 -9 7 2 .

M a n d a l , N . a n d C h a ra b o r ty , C . 1 9 8 9 . F a u l t m o t io n a n d c u rv e d s l i c k e n l in e s : A th e o re t i c a l

a n a ly s i s . J o u rn a l o f S tru c tu ra l G e o lo g y . 1 1 :4 9 7 -5 0 1 .

M a n d e lb ro t , B . B . 1 9 7 7 . F r a c ta l s : F o r m , C h a n c e a n d D im e n sio n . W . H . F re e m a n : S a n

F ra n c is c o , C A . 3 6 5 p a g e s .

M a n d e l b r o t , B . B . 1 9 8 3 . T h e F ra c ta l G eo m et ry o f N a tu re . W . H . F re e m a n : N e w Y o rk , N Y .

4 6 8 p a g e s .

M a n d l , G . 1 9 8 7 . D is c o n t i n u o u s fa u l t z o n e s . J o u rn a l o f S tru c tu ra l G e o lo g y . 9 : 1 0 5 -1 1 0 .

M a n d l , G . 1 9 8 8 . M e ch a n ic s o f T ec to n ic F a u l t in g . E l s e v ie r : A m s te rd a m . 4 0 7 p a g e s .

M a n n in g , A . H . a n d d e B o e r , J . Z . 1 9 8 9 . D e fo rm a t io n o f M e s o z o ic d ik e s in N e w E n g la n d .

G e o lo g y . 1 7 : 1 0 1 6 -1 0 1 9 .

M a rr e t t , R . a n d A l l m e n d in g e r , R . W . 1 9 9 0 . K in e m a t i c a n a ly s i s o f fa u l t - s l i p d a ta . J o u rn a l o f

S tru c tu ra l G e o lo g y . 1 2 :9 7 3 -9 8 6 .

M a rs d e n , J . E . a n d T ro m b a , A . J . 1 9 8 1 . V e c to r C a lc u lu s . W . H . F re e m a n : S a n F ra n c i s c o , C A .

5 9 1 p a g e s .

M a rs h a k , S . a n d M i t ra , G . 1 9 8 8 . B a s ic M e th o d s o f S tru c tu ra l G e o lo g y . P r e n t i c e - H a l l :

E n g le w o o d C l i f f s , N J . 4 4 6 p a g e s .

M c B r id e , J . H . R e m a rk s o n th e d e r iv a t io n o f th e p a l e o s t r e s s s y s te m f ro m in fe r r e d f a u l t s o n

397

d e e p s e i s m ic re f l e c t i o n re c o rd s . T e c to n o p h y s ic s . 1 6 8 : 2 7 5 -2 8 2 .

M c K e n z i e , D . P . 1 9 6 9 . T h e r e l a t i o n s h ip b e tw e e n fa u l t p la n e s o lu t io n s fo r e a r th q u a k e s a n d th e

d i r e c t i o n s o f t h e p r i n c ip a l s t r e s s e s . S e ism o lo g ica l S o c ie ty o f A m e r ic a B u l le t in . 5 9 : 5 9 1 -

6 0 1 .

M e a n s , W . D . 1 9 7 6 . S tre ss a n d S t ra in . S p r in g e r -V e r la g : N e w Y o r k , N Y . 3 3 9 p a g e s .

M e a n s , W . D . 1 9 8 7 . A n e w ly r e c o g n iz e d ty p e o f s l i c k e n s id e s t r i a t i o n . J o u rn a l o f S tru c tu ra l

G e o lo g y . 9 :5 8 5 -5 9 0 .

M i c h a e l , A . J . 1 9 8 4 . D e te rm in a t i o n o f s t r e s s f ro m s l i p d a ta : F a u l t s a n d fo ld s . J o u r n a l o f

G e o p h y s ic a l R e se a rc h . 8 9 : 1 1 ,5 1 7 -1 1 ,5 2 6 .

M ic h a e l , A . J . 1 9 8 7 a . U s e o f fo c a l m e c h a n is m s to d e te rm in e s t r e s s : A c o n t r o l s tu d y . J o u rn a l

o f G e o p h y s ic a l R e se a rc h . 9 2 : 3 5 7 -3 6 8 .

M i c h a e l , A . J . 1 9 8 7 b . S t r e s s r o t a t i o n d u r i n g t h e C o a l i n g a a f t e r s h o c k s e q u e n c e . J o u rn a l o f

G e o p h y s ic a l R e se a rc h . 9 2 : 7 9 6 3 -7 9 7 9 .

M u l l e r , O . H . a n d P o l la rd , D . D . 1 9 7 7 . T h e s t r e s s s ta t e n e a r S p a n i s h P e a k s , C o l o r a d o ,

d e te rm in e d f ro m a d ik e p a t t e rn . P u r e a n d A p p l ie d G e o p h y s ic s . 1 1 5 : 6 9 -8 6 .

N o rr i s , D . K . a n d B a r ro n , K . 1 9 6 9 . S t ru c tu ra l a n a ly s i s o f f e a tu re s o n n a tu r a l a n d a r t i f i c i a l

fa u l t s . I n B a e r , A . J . a n d N o rr i s , D . K . 1 9 6 9 . R e se a rc h in T ec to n ic s: G e o lo g ic a l

S u rv ey o f C a n a d a P a p e r 6 8 -5 2 . p a g e s 1 3 6 -1 5 7 .

O e r t e l , G . 1 9 6 5 . T h e m e c h a n ic s o f fa u l t in g in c la y e x p e r i m e n ts . T e c to n o p h y s ic s . 2 : 3 4 3 -3 9 3 .

O k u b o , P . G . a n d A k i , K . 1 9 8 7 . F ra c ta l g e o m e t r y in th e S a n A n d re a s fa u l t s y s te m . J o u rn a l o f

G e o p h y s ic a l R e se a rc h . 9 2 : 3 4 5 -3 5 5 .

P a t e r s o n , M . S . 1 9 5 8 . E x p e r im e n ta l d e fo rm a t io n a n d fa u l t i n g in W o m b e y a n m a rb l e .

G e o lo g ica l S o c ie ty o f A m e r ic a B u l le t in . 6 9 :4 6 5 -4 7 6 .

P ê c h e r , A . , L e s p in a s se , M . , a n d L e ro y , J . 1 9 8 5 . R e l a t i o n s b e tw e e n f lu id in c lu s io n t r a i l s a n d

r e g i o n a l s t re s s f i e l d : A t o o l fo r f l u i d c h r o n o l o g y - A n e x a m p l e o f a n i n t r a g r a n i t i c

398

u ra n iu m o re d e p o s i t (n o r t h w e s t M a s s i f C e n t r a l , F ra n c e ) . L i th o s . 1 8 : 2 2 9 -2 3 7 .

P e r s h i n g , J . C . 1 9 8 9 . M o d e l l i n g d i s c o n t in u u m ro c k m a s s b e h a v i o r : A t e s t o f p a l e o s t r e s s

a n a ly s i s (a b s t r a c t ) . G e o lo g ic a l S o c ie ty o f A m e r ic a A b s tra c ts w i th P ro g ra m s . 2 1 :A 2 6 5 .

P e t i t , J . P . , P r o u s t , F . , a n d T a p p o n n i e r , P . 1 9 8 3 . C r i tè r e s d e s e n s d e m o u v e m e n t s u r l e s m i r o i r s

d e f a i l l e s e n r o c h e s n o n c a l c a i r e s . B u l le t in d e la S o c ié té G é o lo g iq u e d e F r a n c e .

2 5 :5 8 9 -6 0 8 .

P e t i t , J . P . 1 9 8 7 . C r i t e r i a f o r th e s e n s e o f m o v e m e n t o n f a u l t s u r f a c e s in b r i t t l e ro c k s . J o u rn a l

o f S tru c tu ra l G e o lo g y . 9 :5 9 7 -6 0 8 .

P f i f fn e r , O . A . a n d B u rk h a rd , M . 1 9 8 7 . D e t e rm in a t io n o f p a l e o - s t r e s s a x e s o r i e n t a t i o n s f ro m

fa u l t , tw in a n d e a r t h q u a k e d a ta . A n n a le s T e c to n ic æ . 1 : 4 8 -5 7 .

P l u m b , R . A . , E n g e ld e r , T . , a n d Y a l e , D . 1 9 8 4 . N e a r s u r f a c e in s i tu s t r e s s c o r re l a t i o n w i t h

m ic ro c ra c k fa b r i c w i t h in th e N e w H a m p s h i r e g ra n i t e s . J o u rn a l o f G e o p h y s ic a l

R e se a rc h . 8 9 : 9 3 5 0 -9 3 6 4 .

P l u m b , R . A . a n d C o x , J . W . 1 9 8 6 . S t r e s s d i r e c t i o n s i n e a s t e r n N o r t h A m e r i c a d e t e r m i n e d t o

4 .5 k m f ro m b o r e h o le e lo n g a t i o n m e a s u re m e n ts . J o u r n a l o f G e o p h y s ic a l R e se a rc h .

9 2 : 4 8 0 5 -4 8 1 6 .

P o l l a rd , D . 1 9 9 0 . P e rs o n a l c o m m u n ic a t i o n w i t h D a v id P o l l a rd o f S ta n fo rd U n iv e rs i t y .

P o w e r , W . L . , T u l l i s , T . E . , B ro w n , S . R . , B o i tn o t t , G . N . , a n d S c h o l z , C . H . 1 9 8 7 . R o u g h n e s s

o f n a tu ra l f a u l t s u r f a c e s . G eo p h ys i ca l R ese a rch L e t te r s . 1 4 :2 9 -3 2 .

P r i c e , N . J . 1 9 6 6 . F a u l t a n d Jo in t D e v e lo p m e n t in B r i t t le a n d S e m i-B r i t t le R o c k . P e r g a m o n :

O x f o rd . 1 7 6 p a g e s .

R a g a n , D . M . 1 9 8 5 . S tru c tu r a l G e o lo g y : A n I n tro d u c t io n to G e o m e tr ic a l T e c h n iq u e s . 3 r d

e d i t i o n . J o h n W i le y & S o n s : N e w Y o r k , N Y . 3 9 3 p a g e s .

R e c h e s , Z . a n d D i e t e r i c h , J . H . 1 9 8 3 . F a u l t in g o f r o c k s i n t h r e e - d i m e n s i o n a l s t ra i n f i e l d s , I .

F a i l u re o f ro c k s in p o ly a x ia l s e rv o -c o n t r o l l e d e x p e r i m e n ts . T e c to n o p h y s ic s . 9 5 : 1 1 1 -

1 3 2 .

399

R e c h e s , Z . 1 9 8 7 . D e te rm in a t io n o f t h e t e c to n ic s t r e s s t e n so r f ro m s l i p a lo n g fa u l t s t h a t o b e y

th e C o u lo m b y ie ld c o n d i t io n . T e c to n ic s . 6 : 8 4 9 -8 6 1 .

R ic e , A . H . N . 1 9 8 6 . S t ru c tu re s a s s o c ia t e d w i th s u p e r im p o s e d i n h o m o g e n e o u s sh e a r in g o f

b a s ic d y k e s f ro m F in n m a rk , N o rw a y . T e c to n o p h y s ic s . 1 2 8 :6 1 -7 5 .

R ie c k e r , R . E . 1 9 6 5 . F a u l t p la n e fe a tu re s : A n a l t e rn a t i v e e x p la n a t i o n . Jo u rn a l o f S ed im en ta ry

P e tro lo g y . 3 5 :7 4 6 -7 4 8 .

R o d , E . 1 9 6 6 . A d i s c u s s io n o f th e p a p e r : " F a u l t p l a n e f e a t u re s : A n a l t e rn a t e e x p l a n a t io n " b y

R . E . R ie c k e r . J o u rn a l o f S e d im e n ta ry P e tro lo g y . 3 6 :1 1 6 3 -1 1 6 5 .

R o w la n d , S . M . 1 9 8 6 . S tru c tu ra l A n a ly s is a n d S yn th e s is : A L a b o ra to ry C o u rse in S tru c tu ra l

G e o lo g y . B l a c k w e l l S c i e n t i f i c : P a lo A l to , C A . 2 0 8 p a g e s .

S a s s i , W . a n d C a re y -G a i lh a rd i s , E . 1 9 8 7 . In te rp ré ta t i o n m é c h a n iq u e d e g l i s s e m e n t s u r l e s

fa i l l e s : In t r o d u c t i o n d 'u n c r i t è re d e f ro t t e m e n t . A n n a le s T e c to n ic æ . 1 : 1 3 9 -1 5 4 .

S c h ie d , F . J . 1 9 6 8 . S c h a u m 's O u t l in e o f T h e o ry a n d P ro b lem s o f N u m e r ic a l A n a ly s i s . M c G ra w -

H i l l : N e w Y o rk , N Y . 4 2 2 p a g e s .

S c h i m m r i c h , S . H . 1 9 9 0 . A P a s c a l p r o g r a m f o r d e t e r m i n i n g s l i p - v e c t o r o r i e n t a t i o n s o n f a u l t

p la n e s . J o u rn a l o f G e o lo g ic a l E d u c a t io n . 3 8 :2 8 4 -2 8 7 .

S c h o lz , C . H . a n d A v i l e s , C . A . 1 9 8 6 . T h e f ra c ta l g e o m e t r y o f fa u l t s a n d fa u l t in g . I n D a s , S . ,

B o a tw r i g h t , J . , a n d S c h o lz , C . H . 1 9 8 6 . E a r th q u a k e S o u r ce M e c h a n ic s . A m e r i c a n

G e o p h y s ic a l U n io n : W a s h in g to n , D . C . P a g e s 1 4 7 -1 5 5 .

S c h o lz , C . H . 1 9 9 0 . T h e M e ch a n ic s o f E a r th q u a k es a n d F a u l t in g . C a m b r i d g e U n i v e r s i ty

P re s s : C a m b r i d g e . 4 3 9 p a g e s .

S c o t t , W . H . , H a n s e n , E . , a n d T w is s , R . J . 1 9 6 5 . S t r e s s a n a ly s i s o f q u a r t z d e fo rm a t io n

la m e l l a e in a m in o r fo ld . A m e r ic a n J o u rn a l o f S c ie n c e . 2 6 3 : 7 2 9 -7 4 6 .

S e g a l l , P . a n d P o l l a rd , D . D . 1 9 8 0 . M e c h a n ic s o f d i s c o n t i n u o u s fa u l t s . J o u rn a l o f G e o p h ys ic a l

R e se a rc h . 8 5 : 4 3 3 7 -4 3 5 0 .

S h e p a rd , T . J . 1 9 9 0 . G e o lo g ic a l l i n k b e tw e e n f lu id in c lu s io n s , d i l a t a n t m ic ro c ra c k s , a n d

400

p a le o s t r e s s f i e ld . J o u r n a l o f G e o p h y s ic a l R e se a rc h . 9 5 :1 1 ,1 1 5 -1 1 ,1 2 0 .

S p a n g , J . H . 1 9 7 2 . N u m e r i c a l m e th o d fo r d y n a m ic a n a ly s i s o f c a l c i t e tw in la m e l l a e .

G e o lo g ica l S o c ie ty o f A m e r ic a B u l le t in . 8 3 : 4 6 7 -4 7 2 .

S p a n g , J . H . a n d V a n D e r L e e , J . 1 9 7 5 . N u m e r i c a l d y n a m i c a n a ly s i s o f q u a r t z d e fo rm a t io n

la m e l l a e a n d c a lc i t e a n d d o lo m i t e tw in la m e l l a e . G e o lo g ic a l S o c ie ty o f A m e r ic a

B u l le t in . 8 6 : 1 2 6 6 -1 2 7 2 .

S p e n c e r , E . W . 1 9 8 8 . In t ro d u c t io n to th e S t ru c tu re o f th e E a r th . 3 r d e d i t io n . M c G r a w - H i l l :

N e w Y o r k . N Y . 5 5 1 p a g e s .

S u p p e , J . 1 9 8 5 . P r in c ip le s o f S tru c tu ra l G e o lo g y . P r e n t i c e - H a l l : E n g le w o o d C l i f f s , N J . 5 3 7

p a g e s .

S u t e r , M . 1 9 8 6 . O r i e n t a t i o n d a t a o n th e s ta t e o f s t r e s s in n o r th e a s te rn M e x ic o a s in fe r r e d f ro m

st res s - ind u c e d b o re h o le e lo n g a t i o n s . J o u r n a l o f G e o p h y s ic a l R e se a rc h . 9 2 :2 6 1 7 -2 6 2 6 .

T c h a le n k o , J . S . 1 9 7 0 . S im i l a r i ty b e tw e e n s h e a r z o n e s o f d i f fe re n t m a g n i t u d e . G e o lo g ic a l

S o c ie ty o f A m e r ic a B u l le t in . 8 1 : 1 6 2 5 -1 6 4 0 .

T h o rp e , W . 1 9 6 9 . R e d u c t i o n v . o rg a n ic i s m . N ew S c ien t i s t . 4 3 : 6 3 5 -6 3 8 .

T j i a , H . D . 1 9 6 4 . S l i c k e n s id e s a n d fa u l t m o v e m e n ts . G e o lo g ica l S o c ie ty o f A m e r ic a B u l le t in .

7 5 :6 8 3 -6 8 6 .

T j i a , H . D . 1 9 6 7 . S e n s e o f fa u l t d i s p la c e m e n ts . G e o lo g ie e n M i jn b o u w . 4 6 :3 9 2 -3 9 6 .

T j i a , H . D . 1 9 7 2 . F a u l t m o v e m e n t , r e o r i e n te d s t r e s s f i e ld a n d s u b s id ia ry s t r u c tu re s . P a c i f ic

G e o lo g y . 5 :4 9 -7 0 .

T w is s , R . J . a n d G e fe l l , M . J . 1 9 9 0 . C u rv e d s l i c k e n f ib e r s : A n e w b r i t t l e s h e a r s e n se in d i c a t o r

w i t h a p p l i c a t i o n to a s h e a re d s e rp e n t i n i t e . J o u rn a l o f S tru c tu ra l G e o lo g y . 1 2 : 4 7 1 -4 8 1 .

U m h o e fe r , P . J . 1 9 9 0 . F a u l t - s t r i a t i o n a n a ly s i s n e a r th e N W Y a la k o m fa u l t , T y a u g h to n b a s in ,

B r i t i sh C o lu m b ia : S t r ik e s l ip s t ru c tu re s o v e r p r in t in g m id - C re t a c e o u s t h ru s t s t ru c tu r e s .

401

G eo lo g ica l S o c ie t y o f A m er ica A b s tra c t s w i th P ro g ra m s . 2 2 :A 9 5 .

V a s s e u r , G . , E t c h e c o p a r , A . , a n d P h i l i p , H . 1 9 8 3 . S t r e s s s t a t e in fe r r e d f ro m m u l t i p le fo c a l

m e c h a n is m s . A n n a le s G e o p h y s ic æ . 1 : 2 9 1 -2 9 8 .

W a h l s t ro m , R . 1 9 8 7 . F o c a l m e c h a n i s m s o f e a r t h q u a k e s i n s o u t h e r n Q u e b e c , s o u t h e a s t e r n

O n ta r io , a n d n o r t h e a s t e r n N e w Y o r k w i t h i m p l i c a t i o n s f o r r e g i o n a l se i s m o te c to n ic s a n d

s t r e s s f i e ld c h a ra c te r i s t i c s . S e ism o lo g ic a l S o c ie ty o f A m e r ic a . 7 7 : 8 9 1 -9 2 4 .

W a l l a c e , R . E . 1 9 5 1 . G e o m e t r y o f s h e a r i n g s t r e s s a n d re la t i o n to fa u l t in g . J o u rn a l o f G e o lo g y .

5 9 :1 1 8 -1 3 0 .

W a l l a c e , R . E . 1 9 7 3 . S u r f a c e f ra c tu re p a t t e rn s a lo n g th e S a n A n d re a s fa u l t . I n K o v a c h , R .

a n d N u r , A . 1 9 7 3 . P r o c ee d in g s o f th e C o n fe re n ce o n T ec to n ic P r o b le m s o f th e S a n

A n d r e a s F a u l t S y s te m : S p ec ia l P u b l ic a t io n 1 3 . S t a n fo rd U n iv e r s i t y P r e s s : P a l o A l to ,

C A . p a g e s 2 4 8 -2 5 0 .

W a l lb re c h e r , E . a n d F r i t z , H . 1 9 8 9 . Q u a n t i t a t i v e e v a lu a t io n o f th e s h a p e fa c t o r a n d th e

o r ie n t a t io n o f a p a l e o - s t r e s s e l l i p s o i d f ro m th e d i s t r i b u t i o n o f s l i c k e n s id e s t r i a t io n s .

A n n a le s T e c to n ic æ . 3 : 1 1 0 -1 2 2 .

W h i t e , S . H . 1 9 7 9 . D i f f i c u l t i e s a s s o c ia te d w i t h p a le o -s t r e s s e s t i m a te s . B u l le t in d e

M in é ra lo g ie . 1 0 2 : 2 1 0 -2 1 5 .

W o o d c o c k , N . H . 1 9 7 6 . T h e a c c u ra c y o f s t r u c tu ra l f i e ld m e a s u re m e n ts . J o u rn a l o f G e o lo g y .

8 4 :3 5 0 -3 5 5 .

Z o b a c k , M . D . a n d Z o b a c k , M . L . 1 9 8 0 . S t a t e o f s t r e s s i n th e c o n t e r m in o u s U n i t e d S t a t e s .

J o u r n a l o f G e o p h y s ic a l R e se a rc h . 8 5 : 6 1 1 3 -6 1 5 6 .

top related