Chapter 20 Fundamentals of Machining/Orthogonal Machining (Part I) EIN 3390 Manufacturing Processes Spring, 2012.

Post on 05-Jan-2016

243 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

Transcript

Chapter 20Chapter 20

Fundamentals of Fundamentals of Machining/Orthogonal Machining/Orthogonal

MachiningMachining(Part I) (Part I)

EIN 3390 Manufacturing ProcessesEIN 3390 Manufacturing ProcessesSpring, 2012Spring, 2012

20.1 Introduction20.1 IntroductionMachining is the process of removing unwanted material from a workpiece on the form of chip.

If the material is metal, then the process is often called metal cutting or metal removal.

US industries annually spend well over $100 billion to perform metal removal operations because the vast majority of manufactured products require machining at some stage in the production ranging from relatively rough or non-precision work, such as cleanup of casting or forging, to high-precision work involving tolerance of 0.0001 in. or less and high-quality finishes.

20.2 Fundamentals20.2 Fundamentals

Variables in Processes of Metal Cutting:

• Machine tool selected to perform the processes

• Cutting tool (geometry and material)

• Properties and parameters of workpiece

• Cutting parameters (speed, feed, depth of cut)

• Workpiece holding devices (fixture or jigs)

FIGURE 20-1 The fundamental inputs and outputs to machining processes.

20.2 Fundamentals20.2 Fundamentals

7 basic chip formation processes: 1) shaping, 2) turning, 3) milling, 4) drilling, 5) sawing, 6) broaching, and7) grinding (abrasive)

FIGURE 20-2 The seven basic machining processes used inchip formation.

20.2 Fundamentals20.2 FundamentalsResponsibilities of Engineers

Design (with Material) engineer: • determine geometry and materials of products to meet functional requirements

Manufacturing engineer based on material decision:

• select machine tool• select cutting-tool materials• select workholder parameters,• select cutting parameters

20.2 Fundamentals20.2 FundamentalsCutting Parameters

Speed (V): the primary cutting motion, which relates the velocity of the cutting tool relative to the workpiece.

For turning: V = (D1 Ns) / 12 where, V – feet per min, Ns – revolution per min (rpm), D1

diameter of surface of workpiece, in.

Feed (fr): amount of material removed per revolution or per pass of the tool over the workpiece. In turning, feed is in inches per revolution, and the tool feeds parallel to the rotational axis of the workpiece.

Depth of Cut (DOC): in turning, it is the distance that the tool is plunged into the surface.

DOC = 0.5(D1 – D2) = d

FIGURE 20-3 Turning acylindrical workpiece on a lathe requires you to select the cutting speed, feed, and depth of cut.

20.2 Fundamentals20.2 FundamentalsCutting Tool is

a most critical componentused to cut the work pieceselected before actual values for speed and feeds are determined.

Figure 20-4 gives starting values of cutting speed, feed for a given depth of cut, a given tool material, a given work material, and a given process (turning).

Speed decreases as DOC or feed increaseCutting speed increases with carbide and coated-

carbide tool material.

FIGURE 20-4 Examples of a table for selection FIGURE 20-4 Examples of a table for selection of speed and feed for turning. of speed and feed for turning. (Source: (Source: Metcut’s Metcut’s Machinability Data Handbook.Machinability Data Handbook.))

AISIfor “in”

ISOfor “mm”

(for workpiece)

FIGURE 20-4 Examples of a table for selection FIGURE 20-4 Examples of a table for selection of speed and feed for turning. of speed and feed for turning. (Source: (Source: Metcut’s Metcut’s Machinability Data Handbook.Machinability Data Handbook.))

AISIfor “in”

ISOfor “mm”

(for workpiece)

20.2 Fundamentals20.2 FundamentalsTo process different metals, the input parameters to the machine tools must be determined.

For the lathe, the input parameters are DOC, feed, and the rpm value of the spindle.

Ns = 12V / ( D1) = ~ 3.8 V/ D1

Most tables are arranged according to the process being used, the material being machined, the hardness, and the cutting-tool material.

The table in Figure 20-4 is used only for solving turning problems in the book.

20.2 Fundamentals20.2 FundamentalsDOC is determined by the amount of metal removed per pass. Roughing cuts are heavier than finishing cuts in terms of DOC and feed, and are run at a lower surface speed.

Once cutting speed V has been selected, the next step is to determine the spindle rpm, Ns.

Use V, fr and DOC to estimate the metal removal rate for the process, or MRR.

MRR = ~ 12V fr dwhere d is DOC (depth of cutt).

MRR value is ranged from 0.1 to 600 in3/min.

20.2 Fundamentals20.2 FundamentalsMRR can be used to estimate horsepower needed to perform cut. Another form of MRR is the ratio between the volume of metal removed and the time needed to remove it.

MRR = (volume of cut)/Tm Where Tm – cutting time in min. For turning, Tm = (L + allowance)/ (fr Ns)where L – length of the cut. An allowance is usually

added to L to allow the tool to enter and exit the cut.

MRR and Tm are commonly referred to as shop equations and are fundamental as the processes.

20.2 Fundamentals20.2 Fundamentals

One of the most common machining process is turning:

workpiece is rotated and cutting tool removes material as it moves to the left after setting a depth of cut. A chip is produced which moves up the face of the tool.

FIGURE 20-5 Relationship ofspeed, feed, and depth of cut inturning, boring, facing, andcutoff operations typically doneon a lathe.

20.2 Fundamentals20.2 FundamentalsMilling:

A multiple-tooth process. Two feeds: the amount of metal an individual tooth

removes, called the feed per tooth ft, and the rate at which the working table translates pass the rotating tool, called the table feed rate fm in inch per min.

fm = ft n Ns

where n – the number of teeth in a cutter, Ns – the rpm value of the cutter.

Standard tables of speeds and feeds for milling provide values for the recommended cutting speeds and feeds and feeds per tooth, ft.

FIGURE 20-6 Basics of milling processes (slab, face, and end milling) including equations for cutting time and metalremoval rate (MRR).

24.

FIGURE 20-7 Basics of the drilling (hole-making) processes, including equations for cutting time andmetal removal rate (MRR).

FIGURE 20-9 (a) Basics of the shaping process, including equations for cutting time (Tm ) and metal removal rate(MRR). (b) The relationship of the crank rpm Ns to the cutting velocity V.

L

FIGURE 20-10 Operations and machines used for machining cylindrical surfaces.

FIGURE 20-10 Operations and machines used for machining cylindrical surfaces.

FIGURE 20-10 Operations and machines used for machining cylindrical surfaces.

FIGURE 20-10 Operations and machines used for machining cylindrical surfaces.

FIGURE 20-11 Operations and machines used to generate flat surfaces.

FIGURE 20-11 Operations and machines used to generate flat surfaces.

D2/4) fm

(Chap 21) (Chap 24) (Chap 23)

fm = f r Ns fm = f t Ns n fm = f r Ns

Ns = 12V/(Dt) Ns = 12V/(Dm) Ns = 12V/(Dd)

V = ( Dt Ns)/12 V = ( Dm Ns)/12 V = ( Dd Ns)/12

Tm = L / fmTm = L / fm Tm = L / fm

MRR = 12V fr d MRR = w fm d

hp = MRR x HPs hp = MRR x HPs hp = MRR x HPs

hpm = MRR x HPs/E = FcV/33,000

hpm = MRR x HPs/E hpm = MRR x HPs/E

Dt = Diameter of workpiece in turning, inchesDm = Diameter of milling cutter, inchesDd = Diameter of drill, inchesd = Depth of cut, inchesE = Efficiency of spindle driveFm = Feed rate, inches per minuteFr = Feed, inches per revolutionFt = Feed, inches per toothhpm = Horsepower at motorMRR = metal removal rate, in3/min

hp = Horsepower at spindleL = Length of cut, inchesn = Number of teeth in cutterHPs = Unit power, horsepower per cubic inch per minute, specific horsepowerNs= Revolution per minute of work or cutterTm = Cutting time, minutesV = Cutting speed, feet per minutew = Width of cut, inchesFc= Cutting force, lbf

20.3 Energy and Power in Machining20.3 Energy and Power in Machining

Power requirements are important for proper

machine tool selection.

Cutting force data is used to:

properly design machine tools to maintain

desired tolerances.

determine if the workpiece can withstand

cutting forces without distortion.

Cutting Forces and PowerCutting Forces and Power Primary cutting force Fc: acts in the direction of the cutting

velocity vector. Generally the largest force and accounts for 99% of the power required by the process.

Feed Force Ff :acts in the direction of tool feed. The force is

usually about 50% of Fc but accounts for only a small

percentage of the power required because feed rates are

small compared to cutting rate.

Radial or Thrust Force Fr: acts perpendicular to the

machined surface. in the direction of tool feed. The force is

typically about 50% of Ff and contributes very little to the

power required because velocity in the radial direction is

negligible.

FIGURE 20-12 Obliquemachining has three measurablecomponents of forces acting onthe tool. The forces vary withspeed, depth of cut, and feed.

FIGURE 20-12 Obliquemachining has three measurablecomponents of forces acting onthe tool. The forces vary withspeed, depth of cut, and feed.

Cutting Forces and PowerCutting Forces and PowerPower = Force x Velocity

P = Fc . V (ft-lb/min)

Horsepower at spindle of machine is:hp = (FcV) / 33,000

Unit, or specific, horsepower HPs:

HPs = hp / (MRR) (hp/in.3/min)

In turning, MRR =~ 12VFrd, then

HPs = Fc / (396,000Frd) This is approximate power needed at the spindle to remove a

cubic inch of metal per minute.

Cutting Forces and PowerCutting Forces and PowerSpecific Power

Used to estimate motor horsepower required to perform a machining operation for a given material.

Motor horsepower HPm

HPm = [HPs . MRR . (CF)]/EWhere E – about 0.8, efficiency of machine to overcome friction

and inertia in machine and drive moving parts; MRR – maximum value is usually used; CF – about 1.25, correction factor, used to account for variation in cutting speed, feed, and rake angle.

Cutting Forces and PowerCutting Forces and PowerPrimary cutting force Fc:

Fc =~ [HPs . MRR . 33,000]/VUsed in analysis of deflection and vibration problems in machining and in design of workholding devices.

In general, increasing the speed, feed, depth of cut, will increase power required.

In general, increasing the speed doesn’t increase the cutting force Fc. Speed has strong effect on tool life.

Cutting Forces and PowerCutting Forces and PowerConsidering MRR =~ 12Vfrd (for turning), then

dmax =~ (HPm . E)/[12 . HPs V Fr (CF)]

Total specific energy (cutting stiffness) U:

U = (FcV)/(V fr d) = Fc/(fr . d) =Ks (turning)

HW for Chapter 20HW for Chapter 20

Review Questions:3, and 5 (page 557)

Problems (Page 558):1. a, b, c, d

Please use fig. 20-4 to find the required speed and feed rate.

3.

top related