Transcript

Project: 35 Ton hydraulic mooring winch

1 Duty pull F= 35 Ton @ 1st Layer

Drum Pipe D= 0.762 m Ratio: D/d= 19.1

Wire Length L= 500 m Drum Length Ld= 1229.6

wire dia. d= 0.040 m

Colum X= 29

Layer 0.802 L/LAYER L/TOTAL FORCE SPEED

1 0.802 73.067 73.1 75 5 m/min

2 0.871 76.642 149.7 69.0 5.4 m/min

3 0.941 85.691 235.4 64.0 5.9 m/min

4 1.010 88.830 324.2 59.6 6.3 m/min

5 1.079 98.315 422.5 55.7 6.7 m/min

6 1.148 101.019 523.6 52.4 7.2 m/min

7 1.218 110.938 634.5 49.4 7.6 m/min

8 1.287 113.207 747.7 46.7 8.0 m/min

9 1.356 123.562 871.3 44.4 8.5 m/min

10 1.426 125.396 996.7 42.2 8.9 m/min

11 1.495 136.186 1132.9 40.2 9.3 m/min

12 1.564 137.584 1270.4 38.5 9.8 m/min

13 1.633 148.810 1419.2 36.8 10.2 m/min

14 1.703 149.772 1569.0 35.3 10.6 m/min

15 1.772 161.433 1730.5 33.9 11.0 m/min

16 1.841 161.961 1892.4 32.7 11.5 m/min

17 1.910 174.057 2066.5 31.5 11.9 m/min

DYNAMICS CALCULATIONS Title: HYDRAULIC AHTW C/W HYD. POWER PACK

Model No. ME75THAHTW Dwg. Number 75THAHTW-100

SHEET: 1/2 Proj. No. J070029E Rev. No. 0 Date: 20/04/07

a. Winch

Drum pull Fd = 75 Ton

Wire rope speed V = 5.0 m/min (1st Layer, LOW SPEED)

Wire rope dim. d = 0.052 m

Drum Dia. D = 0.762 m

PCD at 1st Layer 0.814 m

Gear ratio i = 29.05 (113/26*127/19)

Shaft revolution speed n = 1.96 rev/min

1. Hyd. motor output torque required

Td= Fd x 9810 x (D+d) / (2i)*(1+η)

= 13400 Nm

Mechanical loses: η= 30%

2. Hyd. motor output speed required

n xi

= 56.80 rev/min

3. Choose hyd. Motor

Type: HMC270 280

Displacement: Vm Vm= 4588 cc/rev

p= 69.4 Nm/bar

Mechanical loses: 92%

Volumetric efficiency: 97%

4. Working flow

Qm= Vm x nm/ηv

= 268.7 l/min

5. Max. load pressure (Winch pull)

209.9 bar

6. Hyd. Motor output power

Nm= 94.0 KW

D1=

nm=

ηm=

ηv=

PLt= Td/p/ηm

DYNAMICS CALCULATIONS Title: HYD. TOWING WINCH C/W HYD. POWER PACK

Model No. ME75THAHTW Dwg. Number 75THAHTW-100

SHEET: 2/2 Proj. No. J070029E Rev. No. 0 Date: 20/04/07

b. Power pack

1. Hyd. Pump flow required Qm= 268.7 l/min

Displacement:

= 186.49 cc/rev

Hyd. System volum efficency 0.98

2. Choose hyd. Pump

Pump Type:

Qty. of pump n= 2

Displacement: 93.2 cc/rev

Duty output: P = 219.9 bar

Q =

= 137.1 lpm

Input power: N =

= 58.21 kw

Elec. Motor safty factor: 0.94

Hyd. pump overall efficency: 0.9

3. Choose elec. Motor: n= 2

415 v 1470 rpm

3 PH

50 Hz W= 90 kw

qp = Qm/ηv/ne

ηv =

qp =

neqpne

PQ/ηp/ηe/612

ηe =

ηp =

ne=

DYNAMICS CALCULATIONS Title: HYDRAULIC AHTW C/W HYD. POWER PACK

Model No. ME75THAHTW Dwg. Number 75THAHTW-100

SHEET: 1/2 Proj. No. J070029E Rev. No. 0 Date: 20/04/07

a. Winch

Drum pull Fd = 12 Ton

Wire rope speed V = 20.0 m/min (1st Layer, HIGH SPEED)

Wire rope dim. d = 0.052 m

Drum Dia. D = 0.762 m

PCD at 1st Layer 0.814 m

Gear ratio i = 29.05 (113/26*127/19)

Shaft revolution speed n = 7.82 rev/min

1. Hyd. motor output torque required

Td= Fd x 9810 x (D+d) / (2i)*(1+η)

= 2144 Nm

Mechanical loses: η= 30%

2. Hyd. motor output speed required

n xi

= 227.20 rev/min

3. Choose hyd. Motor

Type: HMC270 60

Displacement: Vm Vm= 980 cc/rev

p= 12.2 Nm/bar

Mechanical loses: 92%

Volumetric efficiency: 97%

4. Working flow

Qm= Vm x nm/ηv

= 229.5 l/min

5. Max. load pressure (Winch pull)

191.0 bar

6. Hyd. Motor output power

Nm= 73.1 KW

D1=

nm=

ηm=

ηv=

PLt= Td/p/ηm

DYNAMICS CALCULATIONS Title: HYD. TOWING WINCH C/W HYD. POWER PACK

Model No. ME75THAHTW Dwg. Number 75THAHTW-100

SHEET: 2/2 Proj. No. J070029E Rev. No. 0 Date: 20/04/07

b. Power pack

1. Hyd. Pump flow required Qm= 229.5 l/min

Displacement:

= 159.34 cc/rev

Hyd. System volum efficency 0.98

2. Choose hyd. Pump

Pump Type:

Qty. of pump n= 2

Displacement: 79.7 cc/rev

Duty output: P = 201.0 bar

Q =

= 117.1 lpm

Input power: N =

= 45.47 kw

Elec. Motor safty factor: 0.94

Hyd. pump overall efficency: 0.9

3. Choose elec. Motor: n= 2

415 v 1470 rpm

3 PH

50 Hz W= 90 kw

qp = Qm/ηv/ne

ηv =

qp =

neqpne

PQ/ηp/ηe/612

ηe =

ηp =

ne=

MARINE EQUIPMENTS PTE LTD 9/21 WINCH STRESS

CALCULATION (For BV Approval)

75TON ANCHOR HANDLING/TOWING WINCH

The winch duty pull load is: Fd= 75000 kg x 5 m/min

Max. braking force is: 150000 kg

Wire PCD @ 1st Layer: 814.0 mm

1. SHAFT STRESS CALCULATION (neglet wire angle)

Duty pull capacity: 30525.0 kgm

The Max. bending torque applied on the shaft:

46875.0 kgm

Where a= 1250.0 mm

b= 1250.0 mm

Based on the ASME code Max. shear equation:

T=sqrt[(Kb*Mb)^2+(Kt*Mt)^2]= 76652.6 kgm

Where 1.5

1.0

Ss=16T/(πd^3)= 13.10 d= 310 mm

Shaft material ST52.3, Yielding-point> 355 N/mm2

Safty-factor= 2.71 >1.4

Winch brake holding load 150000 kg

The Max. bending torque applied on the shaft:

94500.0 kgm

Where a= 1260.0 mm

b= 1260.0 mm

Max. tensile stress on shaft=32Mb/(πd^3) 323.3 d= 310 mm

Safty-factor over yield strength= 1.10 >1.4

The shaft mainly under shear force, The min. shaft diameter is: 260.0 mm

27.7

Fb=

D1=

TD=FdxD1/2=

Mb=Fd*ab/l=

Kb=

Kt=

kg/mm2

Fb=

Mb=Fd*ab/l=

N/mm2

Sshear=Fb/A=4Fb/(3.14d2)= N/mm2

MARINE EQUIPMENTS PTE LTD 10/21 WINCH STRESS

Safty-factor over yield strength= 12.80 >2

2. PIN STRESS CALCULATION

There are 12 pin in the gear: dia= 30 mm

PCD= 1730 MM

Force on pin Fp= 346185260 N

The shear stress acting on the pin:

S=Fp/n/A= 61250.05 N/mm^2

Safty-factor over yield strength> 4.0

3. KEY STRESS CALCULATION (2nd STAGE)

There are two keyway in the gear: n= 2

The key section dimension: bxH 45 (mm) x 25 (mm)

The max torque is caused by winch:Td= 7627.5 kgm

The squeeze stress acting on the key:

24.91

Where h= 12.5 mm

L= 140 mm

d= 175 mm

The shear stress acting on the key:

6.92

The Gear material is ASTM A148 grade80/40,

Safty-factor over yield strength= 1.35 >1.3

4. BEARING & BEARING HOUSING

1). BEARING CAPACITY: spherical roller bearing

The bearing selected is: 23052MB

Basic dynamic load rating: 1500 KN

Pin material is AISI1045, Tensile stress>600 Mpa, yielding-point >350 Mpa,

S1=2TD/hLdn= kg/mm2

S2=2TD/bLdn= kg/mm2

Key & shaft material is AISI1045, Yielding-point >355 Mpa,

Tensile stress >620 Mpa, Yielding-point>335 Mpa

MARINE EQUIPMENTS PTE LTD 11/21 WINCH STRESS

Basic static load rating: 2800 KN

See attached FAG bearing catalogue.

2). Bearinghousing material for winch is mild steel: ASTM-A36

5. FOUNTATION BOLTS

1). REVERSAL MOMENT: 238500000 kg.mm

Where: 150000 kg (Winch brake holding)

distance between wire and foundation: H= 1590 mm

2). MAXIMUM TENSION FORCE OF BOLT:

13140.5 kg

MAXIMUN SHEAR FORCE OF BOLT:

2542.4 kg

Last row number of bolts: 15

Totally Number of bolts: 59

1210 mm

3). MAXIMUM TENSION & SHEARING STRESS OF BOLT:

We use M30 ISO G 8.8 bolts, Tensile stress= 80.0

Yielding point = 64.0

The bolt stress area is: A= 561

23.4

4.5

Safty-factor over yield strength= 2.73 >4

6. DRUM BRAKE SYSTEM CALCULATION (TWO STAGE)

Max. static brake holding: 150000 kg

Brake Race Dia.: D= 1834 mm

wire P.C.D. 814.0 mm

Brake Lap: α= 275 deg.

Coefficient of friction: μ= 0.35

Dictance: A= 782 mm

B= 450 mm 600 mm

M=Fb*H=

proof load: Fb=

Fr=M/(R2*z1)=

Fs=Fb/z2=

z1=

z2=

R2=

kg/mm2

kg/mm2

mm2

Stension=Fr/A= kg/mm2

Sshear=Fs/A= kg/mm2

Fb=

D1=

L1=

MARINE EQUIPMENTS PTE LTD 12/21 WINCH STRESS

C= 782 mm 150 mm

b= 65 mm

s= 8 mm

2). Force analysis & Calculation

Max. torque @ brake holding: M= 598900500 N/mm

Brake force on brake drum: P= 653109 N

Moving pin load(loose side):

149589 N

Tau side force: 802697 N

Spindle load: 37397 N

Anchor pin load: 802697 N

3). Brake band:

Material is ASTM-A36

250.0

Permissible design stress(Tensile) = 162.5

Brake band size: w= 300 mm t= 25.0 mm

Max. tensile stress: 107

4). Pin selection:

Material is AISI1045, 110.0 mm

350

Permissible design stress(Shear) = 122.5

a.Tau side pin:

84.5

50.0

Shear stress: 76.2

5). Anchor plate, bar & brake lug:

L2=

T2=P/(e^(μα)-1)=

T1=T2*e^(μα)=

T=T2/L2*L1=

R=T1=

Yield stress = N/mm2,

N/mm2,

σ=T1/(wt)= (N/mm2) < 162.5 N/mm2,

d1=

Yield stress = N/mm2,

N/mm2,

Max. Shear stress: t=R/(1/4*3.14*d12)= N/mm2, < 122.5 N/mm2

b. Moving pin (loose side)@T2

d2=

t=T2/(1/4*3.14*d22)= N/mm2, < 122.5 N/mm2

MARINE EQUIPMENTS PTE LTD 13/21 WINCH STRESS

Material is ASTM-A36

250.0

Permissible design stress(Tensile) = 162.5

Anchor plate thickness: 38 mm

Number of anchor plate lug: 2

Outer radius: 110 mm

Max. tension stress=T1/[nxtx(2r-d1)]= 96

Link plate @ R

Bar thickness: 38 mm

Number of anchor bar: 2

Outer radius: 110 mm

96

Link plate lug @ T2

Moving pin (loose side)@T2 30 mm

Number of anchor bar: 2

Outer radius: 50.0 mm

50

6). Brake Cylinder & hand wheel:

Required Brake force: T= 37397 N = 3808 KG

Disc spring: AM2008210 ID82XOD200X9.5THKX15.5

Stroke: 180 mm

PRE-PRESS: 1.38mm FORCE= 5304 KG > 3808 KG

Number of spring: 70

Yield stress = N/mm2,

N/mm2,

Anchor plate @ T1

N/mm2, <162.5 N/mm2

Max. tension stress=R/[nxtx(2r1-d1)]= N/mm2, <162.5 N/mm2

Max. tension stress=T2/[nxtx(2r2-d2)]= N/mm2, <162.5 N/mm2

MARINE EQUIPMENTS PTE LTD 14/21 1st STAGE GEAR

SPUR GEAR CONTACT STRESS CALCULATION (BS436)

FOR 75 TON ANCHOR HANDLING/TOWING WINCH (WIRE Φ52mm )

(first stage)

PINION SPUR GEAR (UNIT)

center distance: a= 1251 1251 mm

mormal module: 18 18 mm

pressure angle 20 20 deg

tooth number: 26 113

face width: b= 270 250 mm

reference diameter: 468 2034 mm

tip diameter: 504 2070 mm

tooth depth: 40.5 40.5 mm

number of revolution 8.50 1.96 rev/min

construction: solid solid

mean roughness: 3.2 3.2 μm

meterial type: AISI 4140 ASTM A148 grade80/40

tensile stress: 900 620

yielding point: 700 335

300 Cst

application factor: 1.0

required life time: 10000 hours

1.0

The winch overload : F= 75000 kg (BS MA 35 : 1975)

Norminal tangential force for the contact stress:

Wire PCD. 814 mm

30015 kg

mn=

αn=

z1 & z2

d1, d2

da1, da2

Rα(root)

σb=

σs=

lubricant viscosity at 40˚C:

minimun demanded safety factor for contact stress: SHMin=

Dwpcd=

FHT=F*Dwpcd/d2=

MARINE EQUIPMENTS PTE LTD 15/21 1st STAGE GEAR

Calculation for the contact stress:

(equation 2)

4.35

439.8 mm

1911.3 mm

65 (B.11)

2.49 (Equation 10)

53.1 mm (B.3)

92.6 (B.2)

1.74 (B.8)

0.867 (Equation 11)

180.1 (Equation 14)

Poisson's ratio 0.3

Steel: 21000 kg/mm^2

Cast steel: 20600 kg/mm^2

1.0

1.1 (from 16.3)

v= 12.49 m/min= 0.21 m/sec

5.96

1.0 (spur gear from fig. 11)

X= 0.8687 (grade 9 see table 7)

0.35 (Equation 22)

1.0 (Equation 20)

250 (Equation 35)

7164.4 kg (Equation 37)

σH=ZH*ZE*Zε*SQRT(FHT*(u+1)*KA*KV*KHα*KHβ/u/b/d1)

u=Z2/Z1=

db1=d1*cosαn=

db2=d2*cosαn=

Prel=(d1/2)*(u/(u+1))*(cosαt*tanαtw/cosβt)=

ZH=2*SQRT(cosβt/sin(2*αt))=

Pbt=mn*π*cosαt/cosβ=

ga=0.5*(SQRT(da1^2-db1^2)+SQRT(da2^2-db2^2))-a*sinαtw=

εa=ga/Pbt=

Zε=SQRT((4-εa)/3)=

ZE=SQRT{1/[π*((1-v1^2)/E1+(1-v2^2)/E2)]}=

v1=v2=

E1=

E2=

KA=

QV=

Qv v z1=

Kv350=

B=(350/(FtKA/b))^X=

Kv=1+(Kv350-1)/B=

beff=b-lc/2= mm lc=0

Fmest=bd1u/(u+1)*[σHP/(ZH*ZE*Zε)]^2=

MARINE EQUIPMENTS PTE LTD 16/21 1st STAGE GEAR

281.1 N/mm (Equation 38)

K= 0.48 (Fig. 12)

A= 0.023 μm (Table 8)

120.06 kg/mm= 1178 N/mm

210 mm

l= 770 mm

231 mm

9.13 μm (Equation 40)

12.9 μm (Equation 42)

25.04 μm (Equation 45)

0.45 (from fig 13. 700MPa)

11.27 μm (Equation 47)

20 N /mm.μm (from 17.2.5 steel to steel)

1.1 (Equation 49)

1.74

12.2 μm (BS436 part 2. Table 3)

0.915 μm (Equation 54)

0.85 (Equation 50)

1.0

The contact stress:

718 MPa

900 MPa (Fig. 2)

750 MPa (Fig. 2)

Zc= 1.0

0.85 (Equation 16)

0.94

Wmest=Fmest/beff=

Wm=FtKAKv/beff=

dsh=

ls=0.3l=

fsh=WmA[(1+K*(ls/d1^2)*(d1/dsh)^4-0.3)+0.3]*(b/d1)^2=

fma=fHβ=

Fβx=/1.33fsh+fma/=

qy=

Fβy=qyFβx=

cγ=

KHβ=1+cγ*Fβy/(2Wm)=

εγ=εβ+εα=εα=

fpe=

γα=0.075fpe=

KHα=εγ*[0.9+0.4*cγ*(fpe-γα)/(Wm*KHβ)]/2=

take KHα=

σH=ZH*ZE*Zε*SQRT(FHT*(u+1)*KA*KV*KHα*KHβ/u/b/d1)=

σHD1=

σHD2=

ZG1=0.9*ZG2=

ZG2= (Fig 3, Prel/mn=3.4 σB=800MPa)

MARINE EQUIPMENTS PTE LTD 17/21 1st STAGE GEAR

761 MPa (Equation 15)

705 MPa (Equation 15)

1.02 (Fig. 5)

0.9 (Fig. 6)

1.06 (Fig. 7)

1.0

1173130

1.2 (BS436 Fig. 8 curve 1)

5098601

1.1 (BS436 Fig. 8 curve 3)

815 MPa (Equation 1)

823 MPa (Equation 1)

1.14 >1

1.15 >1

σHlim1=σHD1*Zc*ZG1=

σHlim2=σHD2*Zc*ZG2=

ZLZv=

ZR=

ZW=

Zx=

N2=

ZN2=

N1=

ZN1=

σHP1=σlim1*ZL*Zv*ZR*Zw*Zx*ZN1=

σHP2=σlim2*ZL*Zv*ZR*Zw*Zx*ZN2=

Spur gear safety factor for contact stress SHmin:

SHlim1=σHP1/σH=

SHlim2=σHP2/σH=

MARINE EQUIPMENTS PTE LTD 18/21 2nd STAGE GEAR

SPUR GEAR CONTACT STRESS CALCULATION (BS436)

FOR 75TON ANCHOR HANDING/TOWING WINCH (WIRE Φ52mm )

(second stage)

PINION SPUR GEAR (UNIT)

center distance: a= 876 876 mm

mormal module: 12 12 mm

pressure angle 20 20 deg

tooth number: 19 127

face width: b= 145 125 mm

reference diameter: 228 1524 mm

tip diameter: 252 1548 mm

tooth depth: 27 27 mm

number of revolution 56.66 8.48 rev/min

construction: solid solid

mean roughness: 3.2 3.2 μm

meterial type: AISI 4140 ASTM A148 grade80/40

tensile stress: 900 620

yielding point: 700 335

300 Cst

application factor: 1.0

required life time: 10000 hours

1.0

The overload : F= 30015 kg (BS MA 35 : 1975)

Norminal tangential force for the contact stress:

Load PCD. 468 mm

9217 kg

mn=

αn=

z1 & z2

d1, d2

da1, da2

Rα(root)

σb=

σs=

lubricant viscosity at 40˚C:

minimun demanded safety factor for contact stress: SHMin=

Dwpcd=

FHT=F*Dwpcd/d2=

MARINE EQUIPMENTS PTE LTD 19/21 2nd STAGE GEAR

Calculation for the contact stress:

(equation 2)

6.68

214.3 mm

1432.1 mm

34 (B.11)

2.49 (Equation 10)

35.4 mm (B.3)

60.6 (B.2)

1.71 (B.8)

0.874 (Equation 11)

180.1 (Equation 14)

Poisson's ratio 0.3

Steel: 21000 kg/mm^2

Cast steel: 20600 kg/mm^2

1.0

1.1 (from 16.3)

v= 40.59 m/min= 0.68 m/sec

14.14

1.0 (spur gear from fig. 11)

X= 0.8687 (grade 9 see table 7)

0.53 (Equation 22)

1.0 (Equation 20)

125 (Equation 35)

1840.5 kg (Equation 37)

144.4 N/mm (Equation 38)

K= 0.48 (Fig. 12)

σH=ZH*ZE*Zε*SQRT(FHT*(u+1)*KA*KV*KHα*KHβ/u/b/d1)

u=Z2/Z1=

db1=d1*cosαn=

db2=d2*cosαn=

Prel=(d1/2)*(u/(u+1))*(cosαt*tanαtw/cosβt)=

ZH=2*SQRT(cosβt/sin(2*αt))=

Pbt=mn*π*cosαt/cosβ=

ga=0.5*(SQRT(da1^2-db1^2)+SQRT(da2^2-db2^2))-a*sinαtw=

εa=ga/Pbt=

Zε=SQRT((4-εa)/3)=

ZE=SQRT{1/[π*((1-v1^2)/E1+(1-v2^2)/E2)]}=

v1=v2=

E1=

E2=

KA=

QV=

Qv v z1=

Kv350=

B=(350/(FtKA/b))^X=

Kv=1+(Kv350-1)/B=

beff=b-lc/2= mm lc=0

Fmest=bd1u/(u+1)*[σHP/(ZH*ZE*Zε)]^2=

Wmest=Fmest/beff=

MARINE EQUIPMENTS PTE LTD 20/21 2nd STAGE GEAR

A= 0.023 μm (Table 8)

73.74 kg/mm= 723 N/mm

150 mm

l= 500 mm

150 mm

6.78 μm (Equation 40)

12.9 μm (Equation 42)

21.92 μm (Equation 45)

0.45 (from fig 13. 700MPa)

9.86 μm (Equation 47)

20 N /mm.μm (from 17.2.5 steel to steel)

1.1 (Equation 49)

1.71

12.2 μm (BS436 part 2. Table 3)

0.915 μm (Equation 54)

0.86 (Equation 50)

1.0

The contact stress:

799 MPa

900 MPa (Fig. 2)

750 MPa (Fig. 2)

Zc= 1.0

0.85 (Equation 16)

0.94

761 MPa (Equation 15)

705 MPa (Equation 15)

1.02 (Fig. 5)

Wm=FtKAKv/beff=

dsh=

ls=0.3l=

fsh=WmA[(1+K*(ls/d1^2)*(d1/dsh)^4-0.3)+0.3]*(b/d1)^2=

fma=fHβ=

Fβx=/1.33fsh+fma/=

qy=

Fβy=qyFβx=

cγ=

KHβ=1+cγ*Fβy/(2Wm)=

εγ=εβ+εα=εα=

fpe=

γα=0.075fpe=

KHα=εγ*[0.9+0.4*cγ*(fpe-γα)/(Wm*KHβ)]/2=

take KHα=

σH=ZH*ZE*Zε*SQRT(FHT*(u+1)*KA*KV*KHα*KHβ/u/b/d1)=

σHD1=

σHD2=

ZG1=0.9*ZG2=

ZG2= (Fig 3, Prel/mn=3.4 σB=800MPa)

σHlim1=σHD1*Zc*ZG1=

σHlim2=σHD2*Zc*ZG2=

ZLZv=

MARINE EQUIPMENTS PTE LTD 21/21 2nd STAGE GEAR

1.05 (Fig. 6)

1.06 (Fig. 7)

1.0

5086105

1.2 (BS436 Fig. 8 curve 1)

33996595

1.1 (BS436 Fig. 8 curve 3)

951 MPa (Equation 1)

960 MPa (Equation 1)

1.19 >1

1.20 >1

ZR=

ZW=

Zx=

N2=

ZN2=

N1=

ZN1=

σHP1=σlim1*ZL*Zv*ZR*Zw*Zx*ZN1=

σHP2=σlim2*ZL*Zv*ZR*Zw*Zx*ZN2=

Spur gear safety factor for contact stress SHmin:

SHlim1=σHP1/σH=

SHlim2=σHP2/σH=

top related