Top Banner
Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD
39

Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Dec 29, 2015

Download

Documents

Madeleine Lang
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 1

NMM Dynamic Core and HWRF

Zavisa Janjic and Matt PyleNOAA/NWS/NCEP/EMC, NCWCP, College Park, MD

Page 2: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 2

Basic Principles

Forecast accuracyFully compressible equationsDiscretization methods that minimize generation of computational noise and reduce or eliminate need for numerical filtersComputational efficiency, robustness

Page 3: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 3

Nonhydrostatic Mesoscale Model (NMM)

Built on NWP and regional climate experience by relaxing hydrostatic approximation (Janjic et al., 2001, MWR; Janjic, 2003, MAP, Janjic et al., 2010)Add-on nonhydrostatic module

Easy comparison of hydrostatic and nonhydrostatic solutionsReduced computational effort at lower resolutions

General terrain following vertical coordinate based on pressure (non-divergent flow remains on constant pressure surfaces)

Page 4: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 4

Inviscid Adiabatic Equations

TSfc Difference between hydrostatic pressures at surface and top

Hydrostatic pressurep Nonhydrostatic pressure

pRT Gas law

Hypsometric (not “hydrostatic”) Eq.

0

ss

ssst ss

v Hydrostatic continuity Eq.

Continued …

tyxsstsyx T ,,),,,( 21 Constant depth of hydrostatic pressure layer at the top

1 Zero at top and bottom of model atmosphere

2 Increases from 0 to 1 from top to bottom

Page 5: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 5

1p

Third Eq. of motion

),,(1

tyxWs

stgdt

dzw s

s

vIntegral of nonhydrostaticcontinuity Eq.

vkv fpdtd

ss )1( Momentum Eq.

p

ssp

tp

cT

ssT

tT

sp

s vv Thermodynamic Eq.

ws

swtw

gdtdw

g ss

v11

Vertical acceleration

Inviscid Adiabatic Equations, contd.

Page 6: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 6

Nonhydrostatic Dynamics Specifics

F, w, e are not independent, no independent prognostic equation for w!

More complex numerical algorithm, but no over-specification of w

e <<1 in meso and large scale atmospheric flows

Impact of nonhydrostatic dynamics becomes detectable at resolutions <10km, important at 1km.

Page 7: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 7

Horizontal Coordinate System, Rotated Lat-Lon

Rotates the Earth’s latitude and longitude so that the intersection of the Equator and the prime meridian is in the center of the domain

Minimized convergence of meridiansMore uniform grid spacing than on a regular lat-lon gridAllows longer time step than on a regular lat-lon grid

Page 8: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 8

Page 9: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 9

Horizontal E grid

h v h v hv h v h vh v h v hv h v h vh v h v h

h v

v h

ddy

dx

Page 10: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 10

Vertical Coordinate

PDsgPDsgPp TOPT 21

TP

TOPT PDP

PDPDP TOPT

TOPPD

PD

rangepressure

rangesigma

0

10

2

1

sg

sg

10

1

2

1

sg

sg

Sangster, 1960; Arakawa & Lamb, 1977

Page 11: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 11

Vertical Staggering

Page 12: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 12

Conservation of important properties of the continuous system aka “mimetic” approach in Comp. Math. (Arakawa 1966, 1972, …; Jacobson 2001; Janjic 1977, 1984, …; Sadourny, 1968, … ; Tripoli, 1992 …)

Space Discretization Principles

Page 13: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 13

Nonlinear energy cascade controlled through energy and enstrophy conservationA number of properties of differential operators preservedQuadratic conservative finite differencingA number of first order (including momentum) and quadratic quantities conservedOmega-alpha term, transformations between KE and PEErrors associated with representation of orography minimizedMass conserving positive definite monotone Eulerian tracer advection

Space Discretization Principles

Page 14: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 14

Atmospheric Spectrum

Numerical models generally generate excessive small scale noise

False nonlinear energy cascade (Phillips, 1954; Arakawa, 1966 … ; Sadourny 1975; …)Other computational errors

Historically, problem controlled by:Removing spurious small scale energy by numerical filtering, dissipationPreventing excessive noise generation by enstrophy and energy conservation (Arakawa, 1966 … , Janjic, 1977, 1984; Janjic et al., 2010) by design

Page 15: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 15

NMM

* E grid FD schemes also reformulated for, and used in ESMF compliant B grid model being developed

Advection, divergence operators, each point talks to 8 neighbors

?

? ?

?Formal 4-th order

accurate

Page 16: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 16

Three sophisticated momentum advection schemes with identical linearized form, and therefore identical truncation errors and formal accuracy, but different nonlinear conservation properties. Janjic, 1984, MWR (blue); controlled energy cascade, but not enstrophy conserving, Arakawa, 1972, UCLA (red); energy and alternative enstrophy conserving, Janjic,1984,MWR (green)

Different nonlinear noise levels (green scheme) with identical formal accuracy and truncation error (Janjic et al., 2011, MWR)

In nonlinear systems conservation more important than formal accuracy

Second order schemes

Fourth order schemes

116 days

Page 17: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 17

-2.5

-2.5

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

00

0

0

0

2.5

2.5

0

0

0

0

0

00

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

Wind component developing due to the spurious pressure gradient force in the sigmacoordinate (left panel), and in the hybrid coordinate with the boundary between the pressure and sigma domains at about 400 hPa (right panel). Dashed lines representnegative values.

15 km

Page 18: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 18

285

300

300

300

300

315

315 315

315 315

330 330 330

330

345

345

345

360 360

360

360

375

375

375

375

390

390

390

390

405 405 40540

5

405

420 420 420 420435

435 435 435450 450 450465 465 465480 480 480 480495 495 495 495510

510

510 510525

525 525540 54

0 540 540555 55

5 555 555570 570 570 570585 585 585 585

600 600

600 600615 615

615 615630 630 630 630645

645 645 645660 660 660675 675 675

690 690 690

705 705720

300

300

300300

315

315

315 315

330 330

330

330

345

345

345

360

360

360

375

375

375

375

390

390

390

405

405 405

420 420 420435 435 435450 450 450465 465480 480495 495 495510 510 510525 525 525540 540 540555 555570 570585 585600 600615 615630 630645 645660 660 660675 675 675690 705

10 km

sigma hybrid

minimum= .0000E+00 maximum= .3500E+04 interval= .2500E+03

Topography

13. 1.2005. 0 UTC + 00012

Potential temperature, January 13, 2005, 00Z12 hour forecasts, 3 deg contours

Example of nonphysical small scale energy source

Page 19: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 19

Lateral Boundary Conditions

Specified from the driving model along external boundaries4-point averaging along first internal row (Mesinger and Janjic, 1974; Miyakoda and Rosati, 1977; Mesinger, 1977)Upstream advection area next to the boundaries from 2nd internal row

Advection well posed along the boundaries, no computational boundary condition neededDissipative

HWRF internal nesting discussed elsewhere

Page 20: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 20

Lateral Boundary Conditionsh v h v h v h v h v h v h v h v h v h v h v h

v h v h v h v h v h v h v h v h v h v h v h v

h v h v h v h v h v h v h v h v h v h v h v h

v h v h v h v h v h v h v h v h v h v h v h v

h v h v h v h v h v h v h v h v h v h v h v h

v h v h v h v h v h v h v h v h v h v h v h v

h v h v h v h v h v h v h v h v h v h v h v h

v h v h v h v h v h v h v h v h v h v h v h v

h v h v h v h v h v h v h v h v h v h v h v h

v h v h v h v h v h v h v h v h v h v h v h v

h v h v h v h v h v h v h v h v h v h v h v h

Domain Interior

External BoundaryFirst Internal Row

Upstream Advection Area

Page 21: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 21

Time IntegrationExplicit where possible for accuracy, reduced communications on parallel computers

Horizontal advection of u, v, T, tracers (including q, cloud water, TKE …)Coriolis force

Implicit for fast processes that require a restrictively short time step for numerical stability, only in vertical columns, no impact on scalability

Vertical advection of u, v, T, tracers and vertically propagating sound waves

No time splitting and no iterative time stepping schemes in basic dynamics equations for accuracy and computational efficiency

Page 22: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 22

Horizontal advection and Coriolis Force

)(21

)(23

Δ1

1

yfyf

tyy

)(533.0)(533.1Δ

11

yfyft

yy

Non-iterative 2nd order Adams-Bashforth:

Weak linear instability (amplification), can be tolerated in practice with short time steps, or stabilized by a slight off-centering as in the WRF-NMM.

Page 23: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 23

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3

amplf1

amplf2

0.99

0.995

1

1.005

0 1 2 3

amplf1

amplf1

Amplification factors for the computational mode (red) and the

meteorological mode in the Adams-Bashforth scheme. Wave number is

shown along the abscissa.

Zoomed amplification factor near 1. The amplification factors of the

modified Adams-Bashforth scheme (green), and the original one (orange)

Cx

jjj

tmsC

x

uuC

t

u

31

,110

2

1

11

Page 24: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 24

Vertical Advection

Implicit Crank-Nicolson

Unconditionally computationally stableOff-centering option, dissipative

)]()([21

Δ1

1

yfyf

tyy

2)],()([21

Δ1

1

baybfyaf

tyy

Page 25: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 25

Advection of tracers

New Eulerian advection replaced the old Lagrangian

Improved conservation of advected species, and more consistent with remainder of the dynamicsReduces precipitation bias in warm season

Advects sqrt(quantity) to ensure positivityEnsures monotonicity a posteriori

Page 26: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 26

Advection of tracers

Twice longer time steps than for the basic dynamics

t1 t2 t3 t4 t5 t6time

Page 27: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 27

Page 28: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 28

Gravity Wave Terms

Forward-Backward (Ames, 1968; Gadd, 1974; Janjic and Wiin-Nielsen, 1977; Janjic 1979)

Mass field computed from a forward time difference, while the velocity field comes from a backward time difference.

1D shallow water example

x

uH

t

h

x

hg

t

u

,

Mass field forcing to update wind from t+1 time

x

uHthh

Δ1

x

hgtuu

1

1 Δ

Page 29: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 29

Vertically Propagating Sound Waves

Actual computations hidden in a highly implicit algorithmIn case of linearized equations in a vertical column (Janjic et al., 2001; Janjic, 2003, 2011), reduces to

pressurechydrostatistatebasicfromdeviationp

z

pRT

c

c

t

ppp

v

p

'

,'''2'20

12

02

11

Page 30: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 30

Lateral Diffusion

Following Smagorinsky (1963) (Janjic, 1990, MWR; Janjic et al. 2010)

212222 ]'2)(4)(4)

cos(2)

cos(2[ TKEC

yw

xw

yu

xv

yv

xu

ndeformatio

sizegridscalelengthl

constantySmagorinskC

lCK

S

S

,

4.02.0,

)( 2

HWRF

Page 31: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 31

2D Divergence Damping

Dispersion of gravity-inertia waves alone can explain linear geostrophic adjustment on an infinite plain“In a finite domain, unless viscosity is introduced, gravity waves will forever ‘slosh’ without dissipating.” (e.g., Vallis, 1992, JAS)Numerical experiments by Farge and Sadourny (1989, J.Fluid.Mech.) strongly support the idea of dissipative geostrophic adjustment

Page 32: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 32

2D Divergence Damping

yxA

yxA

pressurechydrostati

xvyudv

xvyudu

A

dvduA

xvyuD

xyx

n

yyx

n

nynx

yy

xx

l

2'

4

''

''

'

)''()''(

3

2

)()(

3

1

'

'

''

x’y’

AA’

Page 33: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 33

2D Divergence damping

Divergence damping damps both internal and external modes

ly

lx

DKtv

DKtu

1

1

Page 34: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 34

2D Divergence Damping

External mode divergence

External mode divergence damping

top

bottomlext DD

exty

extx

DKtv

DKtu

2

2

Page 35: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 35

2D Divergence Damping

External mode damping combined with divergence damping, enhanced damping of the external mode

extyly

extxlx

DK

DK

tv

DK

DK

tu

21

21

Page 36: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 36

Dynamics formulation tested on various scales

0 0

0

0

0

0

0

0

0

Warm bubble

10

0

0

Cold bubble

Convection

Mountain waves

-5/3

Decaying 3D turbulence

Atmospheric spectra

0

1

2

3

4

5

6

7

8

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0

oceanphy3648

k^-3

k^-5/3

0

1

2

3

4

5

6

7

8

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0

oceannop3648

k^-3

k^-5/3

No physics With Physics

-5/3

-3

-5/3

-3

Page 37: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 37

22nd Conference on Severe Local Storms, October 3-8, 2004, Hyannis, MA.

WRF-NMM

WRF-NMM

WRF-NMM

Eta Eta Eta

20044km resolution, no parameterized convection Breakthrough

that lead to application of “convection allowing” resolution for storm prediction

Page 38: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 38

Summary

Robust, reliable, fast

Extension of NWP methods developed and refined over a decades-long period into the nonhydrostatic realm

Utilized at NCEP in the HWRF, Hires Window and Short Range Ensemble Forecast (SREF)operational systems

Page 39: Zavisa Janjic 1 NMM Dynamic Core and HWRF Zavisa Janjic and Matt Pyle NOAA/NWS/NCEP/EMC, NCWCP, College Park, MD.

Zavisa Janjic 39

Horizontal Coordinate System, Rotated Lat-Lon

planeequatorialrotated

866.0)0cos(/)30cos(

3473.0)10cos(/)70cos(

)cos(Δ

7010

00

00

00

lonlatrotated

lonlat

x

NN

domain

ΔΔ

planeequatorial