Top Banner
1 Yuri P. Kalmykov, 1 William T. Coffey 2 , and Serguey V. Titov 3 Nonlinear magnetic relaxation of quantum superparamagnets with arbitrary spin value S: Phase-space method 1. Université de Perpignan, Lab. Mathématiques, Physique et Systèmes, Perpignan, France 2. Trinity College, Department of Electronic and Electrical Engineering, Dublin, Ireland 3. Russian Academy of Sciences, Institute of Radio Engineering and Electronics, Moscow, Russia
29

Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

May 20, 2018

Download

Documents

doanthuy
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

1

Yuri P. Kalmykov,1 William T. Coffey2, and Serguey V. Titov3

Nonlinear magnetic relaxation of quantumsuperparamagnets with arbitrary spin value S:

Phase-space method

1.Université de Perpignan, Lab. Mathématiques, Physique et Systèmes, Perpignan, France

2.Trinity College, Department of Electronic and Electrical Engineering, Dublin, Ireland

3.Russian Academy of Sciences, Institute of Radio Engineering and Electronics, Moscow, Russia

Page 2: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

2

“You may try, if you want, to understand how a classical vector is equal to a matrix S, and maybe you will discover something – but don’t break your head on it. …”

R. Feynman The Feynman Lectures on Physics, Tome III, Quantum Mechanics

is the magnetic dipole vector, S is the spin matrix operator

dim 2 1 2 1 ,~ 0,

S SS

S

? S μ ,, ,1,

ˆ ( 1) S mS nm n

S S S C

Y

Y

Z

X

Z

X

Page 3: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

3

Ruslan Leont'evich Stratonovich was an outstanding physicist, engineer, probabilist. Professor Stratonovich was born on May 31,

1930 in Moscow, Russia. He died on the 13th of January, 1997

http://en.wikipedia.org/wiki/Ruslan_L._Stratonovich

Page 4: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

4

Main objective is to discuss an universal (phase space) formulation of the spin dynamics for arbitrary

value of S, i.e., a formulation applicable to both the quantum

(S20) and classical cases (S>>>1)

W. Wernsdorfer, Adv. Chem. Phys.,

2001

Page 5: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

5

Dynamics of Uniaxial Superparamagnets (arbitrary S)

2ˆ ˆˆS Z ZH BS AS

2cos cosV B A

ˆ ˆˆ ˆ ˆ,Si H Q

t

Quantum Classical (S>>1)

m 0

V

V1

V2

E. Chudnovsky, D. Garanin, J. Villain, A. Würger, J. L. García-Palacios,et al.

L. Néel, W. F. Brown, A. Aharoni, et al.

12 sinsinN

W VW Wt

Page 6: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

6

Introduction1. Wigner’s phase space distributions 2. Wigner functions for a quantum oscillator3. Wigner functions for spins4. Spins in phase space5. Phase space distributions for spins6. Spins in an external field7. Master and Langevin equations 8. Uniaxial superparamagnets9. Stochastic resonance 10. Conclusions

Summary

Page 7: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

7

E. Schrödinger (1887-1961)

Wave and Matrix Mechanics Approaches

Quantum Mechanics

W. Heisenberg (1901-1976)

Path Integral Approach

R. Feynman(1918-1988)

Page 8: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

8

E. P. Wigner (1902-1995)

Wigner (1932) formulation of quantum mechanics as quasi-probability distributions on phase space (x,p)

/1 11( )2

,2

ˆ ,2

ipyx y x yW x p e dy

1 2ˆ , )x x - density matrix

E. P. Wigner, Phys. Rev. 40, 749 (1932)

Evolution equation for W

1 02 2

W p W i iV x V x Wt m x i p p

Equation for the eigenvalues E21

2 2 2ip V x W EW

m i x p

Page 9: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

9

Wigner (1932) formulation of quantum mechanics as quasi-probability distributions on phase space (x,p)

ˆ ˆTr ˆA t A

ˆ ( , )A AA x p - Weyl symbol of the operator

E. P. Wigner, Phys. Rev. 40, 749 (1932)

Thus observables can be calculated just as classical ones

Calculation of an observable A t

A

, ( , )ˆ ( )W x pA t dA x p x dp

Traditional approach

Phace space approach

Page 10: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

10

Wigner functions for a quantum oscillator

0n n nW W Wp Vt m x x p

20

1 / 4/ 20

01( ) /

2 !m x

n nn

mx e H x m

n

* /1( , ) ( / 2) ( / 2)2

ipyn n nW x p x y x y e dy

0 ( 1/ 2)nE n

2 2 2 2

0 0/( ) 2 2 2 20 0

( 1) 2 /( )n

p m x mn nW e L p m x m

W. P. Schleich, Quantum Optics in Phase Space, Wiley-VCH, Berlin, 2001.

Phase space approach:

Evolution equation (Liouville equation)

2 2 2 20

22 2n

n n nm xE

m x

:nH x Hermite polynomials

:nL x Laguerre polynomials

Traditional approach:

Page 11: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

11

Master equation for a quantum oscillator(weak coupling limit)

2 0 00 coth

2 2mW p W W Wm x pW

t m x p m p kT p

[G. S. Agarwal, Phys. Rev. A 4, 739 (1971)]

Similar to the Fokker-Planck equation for a classical oscillator

D. Kohen et al., Phase space approach to theories of quantum dissipation, J. Chem. Phys. 107, 5236 (1997)

20

W p W W Wm x pW mkTt m x p m p p

0

0

0 , 1 , ,2

/ 2 , ,1

i H e a a a at m

m a a a ae

Evolution equation for the density matrix

Page 12: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

12

.1 / 2S

Spin operators

0 1 0 1 01 1 1ˆ ˆ ˆ, ,1 0 0 0 12 2 2X Y Z

iS S S

i

,

,

1ˆ ˆ2

S σ σ Pauli matrices

Spherical components of the spin operators for any S

,, ,1,

ˆ ( 1) S mS nm n

S S S C

,, ,1

S mS nC Clebsch-Gordan coefficient

Page 13: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

13

.

uY

u

Y

Z

uX

uZ

X

Phase space formulation of quantum mechanics for spins

( 1)ˆ ( 1)

Stratonovich Wigner transformation

S

S u

sin cossin sin

cos

X

Y

Z

uuu

u

Transformation of the spin matrices

ˆ ˆ ˆ,ˆ ,X Y ZS S SS

( 0)

( 1)

ˆ ( 1)

ˆ

Stratonovich Wigner transformation

Stratonovich Wigner transformation

S S

S

S u

S u

Weyl symbols of the spin operators

R. L. Stratonovich, Sov. Phys. JETP, 4, 891 (1957)

J. M. Radcliffe (1971), F. A. Berezin (1975), G. S. Agarwal (1981,1994), J. C. Várilly and J. M. Gracia-Bondía (1989), C. Brif and A. Mann (1998) et al.

ˆ ˆ ˆ, , 2 1 2 1X Y ZS S S S S

Page 14: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

14

Phase space formulation of quantum mechanics for spins(Stratonovich, 1956)

representation (phase) space of the polar and

azimuthal angles

,

,

ˆ ˆ ˆ ˆT ˆr , ,

2 1 ˆ sin

( , )

( ,4

Direct Stratonovich Wigner transformation

Inverse Stratonovich Wigner transformation

X Y ZS S S w

S w d

W

dW

J. M. Radcliffe (1971), F. A. Berezin (1975), G. S. Agarwal (1981,1994), J. C. Várilly and J. M. Gracia-Bondía (1989), C. Brif and A. Mann (1998) et al.

1,0

uY

u

Y

Z

uX

uZ

X

R. L. Stratonovich, Sov. Phys. JETP, 4, 891 (1957)

ˆ ˆ ˆ,ˆ ,X Y ZS S S

Phase space representation of the

spin density matrix

( , , )(sin cos , sin sin ,cos )

X Y Zu u u

u

Page 15: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

15

Generalized coherent state representation

J. M. Radcliffe (1971), F. A. Berezin (1975), G. S. Agarwal (1981,1994), J. C. Várilly and J. M. Gracia-Bondía (1989), C. Brif and A. Mann (1998) et al.

1ˆ ( , ) , , , ,w S S

2,

1 , , 00

( ), , ,

4ˆ ( , )2 1

ˆ( , )S L

S SS S L

L M LL M

SL Mw C T

SY

Kernel of the Stratonovich Wigner transformation

:Stratonovich Wigner transformation Explicit equation

, ,S

Page 16: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

16

.

Transformation of the spin Hamiltonians

( 1)

2 4 4 4ˆ ˆ ˆˆ2

Stratonovich Wignertrans

cubX Y Z

formation

SH S S S

( 1)

12ˆˆ

Stratonovich Wignertransfo

Z

run

mat on

S

i

SH

111 2

2( )cos2

unS

SH S S

32

2 31

2

2

2 4

2

(2 3 1) / 4

( 1)

sin 2 sin si

( )(

24

n

)

cubSH S S S

S S S S

Uniaxial

Cubic

Traditional representation Phase space representation

Page 17: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

17

.

Switching field curves [A. Thiaville, Phys. Rev. B 61, 12221 (2000)]

2 111 2( )cos

2unS

SH S S

32

2 4 22 312 2

(2 3 1) / 4

( 1)( )( ) sin 2 sin sin 24

cubSH S S S

S S S S

Uniaxial

Cubic

5 02, ,10S

Quantum effects inStoner-Wohlfarth astroids

Yu. P. Kalmykov et al, Phys. Rev. B 2008, v. 77, No. 10, p. 104418

3/2 3/2 1X Zh h

Page 18: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

18

Example: Spin in an external field

0ˆˆTrZ Z SS S SB S

0ˆˆ

S ZH S

is the Brillouin function (Langevin function, S -> )

ˆˆ SHSe Z

Density matrixapproach:

After W.E. Henry , Phys. Rev. 88, 559 (1952)

2 1 2 1 1coth coth2 2 2 2SS S xB x x

S S S S

H

µ

Page 19: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

19

Example: Spin in an external field

Classical limit (S , )

SB x is the Brillouin function (Langevin function, S -> )

0ˆ ( 1)

ˆ Z

Stratonovich Wignertransfo

SS

rmation

e Z

2( 1) 1 1 10 02 2( ) cosh sinh cos

SSW Z

102 ( ) exp cos / clS S ZW

( 1)12 0

0

( 1)cos ( )sinZ

S

S S W d

SB S

S

Y. Takahashi and F. Shibata, J. Phys. Soc. Jpn. 38, 656 (1975)

0S const

Phase space approach:

______________________________

Boltzmann distribution

H

µ

Page 20: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

20

Spin in an external field: Master equation for the longitudinal relaxation

Classical limit (S , )

0ˆˆ

S ZH S

Y. Takahashi and F. Shibata, J. Phys. Soc. Jpn. 38, 656 (1975)

0S const

______________________________Phase spaceapproach:

Density matrixapproach:

______________________________

ˆ ˆˆ ˆ ˆ,Si H Q

t

(2) (1)( ) ( )W D z W D z Wt z z

The Fokker-Planck equation for rotational diffusion of a classical spin in an external field

Master Equation (Quantum Fokker-Planck like equation)

cos( ) /eq clW e Z

21 1 10 02 2( ) cosh sinh cos

Seq SW Z

21 (1 )2 N

W z W Wt z z

Stationary solution:

Stationary solution:

H

µ

Page 21: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

21

Quantum Langevin equation for a spin in a uniform field

Classical limit (S )1,

( ) 0

( ) ( ) 2 ( )i

i j i j

h t

h t h t δ t t

u

Y

Z

X

H0

Yu. P. Kalmykov, W. T. Coffey, and S. V. Titov, EPL (2009).

0 0 = u u H h u u H h

0

0

ˆ

ˆ

= D

D A

u u H h

u u hqH

Page 22: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

22

Spin in an external field continuedNonlinear Response: Yu. P. Kalmykov, W. T. Coffey, and S. V. Titov, Phys. Rev. E (2007).

,

,

,

,

H

µ

1ˆ ˆ ˆ( ) ( ) 0Z Z Z eq

d S t S t Sdt

IIˆZ eq

S

ˆ ( )ZS t

0 t

IˆZ eq

S

23

4

1

1: S = 12: S = 33: S = 4: S

cor /

N

0S

1/

quantum :

/ ( 1)

( 1)

SN S e

1

classical limit ( ) :

/( 1)

N

S

Linear Response: J. L. García-Palacios and D. Zueco, J. Phys. A: Math. Gen. (2006)

Page 23: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

23

Uniaxial superparamagnet in an external field

,

,

,

,

D.A. Garanin, J. L. García-Palacios, D. Zueco, et al.

2 2ˆ ˆˆ / /S Z ZH S S S S

ClassicalQuantum

1

II II

II

II1

ˆ sgn( )2

[ ( 1) ( 1)]

S k

Z m b mSm k m SN

k S k

m S m m

S S k k

1

21 11

11 1

2

114

1ef

h zV zV z

V zN V z

h z

e e dz dzz

e e dz dzz

2( ) cos cosV

W.F. Brown, A. Aharoni, W.T. Coffey, et al.

2 23/2 11 1

2~ 1 1 ,1

/ 2

h hN h e h e

hh

( ) 1 , 11 i

0 t

H0

HII HI

IIˆZ eq

S

ˆ ( )ZS t

0 t

IˆZ eq

S

1ˆ ˆ ˆ( ) ( ) 0Z Z Z eq

d S t S t Sdt

discrete sumContinuous integral

Page 24: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

24

Uniaxial superparamagnet in an external field

Nonlinear Response: Yu. P. Kalmykov, W. T. Coffey, and S. V. Titov, Phys. Rev. B (2010).

,

,

,

,

Linear Response: J. L. García-Palacios and D. Zueco, Phys. Rev. B (2006)

2 2ˆ ˆˆ / /S Z ZH S S S S

0 5 10 15

= 5

N 1: S = 3/2

2: S = 43: S = 104: S = 205: S = 806: S

15

0 10 20100

101

102

103

104

N

= 10

S

1: = 0 2: = 4 3: = 8

1

2

3 clas

sica

l lim

it

( ) 1 , 11 i

1ˆ ˆ ˆ( ) ( ) 0Z Z Z eq

d S t S t Sdt

Page 25: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

25

Uniaxial superparamagnet in an external field

,

,

,

,

J. L. García-Palacios, D. Zueco, et al.

2 2ˆ ˆˆ / /S Z ZH S S S S

Classical

Quantum

2( ) cos cosV

( ) 1 , 11 i

( ) 1~ 1N

efi

3

2

4

= 2 = 10

' (

)/

1: S = 42: S = 63: S = 84: S = 10

1

3

2 1

4

N

''(

)/

22

II II2 2

II

ˆ ˆ2

ˆ ˆ ˆZ Z

ef NZ Z

S S

S S

S

22IIII

2

II

cos cos2

1 cosef N

Page 26: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

Stochastic resonance Archetypal model: a one-dimensional overdamped bistable oscillator

subjected to noise and excited by a weak periodic force Eexite (t)=A cos tof frequency close to the Kramers escape rate from the well so that the noise

induced hopping becomes synchronized with Eexite (t)

Stochastic Resonance has a bell-like shape of the curve SNR(T) ,i.e., a maximum at certain temperature (noise) level.

Stochastic Resonance increase, with increasing fluctuation intensity, of the periodic signal and of the signal-to-noise ratio.

U

U kT

excitU E

If the dynamic susceptibility () is known we may write the signal-to-noise ratio (SNR) at =

22( )

( ) .4 ( )

SNR T AkT

T

SNR

L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70 (1998) 223.

Page 27: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

Magnetic Stochastic Resonance

Classical: Yu. Raikher, V. Stepanov, A. Grigorenko, P. Nikitin, Phys. Rev. E 56 (1997) 6400.Quantum: Yu. P. Kalmykov, S. V. Titov, W. T. Coffey, Phys. Rev. B 81 (2010) 172411;

5

4

3

2

1N = 1

1: S = 2 2: S = 43: S = 104: S = 205: S = 40 S

SNR

1/

V( )

n

–n

kTkT

kTkT V = –cos2 H(t) = Hcos t

Page 28: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

28

Conclusions: The phase space formalism:

• provides a complementary method of study of static and dynamic properties of spin systems

• indicates that the powerful classical approaches (escape rate theory of multidimensional systems, methods of solution of classical diffusion equation, etc.) may be directly carried over to the quantum domain yielding quantum corrected dynamic susceptibilities, reversal times, hysteresis and switching curves, etc.

• may also be extended to describe the macroscopic quantum tunneling in spin systems such as magnetic nanoclusters and molecular magnets

Page 29: Yuri P. Kalmykov, and Serguey V. Titov3 - univ-perp.frperso.univ-perp.fr/kalmykov/files/Spins_in_Phase_Space...“You may try, if you want, to understand how a classical vector is

29

Phase space (Wigner) approach: Further reading

S. R. de Groot and L. G. Suttorp, Foundations of Electrodynamics(North-Holland, Amsterdam, 1972).

W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001).

R. Puri, Mathematical Methods of Quantum Optics (Springer, Berlin, 2001).

Quantum Mechanics in Phase Space, edited by C. K. Zachos, D. B. Fairlie, and T. L. Curtright (World Scientific, Singapore, 2005).

R. E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (Springer, New York, 2005).