Top Banner
1 XỬ LÝ TÍN HIỆU SỐ
155

Xử lý tín hiệu số - Thầy Loan

Nov 08, 2015

Download

Documents

Bài giảng của thầy Loan. Xử lý tín hiệu số
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • *X L TN HIU S

  • *TI LIU THAM KHO Bi ging ny ! X l tn hiu s X l tn hiu s v lc s

  • *Chng 1TN HIU V H THNG RI RC

  • *Nhng ni dung cn nm vng:Chng 1Cc tn hiu ri rc c bit (xung n v, bc n v, hm m, tun hon)Cc php ton vi tn hiu ri rc (nhn vi h s, cng, php dch)Quan h vo-ra vi h TT-BB:Tn hiu vo (tc ng), tn hiu ra (p ng), p ng xungCch tnh tng chp y(n) = x(n) * h(n)Cc tnh cht ca h TT-BB nhn qu, n nhQuan h vo-ra thng qua PT-SP-TT-HSHH TT-BB xt trong min tn s:p ng tn s (p ng bin , p ng pha)Ph tn hiu (ph bin , ph pha)

  • *Nhng ni dung cn nm vng:Chng 2nh ngha bin i z (1 pha, 2 pha)Min hi t ca bin i zCc tnh cht ca bin i zPhng php tnh bin i z ngc (phn tch thnh cc phn thc hu t n gin)Cch tra cu bng cng thc bin i zng dng bin i z 1 pha gii PT-SPXt tnh nhn qu v n nh thng qua hm truyn t H(z).

  • *Nhng ni dung cn nm vng:Chng 3Phn loi b lc s (FIR, IIR)Phng php thc hin b lc s (phn cng, phn mm):- S khi- Lp trnh gii PT-SPCc thuc tnh ca b lc:Nhn qu, n nh, hm truyn t, p ng xung, p ng tn s (bin , pha), tnh cht lc (thng cao, thng thp, thng di, chn di)

  • *

    Min thi gianMt phng zMin tn sT.h. vo x(n)T.h. ra y(n)p ng xung h(n)

    y(n) = x(n) * h(n)Nhn qun nh(th hin qua p ng xung)X(z)= Z[x(n)]Y(z)= Z[y(n)]H(z)=Z[h(n)]=Y(z)/X(z)Y(z) = X(z). H(z)

    Nhn qu:n nh:(V tr ca im cc ca H(z) so vi ng trn n v) Ph X(ejw)=F[x(n)]Ph Y(ejw)=F[y(n)]p ng tn sH(ejw)= Y(ejw)/ X(ejw)=F[h(n)]Y(ejw)= X(ejw). H(ejw)

  • *1.1 Khi nim v phn loiTn hiu l biu hin vt l ca thng tinV mt ton, tn hiu l hm ca mt hoc nhiu bin c lp. Cc bin c lp c th l: thi gian, p sut, cao, nhit Bin c lp thng gp l thi gian. Trong gio trnh s ch xt trng hp ny. Mt v d v tn hiu c bin c lp l thi gian: tn hiu in tim.

  • *Phn loi:Xt trng hp tn hiu l hm ca bin thi gian

    Tn hiu tng t: bin (hm), thi gian (bin) u lin tc. V d: x(t)Tn hiu ri rc: bin lin tc, thi gian ri rc. V d: x(n)x(n)

  • *Phn loi tn hiuThi gian lin tcThi gian ri rcBin lintcBin ri rcTn hiu tng tTn hiu ri rcTn hiu lng t haTn hiu s

  • *X l s tn hiuTn hiutng tTn hiutng tTn hiusADCDAC

  • *Ti sao li tn hiu s ? c th x l t ng (bng my tnh) Gim c nhiu Cho php sao lu nhiu ln m cht lng khng thay i Cc b x l tn hiu s (DSP)khi c ch to hng lot c cht lng x l ng nht v cht lng x l khng thay i theo thi gian

  • *Bin i tng t-sLy mu sau lng t ha

    Ly mu(ri rc ha thi gian)Lng t ha(ri rc ha bin )Fs >= 2Fmax (Fmax: tn s ln nht ca tn hiu)nh l Shannon (ly mu)Chu k ly mu TsTn s ly mu Fs = 1/Ts

  • *1.2 K hiu tn hiu ri rcDy gi tr thc hoc phc vi phn t th n l x(n), -
  • *Mt s tn hiu ri rc c bitXung n v

  • *Tn hiu bc n v

  • *Tn hiu hm mx(n)=an

  • *Tn hiu tun honx(n)=x(n+N), N>0: chu kx(n)=sin[(2p/N)(n+n0)]

  • *1.3. Cc php ton vi tn hiu ri rc Php nhn 2 tn hiu ri rc Php nhn tn hiu ri rc vi h sx(n)aa x(n)

  • *1.3. Cc php ton vi tn hiu ri rc Php cng 2 tn hiu ri rc Php dchnu dch phi n0 mu, x(n) tr thnh y(n)y(n) = x(n-n0)

  • *1.3. Cc php ton vi tn hiu ri rcTr 1 muMt tn hiu ri rc bt k x(n) lun c thc biu dinDelay

  • *y(n) =x1(n-1)

  • *1.4. Phn loi cc h x l tn hiu ri rcx(n): tn hiu vo (tc ng)y(n): tn hiu ra (p ng)Phn loi da trn cc iu kin rng buc i viphp bin i T

    y(n)=T[x(n)]H tuyn tnh nu tha mn nguyn l xp chng

  • *1.4. Phn loi cc h x l tn hiu ri rcT[ax1(n)+bx2(n)] =aT[x1(n)]+bT[x2(n)]=a y1(n) + b y2(n)Nu h tuyn tnh:y(n) = T[x(n)]

  • *

  • *1.4. Phn loi cc h x l tn hiu ri rcNu h bt bin theo thi gianTc ng d(n) cho p ng h(n)Tc ng d(n-k) cho p ng h(n-k)Vi h tuyn tnh bt bin (TTBB):h(n) l p ng xung ca h*: Php tng chp

  • *1.4. Phn loi cc h x l tn hiu ri rcV d H TTBB

  • *1.4. Phn loi cc h x l tn hiu ri rc di tn hiu: S lng mu khc 0 ca tn hiu Phn bit cc h TTBB da trn chiu di ca p ng xung FIR: H c p ng xung hu hn(Finite Impulse Response) IIR: H c p ng xung v hn(Infinite Impulse Response) Nng lng tn hiu

  • *1.4. Phn loi cc h x l tn hiu ri rcTnh tng chpV d 1Tn hiu vo v p ng xung ca h TTBBnh hnh v. Hy tnh tn hiu ra

  • *1.4. Phn loi cc h x l tn hiu ri rcTnh tng chpV d 1y(n)=x(0)h(n-0)+x(1)h(n-1)=0,5h(n)+2h(n-1)

  • *V d 2Cho x(n) v h(n) nh hnh v. Hy tnh y(n)11x(n) =anu(n)h(n) =u(n)0
  • *V d 2 n 0:Vi mi gi tr ca n:

  • *1.5.Tnh cht ca h TTBBGiao honKt hp

    y(n)=x(n)*h(n)=h(n)*x(n)[y(n)*x(n)]*z(n)=y(n)*[x(n)*z(n)]

  • *1.5.Tnh cht ca h TTBB

    Cc h tng ng

  • *1.5.Tnh cht ca h TTBBPhn phi

    x(n)*(h1(n)+h2(n))=x(n)*h1(n)+ x(n)*h2(n)

  • *1.5.Tnh cht ca h TTBBH c nh v khng nhKhng nh: tn hiu ra ph thuc tn hiu vo cng thi im.V d y(n)=A.x(n)C nh: tn hiu ra ph thuc tn hiu vo nhiu thi im V d y(n) = x(n) x(n-1)

  • *1.5.Tnh cht ca h TTBBH ng nhtTn hiu ra bng tn hiu voy(n) = x(n)H A l o ca h B nu mc ni tip 2 h ny ta c 1 h ng nht

  • *1.5.Tnh cht ca h TTBBH o(A) v h kh o (B)

  • *1.5.Tnh cht ca h TTBB H nhn quTn hiu ra ch ph thuc tn hiu vo hin ti v qu khCha c tc ng th cha c p ngp ng khng xy ra trc tc ng Nu x(n) =0 vi n < n0 th y(n) =0 vi n < n0Nu h nhn qu th y(n) khngph thuc x(k) vi k >nh(n-k) = 0 vi k > n tc l h(n) = 0 vi n < 0

  • *1.5.Tnh cht ca h TTBB H nhn quVi h nhn qu cng thc tnh tn hiu ra tr thnhCh c h nhn qu th mi thc hin c trn thc t.Tn hiu nhn qu: x(n) = 0 vi n
  • *1.5.Tnh cht ca h TTBB H n nhVi tn hiu vo c gi tr hu hn th tn hiura cng c gi tr hu hnGi thit |x(n)|
  • *V d p ng xung ca h n nh v khng n nh-5-4-3-2-1012345nh(n)-5-4-3-2-1012345nh(n)n nhKhng n nh

  • *V d Xt tnh nhn qu v n nh ca h c p ng xung h(n) = anu(n) y l h nhn qu v h(n) = 0 vi n < 0 Xt tnh n nhy l chui ly tha, chui ny hi t nu |a|
  • *1.6. p ng tn s ca h TTBBp ng tn s: cho bit tnh cht truyn t ca h i vi cc thnh phn tn s khc nhau ca tn hiu vo xt biu din tn s ca h TTBB, tc ng ca h c dng: H c p ng xung h(n)

  • *1.6. p ng tn s ca h TTBBp ng ca h:H(ejw) cho bit s truyn t ca h i vi mi tn s w nn H(ejw) l p ng tn s ca h.

  • *1.6. p ng tn s ca h TTBBH(ejw) l hm phc nn c th c biu dintheo phn thc, phn o:H(ejw)= HR(ejw) +jHI(ejw)hoc theo bin -pha:|H (ejw)|: p ng bin arg[H (ejw)]: p ng pha

  • *V d H TTBB c p ng xung h(n)=anu(n), |a|
  • *Nhn xt H(ejw) l hm lin tc theo w v tun hon theo wvi chu k 2p. Nu h(n) l thc, p ng bin i xngtrong khong 0 w 2p. Nu p ng xung l thc, ch cn xt khong tn s 0 w p.

  • *1.7. Php bin i Fourier ca tn hiu ri rc(1) c th c xem l biu din chui Fourier ca H(ejw)Cc h s ca chui l h(n)(1)(2)(1), (2) l cp bin i Fourier ca h(n)(1) l cng thc bin i Fourier thun (phn tch)(2) l cng thc bin i Fourier ngc (tng hp)

  • *PulseTone

  • *V d Xt mch lc thng thp l tngHy xc nh p ng xung h(n)

  • *Trng hp wC =p/2, fc = 1/4h(n)1

  • *Cc cng thc (1),(2) ng cho bt kdy no c th ly tng theo (1).Vy vi tn hiu x(n) bt k ta c:Theo tn s f:X(f) l hm phc ca bin thc f, tun hontheo f vi chu k = 1. X(f) = X(f+1)

  • *Ph bin v ph pha|X(f)|: Ph bin , arg[X(f)]: Ph phap ng xungp ng tn stn hiuph

  • *1.8. Mt s tnh cht c bn ca php bin i Fourier Tnh tuyn tnh Tnh tun honX(ejw) tun hon chu k 2pX(f) tun hon chu k l 1 Bin i Fourier ca tn hiu tr

  • *1.8. Mt s tnh cht c bn ca php bin i Fouriert n-n0 = mNhn xtTn hiu tr c ph bin khng thay icn ph pha dch i 1 lng wn0

  • *1.8. Mt s tnh cht c bn ca php bin i Fourier Nu x(n) thc:p ng bin l hm chn theo w|X(ejw)|=|X(e-jw)|p ng pha l hm l theo warg[X(ejw)]=-arg[X(e-jw)]c = a.b -> |c| = |a|.|b|arg[c] = arg[a] + arg[b]d = a/b -> |d| = |a|/|b|, arg[d] = arg[a] arg[b]

  • *1.9. Phng trnh sai phn tuyn tnhh s hng (PT-SP-TT-HSH) H tng t c quan h vo-ra theo phng trnh vi phn H ri rc c quan h vo-ra theo PT-SP-TT-HSH

  • *1.9. Phng trnh sai phn tuyn tnhh s hng (PT-SP-TT-HSH) Dng tng qutak, bk: cc h s ca PT-SP Trng hp N = 0So snh vi cng thc tng qut:H c p ng xung hu hn (FIR), hay h khng truy hi

  • *1.9. Phng trnh sai phn tuyn tnhh s hng (PT-SP-TT-HSH) Trng hp N > 0H c p ng xung v hn (IIR), hay h truy hi

  • *1.10. p ng tn s ca h biu din bng PT-SP-TT-HSHLy bin i Fourier c 2 v:p ng tn s xc nh bi cc h s ca PT-SP

  • *

  • *Bi tp chng 1 (1/3)Gi s x(n) = 0 vi n < 2 v n > 4. Vi mi tn hiu sau y, hy xc nh gi tr n cho tn hiu tng ng bng 0.a) x(n3)b) x(n+4)c) x(n)d) x(n+2)e) x(n2)Xt h S c tn hiu vo x(n) v tn hiu ra y(n). H ny c c bng cch mc h S1 ni tip vi h S2 theo sau. Quan h vora i vi 2 h S1 v S2 l:S1 : y1(n) = 2x1(n) + 4x1(n1)S2 :y2(n) = x2(n2) + (1/2)x2(n3)vi x1(n), x2(n) k hiu tn hiu vo.a) Hy xc nh quan h vora cho h Sb) Quan h vo ra ca h S c thay i khng nu thay i th t S1 v S2 (tc l S2 ni tip vi h S1 theo sau).

  • *Bi tp chng 1(2/3)Tn hiu ri rc x(n) cho nh hnh v sau. Hy v cc tn hiu:a) x(n4)b) x(3n)c) x(2n)d) x(2n+1)e) x(n)u(3n)f) x(n-1)u(3-n)g) x(n2) (n2)h) (1/2)x(n)+(1/2)(-1)nx(n)i) x((n-1)2)

  • *Bi tp chng 1(3/3)Cho x(n) = (n) + 2(n1) (n3) v h(n) = 2(n+1) + 2(n1)Hy tnh v v kt qu ca cc tng chp sau:a) y1(n) = x(n) * h(n)b) y2(n) = x(n+2) * h(n)H TT-BB c PT-SP: y(n)=(1/2)[x(n)-x(n-1)]Xc nh p ng xung ca hXc nh p ng tn s v v dng p ng bin

  • *Gii bi tp chng 1 (1/8)1. a) n-3 < -2 v n-3 >4. Vy n 7

  • *Gii bi tp chng 1 (2/8)a) x(n4) do x(n) tr (dch phi) 4 mub) x(3n): ly i xng x(n) qua n=0 c x(-n), sau dch x(-n) sang phi 3 mu c x(3-n)

  • *Gii bi tp chng 1 (3/8)d) x(2n+1) l x(n) ly ti cc thi im 2n+1 (ch khngphi do x(2n) dch tri 1 mu)e) x(n)u(3n): u(3-n) = 1 nu 3-n 0 tc l n 3u(3-n) = 0 nu 3-n 3Vy x(n)u(3n) = x(n) nu n 3x(n)u(3n) = 0 nu n > 3

  • *Gii bi tp chng 1 (4/8)3.f) x(n-1)u(3-n) l tch ca 2 tn hiu x(n-1) v u(3-n)g) x(n2) (n2) l tch ca 2 tn hiu x(n2) v (n2) h) (1/2)x(n)+(1/2)(-1)nx(n) = y(n)Nu n chn hoc n = 0:(-1)n = 1 nn y(n) = x(n)Nu n l :(-1)n = -1 nn y(n) = 0i) x((n-1)2) l x(n) ly ti cc thi im (n-1)2x(n-n0) do x(n) dch phi n0 mu (tr)x(n+n0) do x(n) dch tri n0 mu

  • *Gii bi tp chng 1 (5/8)4.x(n) = (n) + 2(n1) (n3) h(n) = 2(n+1) + 2(n1)a)y(n)=h(-1)x(n+1)+h(1)x(n-1)=2x(n+1)+2x(n-1)2x(n+1) = 2(n+1) + 4(n) 2(n2)2x(n-1) = 2(n-1) + 4(n2) 2(n4)y(n) = 2(n+1) + 4(n)+ 2(n-1) + 2(n2) 2(n4)

  • *Gii bi tp chng 1 (6/8)4.b)y(n)=h(-1)x(n+3)+h(1)x(n+1)=2x(n+3)+2x(n+1)y(n) = 2(n+3) + 4(n+2)+ 2(n+1) +2(n) 2(n2)

  • *Gii bi tp chng 1 (7/8)H TT-BB c PT-SP: y(n)=(1/2)[x(n)-x(n-1)]

    Xc nh p ng xung ca hh(n)=y(n) khi x(n) = d(n) vy h(n)=(1/2)[d(n)-d(n-1)] Xc nh p ng tn s ca h

  • *Gii bi tp chng 1 (8/8)V dng p ng bin

  • *Chng 2PHP BIN I Z

  • *2.1. nh nghaBin i z ca tn hiu ri rc x(n) c nh ngha nh sau:

    X(z) l hm phc ca bin phc z. nh ngha nh trnl bin i z 2 pha. Bin i z 1 pha nh sau: Xt quan h gia bin i z v bin i Fourier. Biu din bin phc z trong to ccz = rej

  • *2.1. nh nghaTrng hp c bit nu r = 1 hay |z|=1 biu thc trntr thnh bin i FourierBin i z tr thnh bin i Fourier khi bin ca bin z bng 1, tc l trn ng trn c bn knh bng 1 trongmt phng z. ng trn ny c gi l ng trn n v.

  • *2.1. nh ngha

  • *iu kin tn ti bin i z Min gi tr ca z chui ly tha trong nhngha bin i z hi t gi l min hi t. p dng tiu chun C-si xc nh min hi t Chui c dngs hi t nutha mn iu kin p dng tiu chun C-si cho X2(z)

  • *iu kin tn ti bin i zGi thitVy X2(z) hi t vi cc gi tr ca z tha mn |z|>Rx-Tng t, X1(z) hi t vi cc gi tr ca z tha mn |z|
  • *V d 1. Cho tn hiu x(n)=u(n). Hy xc nh bin i z v min hi t.vi |z|>1Rx-=1Rx+=V d 2. Cho tn hiu x(n)=anu(n). Hy xc nh bin i z v min hi t.vi |z|>|a|Rx-=|a|Rx+=im khng: z = 0im cc: z = aMin hi t khng cha im cc

  • *Bin i z thunBin i z ngc

  • *2.2. Php bin i z ngcp dng nh l C-siG: ng cong khp kn bao gc ta trn mt phng zNhn (1) vi v ly tch phn:(1)

  • *2.3. Mt s tnh cht ca bin i z Tnh tuyn tnhMin hi t ca X(z) t nht s l giao ca 2 min hi t ca X1(z) v X2(z)Rx- = max[Rx1-,Rx2-]Rx+ = min[Rx1+,Rx2+]

  • *2.3. Mt s tnh cht ca bin i z Bin i z ca tn hiu tri bin m=n-n0

  • *

  • *2.3. Mt s tnh cht ca bin i z Bin i z ca tn hiu tr

  • *2.3. Mt s tnh cht ca bin i z Gi tr u ca dyNu x(n)=0 vi n
  • *2.3. Mt s tnh cht ca bin i z Vi phn ca bin i zNhn 2 v vi - z Bin i z ca tng chpy(n)=x(n)*h(n)Y(z)=X(z).H(z)

  • *2.4. Mt s phng php tnh bin i z ngc Khai trin thnh cc phn thc hu t n ginV dChovi |z|>2. Tm x(n) ?Mu s c 2 nghim theo z-1: z-1=1 v z-1=1/2

  • *2.4. Mt s phng php tnh bin i z ngc Khai trin thnh cc phn thc hu t n ginBit rngVy x(n)=2.2nu(n)-u(n)=u(n)[2n+1-1]

  • *2.4. Mt s phng php tnh bin i z ngc Khai trin theo php chiaX(z) c dng l t s ca 2 a thc theo z. Tinhnh php chia a thc c tng mu ca x(n)V d

  • *2.4. Mt s phng php tnh bin i z ngc Khai trin theo php chiaz-1 1-1,414z-1+z-2

    z-1 -1,414z-2+z-3 z-1+ 1,414z-2+ z-3- z-5-1,414 z-6 1,414z-2-z-3 1,414z-2-2z-3+ 1,414z-4z-3 - 1,414z-4z-3 - 1,414z-4 + z-5- z-5 - z-5 + 1,414z-6 z-7 - 1,414z-6 + z-7x(0)=0. x(1)=1. x(2)=1,414. x(3)=1. x(4)=0. x(5)=-1n

  • *Mt s cp bin i z thng dng (1/2)

    Tn hiuBin i zMin hi td(n)1Ton mf zu(n)|z|>1-u(-n-1)|z|0, tr nu m < 0anu(n)|z|>|a|-anu(-n-1)|z|

  • *Mt s cp bin i z thng dng (2/2)

    Tn hiuBin i zMin hi tnanu(n)|z|>|a|-nanu(-n-1)|z|1sin(Wn)u(n)|z|>1

  • *2.5. ng dng bin i z gii PT-SP Gii PT-SP: Bit PT-SP, bit tn hiu vo, tnh tn hiu raV dCho PT-SP y(n) = x(n) + ay(n-1)Bit:iu kin u y(-1) = KTn hiu vo x(n) = ejwnu(n)Hy xc nh tn hiu raLy bin i z 1 pha PT-SP:p dng cng thc tnh bin i z 1 pha ca tn hiu tr

  • *2.5. ng dng bin i z gii PT-SPY(z)=X(z)+az-1Y(z)+ay(-1)x(n) = ejwnu(n)Bin i z ngcp ng vi iu kin up ng qu p ng i vi tn hiu vo

  • *2.6. Hm truyn t ca h TT-BBy(n)=h(n)*x(n) Y(z) =H(z).X(z)H(z): Hm truyn ta) H(z) ca h nhn quH nhn qu nn h(n) = 0 vi n < 0H(z) hi t viMin hi t khng cha im cc, vy:Mi im cc ca h TT-BB nhn qu u nm trongng trn c bn knh

  • *2.6. Hm truyn t ca h TT-BBb) H(z) ca h n nhH n nh th p ng xung tha mn(1)Hm truyn t c xc nh theo:Nu (1) tha mn th H(z) hi t ngay c khi |z|=1Min hi t ca H(z) cha ng trn n vth h s n nh

  • *2.6. Hm truyn t ca h TT-BBc) H(z) ca h nhn qu v n nhTon b im cc ca h nhn qu v n nh phi nm bn trong ng trn n v.d) H(z) ca h c trng bi PT-SP-TT-HSHLy bin i z c 2 v ca PT-SP

  • *2.6. Hm truyn t ca h TT-BBBiu din H(z) qua cc im khng zr v cc im cc pk:

  • *Bi tp chng 2 (1/2)Cho tn hiu Hy tnh bin i z ca tn hiu ny bng cch dng:nh ngha bin i zTn hiu u(n) v tr ca u(n)Tnh bin i z ngc ca vi |z|>1/2ng dng bin i z 1 pha gii PT-SP:y(n)-(1/2) y(n-1)=x(n)-(1/2) x(n-1)Bit x(n) = d(n), y(-1)=0.

  • *Bi tp chng 2 (2/2)H TT-BB c PT-SP:y(n)=y(n-1)+y(n-2)+x(n-1) a) Xc nh hm truyn t, im khng, im ccb) Nhn xt tnh nhn qu, n nhc) Xc nh p ng xung sao cho h nhn qu

  • *Gii bi tp chng 2 (1/5)1.Tn hiu x(n):

  • *Gii bi tp chng 2 (2/5)2.3.Bin i z 1 pha c 2 v ca PT-SP:y(-1) = 0, x(-1)=0, X(z) = 1Y(z) = 1y(n)=d(n)

  • *Gii bi tp chng 2 (3/5)4.y(n)=y(n-1)+y(n-2)+x(n-1)a) Bin i z c 2 v:Y(z)=z-1Y(z)+z-2Y(z)+z-1X(z)H c 1 im khng ti z=0 v 2 im cc ti z=1,62;z=-0,62Nghim mu s:

  • *Gii bi tp chng 2 (4/5)4.b)

  • *Gii bi tp chng 2 (5/5)4.c)

  • *S = a0 + a1 + a2 + a3 + + aN-1ai = ai-1.qS = a0.(1-qN)/(1-q)

    S = a0 + a1 + a2 + a3 + + aN-1+ai = ai-1.qS = a0./(1-q)

  • *Chng 3B LC S

  • *3.1. Khi nim Trong nhiu ng dng khc nhau, ta thng phi thay i bin ca cc thnh phn tn s khc nhau ca tn hiu hoc loi b i mt s thnh phn tn s no . Qu trnh x l nh vy i vi tn hiu c gi l lc. C th dng b lc tng t lc tn hiu s c khng ? B lc s: l b lc dng lc tn hiu s

  • *3.1. Khi nimp ng bin ca b lc thng thp Xt h TT-BB c PT-SPp ng xung ca h:p ng tn s ca h:

  • *3.2. B lc FIRN=0 M=1y(n)=h(0)x(n)+h(1)x(n-1) B lc FIR v IIRN=0: FIRN>0: IIRS khi

  • *3.2. B lc FIRconst h0 = 0.5; h1 = 0.5;var xn, xnt1, yn: real;begin xnt1 := 0; repeat (* Nhp tn hiu vo t bn phm *) write(Nhp tn hiu vo xn = ); readln(xn); (* Tnh tn hiu ra *) yn:= h0 * xn + h1 * xnt1; (* Tr tn hiu *) xnt1 := xn; until Ketthuc;end.

  • *3.2. B lc FIR Trng hp tng quth(0)

  • *3.3. B lc IIR H bc nhta0y(n)+a1y(n-1)=b0x(n)Gi thit a0 = 1y(n)=-a1y(n-1)+b0x(n)

  • *3.3. B lc IIR H bc haia0y(n)+a1y(n-1)=b0x(n)+b1x(n-1)Gi thit a0 = 1y(n)=-a1y(n-1)+b0x(n)+ b1x(n-1) =-a1y(n-1) + w(n)w(n)=b0x(n)+b1x(n-1)

  • *3.3. B lc IIR Tng qut (a0 = 1)

  • *3.3. B lc IIRb0Dng trc tip 1

  • *3.3. B lc IIR

  • *3.3. B lc IIR

  • *3.3. B lc IIRDngtrctip 2(chuntc)M>N

  • *3.4. Mc ni tip v song song cc h H(z) ca h phc tp thng c phn tch thnh tnghoc tch H(z) ca cc h n gin, tng ng vi vic mc song song hoc ni tip cc h n gin Mc ni tipC: Hng s

  • *3.4. Mc ni tip v song song cc h Mc song songD: Hng s

  • *3.5.Kho st h bc 1a0 = b0 = 1, a1 = -ay(n) a y(n-1) = x(n) Hm truyn t H(z) c 1 im khng ti z = 0 v 1 im cc ti z = a n nh: H n nh nu |a| 1 Nhn qu: h(n) = anu(n) nu |z| > |a| Phn nhn qu:h(n) = -anu(-n-1) nu |z| < |a| H nhn qu v n nh nu |a| < 1 p ng tn s H(ejw) = H(z)|z = ejw

  • *V d: p ng bin v phaa=0,5a=-0,5

  • *3.6.Kho st h bc 2a0 = b0 = 1y(n) + a1 y(n-1)+a2y(n-2) = x(n) Hm truyn t 1 im khng bc 2 ti z = 0 2 im cc

  • * n nh v nhn qu: |p1| < 1, |p2| < 1Ranh gii im cc thc v phc: Xt im cc thc:(*)(**) cho kt qu tng t

  • * Xt im cc phc:

  • *H n nh v nhn qu nu a1 v a2thuc min tam gic.

  • *V d: p ng bin v pha1)2)1) a1 = 1, a2 = 0,52) a1 = -1, a2 = 0,5

  • *V d:X l nh. nh qua b lc thng thp (lm trung bnh)

  • *V d:nh qua b lc thng cao (o hm)

  • *Bi tp chng 3 (1/2)1. H TT-BB c quan h vo ra:Xc nh p ng tn sXc nh v v dng p ng bin . Nhnxt tnh cht lc ca h.2. Hm truyn t ca b lc s c dng: H(z) = 1 + 2z-1 + 4z-3Xc nh PT-SP biu din quan h vo-raV s khi thc hin b lc

  • *

  • *Bi tp chng 3 (2/2)3. H TT-BB c hm truyn t:H(z)=(1+az-1)/(1+bz-1+cz-2) vi a,b,c l hng s.Xc nh quan h vo-ra ca hV s dng chun tc thc hin h.

  • *Gii bi tp chng 3 (1)1. a) p ng xung:p ng tn s:b) p ng bin :|H(ejw)|=(1/3)|1+2cosw|

  • *Gii bi tp chng 3 (2)2. a) H(z) = 1 + 2z-1 + 4z-3 = Y(z)/X(z)Y(z) = X(z) + 2z-1X(z) + 4z-3 X(z)y(n) = x(n) + 2x(n-1) + 4x(n-3)b)

  • *Chng 4PHP BIN I FOURIER RI RC

  • *4.1. Chui Fourier ri rc ca tn hiu ri rc tun hon(DFS: Discrete Fourier Serie)Xt tn hiu xp(n) tun hon vi chu k N:

    xp(n) = xp(n+kN), k nguyn

    Tn hiu ny khng biu din c bng bin i z nhng c th biu din bng chui Fourier thng qua hm e m phc vi cc tn s l bi ca tn s c bn 2p/N.y l tn hiu tun hon theo k vi chu k N. k = 0,1,2,,N-1

  • *4.1. Chui Fourier ri rc ca tn hiu ri rc tun honChui Fourier biu din tn hiu ri rc tun hon:Xc nh cc h s Xp(k) theo xp(n) da vo tnh cht trc chun:m: s nguynNhn 2 v xp(n) vi v ly tng t n=0 n N-1(1)

  • *4.1. Chui Fourier ri rc ca tn hiu ri rc tun honThay i th t ly tngk r = mN [] = 1, k r mN [] = 0k=r+mN v k < N m=0 v k = rS dng tnh cht trc chun ta c:Hoc l:Nhn xt Xp(k) tun hon theo k vi chu k N Cc cng thc (1), (2) l biu din chui Fourier ca tn hiu ri rc tun hon. (1): Tng hp. (2): Phn tch(2)

  • *4.1. Chui Fourier ri rc ca tn hiu ri rc tun hon Quan h vi bin i zXt 1 chu k ca xp(n):Mt khcvy

  • *V d: Hy tnh cc h s chui Fourier ca dy tn hiu tun hon sau

  • *4.2. Bin i Fourier ri rc ca tn hiu c di hu hn(DFT: Discrete Fourier Transform)Ta xt cch biu din mt tn hiu ri rc tun hon bng chui Fourier. Bng cch din gii thch hp ta cng c th dng cch biu din nh vy cho cc tn hiu c di hu hn.C th coi tn hiu c di hu hn N l tn hiu tun hon c chu k N trong mt chu k chnh l tn hiu c di hu hn

  • *4.2. Bin i Fourier ri rc ca tn hiu c di hu hn Cp cng thc DFTBin i thun (phn tch)Bin i ngc (tng hp)

  • *4.3. Bin i nhanh Fourier(FFT: Fast Fourier Transform) Tnh trc tip DFT cn N2 php nhn s phc v N(N-1) php cng s phc Thut gii FFT: phn tch DFT ca dy N s ln lt thnh DFT ca cc dy nh hn iu kin p dng thut gii: N = 2m. S lng php ton gim xung cn Nlog2N

  • *4.4. Cc hm ca s Ly ra on tn hiu c di N phn tch Tng ng nhn tn hiu vi hm w(n)w(n) = 1 trong on tn hiu c lyw(n) = 0 trong on tn hiu khng c lyx(n) = x(n).w(n) Mc nhin dng ca s ch nht !

  • *4.4. Cc hm ca sX(f) = X(f)*W(f) Tn hiu c phn tch c di hu hn gy ra X(f) X(f) c sai s khi tnh bin i Fourier gim sai s c th tng N Phng php hay dng l chn W(f) hay chn w(n) Ca s ch nht gy sai s ln nn thng dng cc ca s khc nh Hamming, Hanning, Kaiser, Blackman

  • *4.4. Cc hm ca s Hm ca s Hamming, Hanning:N=256

  • *1. Gi thit tn hiu x(n) l tng ca 2 tn hiu x1(n) v x2(n). x1(n) l tn hiu cosin c tn s gc l 0,1rad/s, x2(n) cng l tn hiu cosin c tn s gc l 0,4rad/s. Ngi ta dng b lc thng cao FIR c di p ng xung bng 3 vi gi thit h(0) = h(2) = v h(1) = trit tiu tn hiu x1(n) v cho qua hon ton tn hiu x2(n). Hy xc nh cc h s , v v s khi thc hin b lc FIR ny. 2. Hm truyn t ca h TTBB nhn qu c dng nh sau:

    vi a l s thc.a. Xc nh gi tr ca a sao cho H(z) ng vi mt h n nhb. Ly 1 gi tr c bit ca a trong s cc gi tr ny, biu din cc im cc, im khng v min hi t. c. nh gi |H(f)|

  • *Bi tp ln (1/2)1.B lc s FIR c PT-SPHy lp trnh bng Pascal xc nh p ngxung ca b lc ny.

    Khi to tn hiu tr = 0 (xnt1, xnt2, xnt3, xnt4)Gn xn = 1 (xung n v)B vng lp:- Tnh tn hiu ra yn (=hn) theo PT-SP- Tr tn hiu vo xn:xnt4 := xnt3;xnt3 := xnt2;xnt2 := xnt1;xnt1 := xn;( sau buc lp u tin phi gn xn := 0)KT vng lp

    y(n)=x(n) + 2x(n-1)-3x(n-3)+5x(n-4)

  • *Bi tp ln (2/2 )2.B lc s IIR c cc h s nh sau:Hy lp trnh bng Pascal xc nh 100 mu u tin ca p ng xung ca b lc ny.

    a0 1.0000 b0 0.0252a1-9.7023b1 -0.0615 a28.8979b20.0684a3-12.7653b3-0.0800a413.1148b40.0976a5-4.0608b5-0.0800a65.1226b60.0684a7 -1.7620b7-0.0615a80.3314b80.0252

  • *Cho tn hiu vo = xung n v, tnh tn hiu ra theo PT-SPBEGIN- Khi to cc tn hiu tr = 0 (xnt1,,xnt8,ynt1,,ynt8)- Gn xung n v xn = 1B vng lp- Tinh wn theo cng thc (1)

    - Tnh y[n] theo cng thc (2)

    - Tr tn hiu xn v yn(* Sau bc lp u tin phi gn xn = 0) KT vng lpEND

  • *Kt qu c dng

  • *BI TPH TT-BB c tn hiu vo x(n) = u(n) u(n-2), h(n) = u(n) u(n-2). Hy xc nh v v tn hiu ra y(n).

    Cho h TT-BB c quan h vo ra: y(n) = x(n) + 3x(n-1) 2x(n-3) + 5x(n-4)a) Xc nh p ng xung ca hb) H c n nh khng ? Ti sao ?c) V s khi thc hin h.

    3) Cho h TT-BB c PT-SP: y(n) = x(n) x(n -1) 0,5 y(n -1)a) Xc nh hm truyn tb) V im cc im khng ca h, xt tnh n nh v nhn quc) Xc nh p ng xung h nhn qu.