Top Banner
1 XFEL Oscillator in ERLs R. Hajima Japan Atomic Energy Agency March 4, 2010.
19

XFEL Oscillator in ERLs

Jan 12, 2016

Download

Documents

ashlyn

XFEL Oscillator in ERLs. R. Hajima Japan Atomic Energy Agency March 4, 2010. X-ray FEL Oscillator. K-J. Kim et al., PRL (2008), PRST-AB (2009). Typical electron beam parameters for XFELO. Energy, charge, emittance, repetition are similar to ERL beams. ERL Injector Performance. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: XFEL Oscillator in ERLs

1

XFEL Oscillator in ERLs

R. Hajima

Japan Atomic Energy Agency

March 4, 2010.

Page 2: XFEL Oscillator in ERLs

2

X-ray FEL Oscillator

K-J. Kim et al., PRL (2008), PRST-AB (2009)

Typical electron beam parameters for XFELO

Energy, charge, emittance, repetition are similar to ERL beams.

R. Hajima

Page 3: XFEL Oscillator in ERLs

3

ERL Injector Performancedesign example

I.V. Bazarov et al., PRST-AB (2005)

Ultimate Injector

8 pC, 0.1 mm-mrad will be feasibly obtained.

500-kV DC gun, 3-D pulse shaping, and 10-MeV SCA.

80 pC, 0.1 mm-mrad will be obtained.

750-kV DC gun, 3-D pulse shaping, and 10-MeV SCA.

R. Hajima et al.Compact ERL CDR (2008)

3R. Hajima

Page 4: XFEL Oscillator in ERLs

4

Integration of XFELO and ERL

straight section of the loop additional branch

Beam dump

Location

share an ERL injector use a FEL injector

Injector

independent concurrent

Operation mode

From the ERL side,

XFELO adds a new feature with minor modificationERL and XFELO provides complimentary X-rays

ERL Gun

FEL Gun

4R. Hajima

Page 5: XFEL Oscillator in ERLs

5

Growth of emittance and energy spread in a loop

pm4.13

25

5 ICr

qe

x

E=5 GeV, =25m, “half arc” = TBA x 15

)(103.2 155

mI

)(100.5 233

mI

5

2/1

35

108.13

2

ICr

pqep

incoherent SR

coherent SR

keV8CSRE

tuning of cell-to-cell phase advance negligible emittance growth

for 20pC/2ps

FEL gain is preserved

energy spread after FEL lasing

%05.0~1

uNE

E

Energy recovery is preserved

5R. Hajima

Page 6: XFEL Oscillator in ERLs

XFELO lasing at 5-GeV?

66

7 GeV, w=1.88cm, gap=5mm, aw=1 =0.1nm

5 GeV, w=1.43cm, gap=5mm, aw=0.59 =0.1nm

11][

16

1gain D-1

32223

A

pww I

IJJa

)1(2),()(

2

2

10w

w

a

aJJJJ

area mode current,peak kA,17 pA II

assuming same peak current and same mode area,

65.0)7(

)5(3

3

GeV

GeV

1-D gain for 5 GeV beam is “0.65 x 1-D gain for 7 GeV”

further gain reduction due to the emittance effect.

0.1nm XFELO with a 5-mm gap Halbach-type undulator

R. Hajima

Page 7: XFEL Oscillator in ERLs

7

XFELO with 5 and 7-GeV ERLs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.15 0.2 0.25 0.3

normalized emittance (mm-mrad)

smal

l-sig

nal F

EL

gain

7 GeV

5 GeV

analytical estimationof small-signal FEL gain Energy 5 GeV 7 GeV

charge 20 pC

t 2 ps

E/E 1e-4

aw 0.59 1.0

u 1.43 cm 1.88 cm

Nu 3000

*=ZR 10 m

n 0.1 mm-mrad

gain 14 % 22 %

1Å X-FELO

The above calculations are based on a Halbach-type undulator.DELTA undulator gives 1.4 times larger FEL gain.

R. Hajima

Page 8: XFEL Oscillator in ERLs

8

Velocity bunching in an ERL main linac

Injector

Main Linac

SCA #2

SCA #1

SCA #3

Velocity bunching for a SASE-FEL injector

Velocity bunching for an ERL light source

Velocity bunching for an X-FELO

(1) no additional component is required (2) only 2-3% SCAs are used for the velocity bunching (3) residual energy spread is smaller than magnetic compression (4) moderate emittance growth for low bunch charge

H. Iijima, R. Hajima, NIM-A557 (2006).

L. Serafini and M. Ferrario, AIP-Porc. (2001)

R. Hajima, N. Nishimori, FEL-2009

R. Hajima

Page 9: XFEL Oscillator in ERLs

9

Gain reduction by bandwidth mismatch

growth rateof the m-th mode

gain loss cavity lengthdetuning

bandwidth mismatch

bandwidth of the Bragg mirrors = 12 meV

elMelM or

fs100M

sel f100

In the following calculations, we choose sel f400

12 meV

reflectivity and phase shiftfor a cavity round trip

K-J. Kim et al., PRL 100, 244802 (2008).

R. Hajima

Page 10: XFEL Oscillator in ERLs

1010

Example of the velocity bunching PARMELA simulation

bunch charge q = 7.7 pC

velocity bunchingbunching in 8 cavitiesinjection 10.9 MeV, 1.3 ps, -85 deg.gradient Eacc = 8.5 MV/m

emittance growth bychromatic aberration

x

y

z (m)norm

. e

mitt

ance

(m

m-m

rad)

y

xbe

am

siz

e (

mm

)

z (m)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 0

0.4

0.8

1.2

1.6

2

0 5 10 15 20 25 30

t E

Ene

rgy (MeV

)

bun

ch le

ngt

h (

ps)

z (m)

velocity bunching

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 0

5

10

15

20

25

30

injector merger SCA #1 SCA #2

4 cavities 4 cavities

R. Hajima

Page 11: XFEL Oscillator in ERLs

1111

Optimum design of the velocity bunching

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

x

y

z (m)norm

. e

mitt

ance

(m

m-m

rad)

0123456789

10

0 5 10 15 20 25 300

5

10

15

20

25

30

tE

Ene

rgy (MeV

)

bun

ch le

ngt

h (

ps)

z (m)

0

0.4

0.8

1.2

1.6

2

0 5 10 15 20 25 30

y

x

bea

m s

ize

(m

m)

z (m)

injector merger SCA #1 SCA #2

bunch charge q = 7.7 pC

velocity bunchingbunching in 6 cav. + on-crest 2 cav.injection 10.9 MeV, 1.3 ps, -90 deg.gradient Eacc = 8.5 MV/m

at the SCA#2 exitE = 27.7 MeV, t = 380 fs, E = 250 keVx = 0.16 mm-mrad, y = 0.13 mm-mrad

velocity bunching

R. Hajima

Page 12: XFEL Oscillator in ERLs

12

Phase plot at the SCA #2 exit

R. Hajima

Page 13: XFEL Oscillator in ERLs

13

Enhancement of the FEL gain by velocity bunching

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.15 0.2 0.25 0.3

normalized emittance (mm-mrad)

smal

l-sig

nal F

EL

gain

20 pC, 2 ps, E/E=10-4

7.7 pC, 0.38 ps, E/E=5x10-5

without velocity bunching

with velocity bunching

for 5-GeV, 1-Å X-FELO

Significant enhancement of the FEL gain by velocity bunching.Gain~40% is possible even with emittance growth during the bunching.

R. Hajima

Page 14: XFEL Oscillator in ERLs

14

Simulation of XFELO (5 GeV with velocity bunching)

After the saturation:

pulse duration=1.2 ps (FWHM)

photons/pulse (intra cavity) Np = 2x1010

photons/pulse (extracted) Np = 7x108

saturation

R. Hajima

Page 15: XFEL Oscillator in ERLs

15

2-Loop Design of 5-GeV ERL

HOM-damped cavity

high threshold current of HOM BBUallows 2-loop configuration.

TESLA (HOM:5×2)

ERL (HOM:6×2)

R. Hajima

Page 16: XFEL Oscillator in ERLs

16

Possible Scheme for Combining ERL and XFELO

We can switch two operation modes by introducing an orbit bump having rf/2= 11.5 cm.

5 GeV ERL for SR use : accelerate 2 times 7.5 GeV recirculating linac for XFELO : accelerate 3 times

Optional

S. Sakanaka, talk at PF-ISAC (2010)

R. Hajima

Page 17: XFEL Oscillator in ERLs

17

Growth of emittance and e-spread for 3-pass 7.5-GeV

n E

1st loop (2.5 GeV) 8pC/400fs 20pC/2ps

incoherent SR 0.029 mm-mrad 34 keV 34 keV

coherent SR assumed to be compensated 37 keV 11 keV

2nd loop (5 GeV)

incoherent SR 0.027 mm-mrad 130 keV 130 keV

coherent SR assumed to be compensated 53 keV 16 keV

1st-loop: E=2.5 GeV, =8.66m, 2x14-cell FODO

2nd-loop: E=5 GeV, =25m, TBAx30-cell

)(108.2 135

mI)(104.8 223

mI

)(106.4 155

mI)(100.1 223

mI

...22 cin

...2,

2, cEiEE

mradmm11.01.0 n

E/E = 2 x 10-5acceptable for FEL

17R. Hajima

Page 18: XFEL Oscillator in ERLs

18

Stability of SRF

Cornell LLRF SystemCornell LLRF System

A/A< 2·10-5 P < 0.01 deg

Demonstrated:

• Exceptional field stability at QL = 106 to 108

• Lorentz-force compensation and fast field ramp up

•Piezo microphonics compensation with ~20 Hz bandwidth

M. Liepe, ERL-09

energy stability << FEL gain band width

This requirement is fulfilled by current LLRF technology.

3000for107.12

1 4 u

u

NN

18R. Hajima

Page 19: XFEL Oscillator in ERLs

19

Conclusions

Hard X-ray ERL can accommodate XFELO. we can extend the frontier of X-ray beam parameters

0.1nm-XFELO is feasibly realized at 5-GeV ERL with velocity bunching 7.5-GeV beam from a 2-loop 5-GeV ERL an ERL injector is shared, no major modification is needed

XFELO can be installed either at a loop or a branch. however, beam loss in a long narrow duct might be a problem for

a XFELO in a loop

In the Japanese collaboration, XFELO is considered as a part of 5-GeV hard X-ray ERL.

19R. Hajima