Top Banner
XAFS: Study of the local structure around an X- ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysi s (4) XAFS applications (5) New directions of XAF S T.Ohta, Univ.Tokyo, Japan
44

XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Jan 04, 2016

Download

Documents

Laureen Leonard
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

XAFS:Study of the local structure

around an X-ray absorbing atom

(1) Principle of XAFS(2) Instrumentation(3) XAFS spectral analysis(4) XAFS applications(5) New directions of XAFS            

T.Ohta, Univ.Tokyo, Japan

Page 2: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

(1) Principle of XAFS

Page 3: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

X-ray

Diffracted X-rays

Photoelectrons

Transmitted X-rays

Diffracted X-rays

Scattered X-rays

Fluorescent X-rays

Desorbed ions

Phenomena caused by X-ray irradiation

Page 4: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

1.4 1.0 0.6 0.2波 長

L3

L2

L1

K

X-ray absorption spectrum from Pt foil

wavelength

Page 5: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

XAFSX-ray Absorption Fine Structure : Local electronic and geometric structures around the x-ray absorbing atom

Abs

orpt

ion

Coe

ffici

ent

  P hoton E nergy

N E XA FS E XA FS

Threshold

30-50 eV 50 - 1000 eV

Page 6: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

XAFS spectrum from an atom

Page 7: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

XAFS spectrum from a diatomic molecule

Page 8: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

X-ray absorption : Fermi’s Golden Rule

fae EirefN

c

2224

i: wave function of the initial state1sf: wave function of the final state superposition of the ejected wave and back-scattered waves

0

0

k EXAFS function

222

2exp)2exp(),(

)(22sin)()(

krkr

kfNkA

kkrkAk

jj

jj

jjj

j

Point atom, plane wave, and single scattering approximations

Page 9: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

iii

i kRkAk 2sin

EXAFS oscillation

02 EEmpk

Ri:bond distance

Phase shifti

Page 10: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Phase shift

iii

i kRkAk 2sin

Page 11: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

-6.0

-2.0

2.0

6.0

10.0

14.0

4 6 8 10 12 14 16

Pb

Sn

Ge

SiC

Phase shift of the X-ray absorbing atom

k/A-1

Page 12: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

i

ii

i

ii

RkkF

kR

NkA 2exp2exp

222

*

EXAFS  amplitude

Effective Coordi-nation number

Back scatteringamplitude

Debye-Wallerfactor

Electron meanfree path

Page 13: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

5 10 15k(A -1)

B ackscatte ring Am plitude F (k)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F(k

)

CS i

Ge

Sn

Pb

Page 14: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

i

ii

i

ii

RkkF

kR

NkA 2exp2exp

222

*

EXAFS  amplitude

Effective Coordi-nation number

Back scatteringamplitude

Debye-Wallerfactor

Electron meanfree path

High coordination numberLow temperature

High Z scatterer Short distance

Page 15: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Au K-EXAFS of Au foil

278K

77K

Page 16: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

EXAFS oscillation of Au K-edge

77K

278K

Page 17: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Photon Energy

If the coordination number decreases,

Page 18: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Photon Energy

If the bond distance increases,

Page 19: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

(2) Instrumentation

Page 20: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

monochromatorIo I

sample

Data processing

X-rays

Ion chamber

《 transmission method》

Experimental method of XAFS

Page 21: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

X-ray escape depth>1000A

Electron escapedepth < 50 A

FluorescentX-rays

Secondary electron

photoelectron

Auger electron

Page 22: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

sample

X -ray

Ionization chamber

Filter and solar slit

Page 23: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Fluorescence

Absorption

Cu K-XAFS of CuSO4 10mMol aq. solution

Page 24: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Transmission Fluorescence

0.5 mmfilm

6m film

Page 25: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Partial electron yield   x-ray absorption of surface atoms

Page 26: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Total electron yield

Photon energy

Sample leak current

Partial electron yield

Page 27: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

(3) XAF S spectral analysis

Page 28: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

R + 

Fourier transform

Am

plit

ude

EX

AF

S f

unct

ion

Page 29: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Back Fourier Transformation

k

Amplitude Envelope

Kind of scattererCoordina-tion number

Polarization

Direction ofBond, Adsorp-Tion site

Temperature

Bond stiffness

EX

AF

S f

unct

ion

Page 30: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

E

Polarization Dependent EXAFS K-absorption(1s p-like continuum)

Page 31: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Polarization Dependent EXAFS K-absorption(1s p-like continuum)

Page 32: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Temperature dependence

  )(22sin)()( kkrkAk jjj

j

222

2exp)2exp(),(

krkr

kfNkA j

j

jj

22

122

1

2 2),(

),(ln TTk

TkA

TkA

Page 33: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

22

122

1

2 2),(

),(ln TTk

TkA

TkA

c-As

Determination of 2(T)

Page 34: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

What can we get from 2(T)

u0

u0 ui

Ri

R0 Ri

O

iiiiii

iii

RuRuRuRu

Ruu

0

2

0

2

2

02

2

0

0

RR

RRR

i

ii

kTT

Ei 2

coth2

2

12

2

2coth

2coth

2 kTkTEi

Einstein model

22EE cf

Einstein frequency

Page 35: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

c-As  As-As: 216 cm-1

a-As As-As: 234 cm-1

c-As2S3

As-S: 332 cm-1

g-As2S3

As-S: 330 cm-1

c-As4S4

As-As: 222 cm-1 As-S : 342 cm-1

Page 36: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Data acquisition

Determine E0 , Convert from eV to k

Background subtraction and normalization

Multiply kn

Fourier transformation

Fourier filtering

Back Fourier transformationCurve fitting in real space

Model structure

Page 37: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

X-ray energy(eV) EXAFS (k)

Atomic distance(Å) EXAFS (k)

Page 38: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

EX

AF

S k (w ave num ber)

EXAFS analysis-1

Am

plit

ude

D istance r= r +i i

iii

i krkAk 2sin

Phase shift

Atomic distance

amplitude

1st nearest

2nd nearest

3rd nearest

Fourier transformation

Page 39: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

EX

AF

S k (w ave num ber)

EXAFS analysis-2

Effective CoordinationNumber

Debye-Wallerfactor

Backscatteringamplitude

Direction ofchemicalbond

PairPotentialFunction

Kind ofscatteringatom

Page 40: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Limitation and Improvement of XAFS

theory • Multiple scattering effect

which is enhanced at XANES region and also at longer distance above 3 A.

FEFF program developed by J.Rehr can be used for spectral simulation.

Shadowing effectnegligible

Non-negligible

Page 41: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

33

44

222

22

3

4),(2sin

3

22exp),(

!

)2(2exp),(Im)(

kCkRkkRkCkCkRkFkR

N

Cn

ikikRkRkf

kR

Nk

effeff

nn

n

eff

rR

22 )( RrC 3

3 )( RrC22

44 3)( CRrC

Limitation and Improvement of XAFS

theory •Vibrational anharmonicity The formula assumes a Gussian distribution. Cumulant expansion method has been developed to take   into the anharmonicity, which gives the information of real bond distance, thermal expansion coefficients, radial distribution curve.

where

Page 42: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

(4) XAFS applications

• Catalysis

• Amorphous systems

• Material physics(High Tc, CMR,….)

• Magnetic materials XMCD

• Thin films and Surface science

• Environmental science

• Biological materials

Page 43: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

(5) Challenge of XAFS

• Time-resolved XAFS spectroscopy

• Micro XAFS or Nano XAFS

Page 44: XAFS: Study of the local structure around an X-ray absorbing atom (1) Principle of XAFS (2) Instrumentation (3) XAFS spectral analysis (4) XAFS applications.

Summary--Features of XAFS• Applicable to any phase (amorphous, liquid, gas), surf

ace/interface and biomaterials• Measurable under various conditions under high pressure, gaseous atmosphere, for real c

atalysis• Polarization dependence direction of the bond• Temperature dependence strength of any specific b

ond • Combined with microbeam local structure of a loc

al area• Pump-probe experiment dynamics of local structur

e