Top Banner
X-chromosomal markers and FamLinkX Athens, May 29, 2014
21

X-chromosomal markers and FamLinkX

Jan 20, 2016

Download

Documents

lisle

X-chromosomal markers and FamLinkX. Athens, May 29, 2014. Use of markers on the X-chromosome to solve relationship issues. X-chromosomal typing in males reveals their haplotype. Males transmit their whole chromosome X to their daughters. All sisters share their paternal ChrX haplotype. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: X-chromosomal markers and FamLinkX

X-chromosomal markers and FamLinkXAthens, May 29, 2014

Page 2: X-chromosomal markers and FamLinkX

Use of markers on the X-chromosome to solve relationship issues

• X-chromosomal typing in males reveals their haplotype.

• Males transmit their whole chromosome X to their daughters.

• All sisters share their paternal ChrX haplotype.• Furthermore, it is very likely that haplotypes of

linkage groups remain stable throughout many generations. Consequently, they are a powerful means to demonstrate kinship

Page 3: X-chromosomal markers and FamLinkX

If the same father, 1 and 2 should share 1 allele (IBD) for each typed marker.

If related, 1 and 2 should share 1 allele (IBD) for each typed marker

Case scenarios where X-STR typing is helpful

Page 4: X-chromosomal markers and FamLinkX

Argus X12

12 STRs in 4 clusters (3 STRs in each cluster)

LD and linkage should be accounted for

Page 5: X-chromosomal markers and FamLinkX

– Two markers are inherited as a unit

– Linkage is the opposite of recombina

– Observable within a pedigree

Linkage

What is linkage?

4

http://www.accessexcellence.org/RC/VL/GG/comeiosis.php

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 6: X-chromosomal markers and FamLinkX

0 . 0 4 2

Linkage disequilibrium

What is linkage disequilibrium–

Allelic association

Two alleles (at two different markers) which is observed moreoften/less often than can be expected.

Effects the allele probabilities not the transmission probabilities.–ExampleMarker1 (vWa): Alleles 13 and 14, frequencies 0.2 and 0.8Marker2 (D12S391): Alleles 16 and 17, frequencies 0.4 and 0.6Expected frequency of [13, 16] is 0.2*0.4 = 0.08Observed frequency of [13, 16] is 0.12

2 p p p

i j i j

i 1 3 , 1 4

6 2r

ij j 1 6 , 1 7p (1 p ) p (1 p ) i i j j

2( 0 . 1 2 0 . 0 8 )

2p 0 . 1 2 , p 0 . 2 , p 0 . 4 r 1 3 ,1

61 3 1 6 1 3 ,1

6 0 . 2 (1 0 . 2 ) 0 . 4 (1 0 . 4 )

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 7: X-chromosomal markers and FamLinkX

Linkage disequilibrium

Worked example,

paternity

with

two markers

13,1316,16

14,1417,17

P(13)=0.2, P(16)=0.4 (Linkage equilibrium)P(13,16)=0.12 => P(16|13)=0.6 (Linkage disequilibrium)

13,1416,17

(Linkage equilibrium)7

LR1 = 1/P(13)*1/P(16)=12.5

LR2 = 1/P(13)*1/P(16|13)=8.33 (Linkage disequilibrium)

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 8: X-chromosomal markers and FamLinkX

Summary

8

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Linkage Linkage disequilibriumDependency between neighbouring Dependency between alleles at different markers loci

Observed within a pedigree Observed in a population

Extends long distances >10 cM Usually extends short distances <1 cMDo not affect random match probability Affect random match probabilities

(unless related)Take into account for extended pedigrees Always take into account for all pedigreesAlways take into account if also LD is Measured by the deviation from

present, for all pedigrees expectations, decays with recombinationsMeasured by the recombination rate, Used to find alleles associated with a constant disease, in the population

Used to find markers linked to a disease, in families

Page 9: X-chromosomal markers and FamLinkX

X-chromosomal markers

Used where autosomal

Argus X12

– (4 clusters with three

Linkage

Linkage disequilibrium

Mutations

FamLinkX!

markers fail

tightly

linked

markers)

– New joint probability model

– Released autumn 201321

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 10: X-chromosomal markers and FamLinkX

FamLinkX

Markov chain to handle linkage– Similar to Lander-Green

Multistep Markov chain to handle LD Uses a Dirichletfrequencies

distribution

to estimate

haplotype

22

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 11: X-chromosomal markers and FamLinkX

FamLinkX – At a

glance

– Define

clusters

of markers

Account for linkage between

clusters

23

Account for linkage and LD within each cluster

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 12: X-chromosomal markers and FamLinkX

FamLinkX – At a glance

– Add markers•

Define genetic position

Mutation parameters

24

– Add haplotypes(!)• Define setup

• Counts www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 13: X-chromosomal markers and FamLinkX

FamLink – At a glance

– Selecting

value

for Lambda

– We display two

methods

25

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 14: X-chromosomal markers and FamLinkX

FamLinkX – At a glance

– Select

main

hypothesis

26

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 15: X-chromosomal markers and FamLinkX

FamLinkX – At a glance

– Select

alternative

hypotheses

27

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 16: X-chromosomal markers and FamLinkX

FamLink – At a glance

– Define

DNA

data

28

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 17: X-chromosomal markers and FamLinkX

FamLink – At a glance

– Calculate

likelihoods

29

– We display three computation

methods

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 18: X-chromosomal markers and FamLinkX

FamLinkX – Creating the database

– Size of the database?- Depend on the cluster size

– Include only males- Why?

– Input format for FamLinkX

ClusterID Marker1 Marker2 ... HaploCounts1 13 20 102 13 21 11...

23

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 19: X-chromosomal markers and FamLinkX

FamLinkX – Creating the database

23

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

– Estimation of updated haplotype frequencies– The model

Hi = Updated haplotype frequencyci = Counts for haplotype iC = Total number of haplotypespi = Expected haplotype frequencyλ = Prior weight given to expected frequency

– If λ=0, only observed haplotypes have a nonzero frequency.– If λ=large, all haplotypes have a frequency.

i ii

c pH

C

Page 20: X-chromosomal markers and FamLinkX

FamLinkX

– Questions?

30

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES

Page 21: X-chromosomal markers and FamLinkX

EXERCISES

31

www.umb.no

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E

SC

IEN

CES