Top Banner

of 92

Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

Apr 04, 2018

Download

Documents

Ganga Raju
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    1/92

    Presented by

    J. N. Dubey Sr Supdt ( EEMG)

    NCPS -DADRI

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    2/92

    HEATRATE IMPROVEMENT

    THE PRESENTATION COVERSDEFINITION AND TYPES OF HEAT RATE

    IMPORTANCE OF HEAT RATE IMPROVEMENT

    CALCULATION OF HEAT RATE

    CYCLE EFFICIENCY AND HEAT RATE

    DIFFERENT TYPES OF HEAT LOSSES

    PARAMETERS AFFECTING HEAT RATEPERFORMANCE OF EQUIPMENTSCONDENSER PERFORMANCE

    HP/LP HEATERS PERFORMANCE

    TURBINE PERFORMANCE

    COOLING TOWER PERFORMANCE

    BOILER PERFORMANCE

    RAPH PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    3/92

    HEATRATE IMPROVEMENT

    HEAT REQUIRED IN KCAL FOR UNIT ( KWH)

    GENERATION OF ELECTRICITY

    UNIT OF HEAT RATE

    KCAL / KWH

    DESIGN UNIT HEAT RATE : 2274 KCAL/KWHACTUAL UNIT HEAT RATE : 2400 KCAL/KWH

    DEVIATION : 126 KCAL/KWH

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    4/92

    HEATRATE IMPROVEMENT

    GROSS UNIT HEAT RATE

    The ratio heat input to the boiler including allforms of chemical energy supplied and the

    gross electrical generation.

    For most functions (daily/monthly/annual

    reporting, comparison/ benchmarking of units)

    unit or plant heat rate is used.

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    5/92

    HEATRATE IMPROVEMENT

    NET UNIT HEAT RATE

    A unit heat rate includes all heat input to theboiler. The heat input to the boiler include all

    forms of chemical energy supplied and the net

    electrical generation i.e., auxiliary power is to be

    subtracted from gross electrical energy.

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    6/92

    HEATRATE IMPROVEMENT

    Gross Turbine Cycle Heat Rate (GTCHR)

    A Gross Turbine Cycle heat rate includesonly heat input to the turbine cycle.

    GTCHR is the ratio of total heat input to the

    turbine cycle and the gross generator output.

    Turbine Cycle : Starting from ESV to final

    HP heater outlet

    It includes HPT , IPT , LPT, condenser,

    GSC , drain cooler LPH 1, 2, 3 ,

    deaerator,HP heater 5 and HP heater 6

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    7/92

    HEATRATE IMPROVEMENT

    Boiler S.H HPT

    R.H

    IPT LPT

    Condenser

    CE

    P

    GSCDCLPH-1LPH-2

    D/

    A

    HPH-6 HPH--5

    BF

    P

    E

    C

    O

    Ge

    n

    LPH-3

    BLOCK DIAGRAM OF THERMAL POWER PLANT CYCLE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    8/92

    HEATRATE IMPROVEMENT

    Description Unit value

    COAL CV KCAL / Kg 39COAL COST ( Avg yearly) Rs / Ton 23

    COAL COST Rs / Kg 2.

    Cost of 1 K Cal Rs/ kcal 0.0005974

    Generation Capacity of One Unit / day MU 5.

    ( 210x24/1000)

    PLF %

    Generation / day considering 95 % PLF MU 4.7

    Generation / year considering 95 % PLF MU 1747.

    Generation Capacity of One Unit / year kwh 17476200ost ev at on n eat ate y

    1 kcal / kwh for yearly generation of

    one unit

    Lacs 10.

    EFFECT OF DEVIATION OF HEAT RATE BY ONE KCAL/ KWH

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    9/92

    IMPACT OF PARAMETERS ON HEAT RATE

    S No. Parameter Unit Deviation H R Dev ( Kcal/kwh

    1 HPT efficiency % + 1% - 4.5

    2 IPT efficiency % + 1% - 4.5

    3 LPT efficiency % + 1% -11.4

    4 Condenser Back Pressure mm Hg +1mmHgC +2.0

    5 M S Pr before ESV Kg/cm 2+1.0

    Kg/cm2 -1.8

    6 M.S.Temp Deg. C +1.0 Deg C -1.67 HRH Temp Deg. C +1.0 Deg C -0.68

    8 RH Spray T/Hr +1 T/H +0.53

    9 DM Make-Up % MCR + 1% + 20

    10 Boiler efficiency % +1% -26

    HP Heater -TTD Deg. C +1.0 Deg C +1.8

    HP Heater - DCA Deg. C +1.0 Deg C +0.25

    11 Excess Oxygen % + 1% +6.6

    12 Flue Gas Temp. Deg. C +1.0 Deg C +1.3

    COMPUTATION OF HEAT RATE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    10/92

    COMPUTATION OF HEAT RATE

    DIRECT METHOD ( COAL BASED)

    RATIO OF HEAT INPUT TO GROSS GENERATION

    COAL CONSUMPTION X COAL GCV

    HEAT RATE = ----------------------------------------------------------

    GROSS GENERATION

    EASY CALCULATION

    FEW PARAMETERS

    ANALYSIS OF DEVIATION OF HEAT RATE NOT POSSIBLE

    UNCERTAINTY IS VERY HIGH

    COMPUTATION OF HEAT RATE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    11/92

    COMPUTATION OF HEAT RATE

    LOSS METHOD ( PARAMETERS BASED)

    RATIO OF TURBINE CYCLE HEAT RATE TO BOILER EFFICIENCY

    TURBINE CYCLE HEAT RATE *100

    HEAT RATE = ----------------------------------------------------------

    BOILER EFFICIENCY

    DETAILED ANALYSIS OF DEVIATION OF HEAT RATE POSSIBLE

    MEASUREMENT OF MANY PARAMETERS IS REQUIRED

    LONG CALCULATION

    COMPUTATION OF HEAT RATE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    12/92

    COMPUTATION OF HEAT RATE

    GROSS TURBINE CYCLE HEAT RATE

    TURBINE CYCLE HEAT RATE (KCAL/KWH) =

    Qms(Hms- Hfwo) + Qhrh(Hhrh-Hcrh)+Qrh(Hhrh- Hrhs)

    -----------------------------------------------------------------------GROSS LOAD

    COMPUTATION OF HEAT RATE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    13/92

    COMPUTATION OF HEAT RATE

    HEAT RATE & EFFICIENCY

    OUT PUT

    EFFICIENCY = ------------------

    IN PUT

    860 X 100

    EFFICIENCY (%) = -------------------

    HEAT RATE

    COMPUTATION OF HEAT RATE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    14/92

    COMPUTATION OF HEAT RATE

    EXAMPLE OF HEAT RATE & EFFICIENCY

    DESIGN GROSS TURBINE CYCLE HR = 1985 KCAL / KWH

    860 X 100

    DESIGN EFFICIENCY OF TURBINE CYCLE =------------ = 43.3 %

    1985

    ACTUAL GROSS TURBINE CYCLE HR = 2050 KCAL / KWH

    860 X 100

    ACTUAL EFFICIENCY OF TURBINE CYCLE =------------ = 41.95 %

    2050

    COMPUTATION OF HEAT RATE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    15/92

    COMPUTATION OF HEAT RATE

    EXAMPLE OF HEAT RATE & EFFICIENCY

    DESIGN UNIT HEAT RATE = 2274 KCAL / KWH

    860 X 100

    DESIGN EFFICIENCY OF UNIT =------------ = 37.8 %

    2274

    ACTUAL UNIT HEAT RATE = 2400 KCAL / KWH

    860 X 100

    ACTUAL EFFICIENCY OF UNIT = ------------ = 35.8 %

    2400

    MAXIMUM LOSS IN CONDENSER APPROXIMATE 58 %

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    16/92

    HEAT LOSS

    HEAT LOSS DUE

    TO OPERATING

    PARAMETERS

    HEAT LOSS DUE

    TO EQUIPMENT

    PERFORMANCE

    CONTROLABLE

    HEAT LOSS

    UN-CONTROLABLE

    HEAT LOSS

    ACCOUNTABLE UN ACCOUNTABLE

    DRAIN VALVE PASSING

    /RADIATION LOSS

    HEAT LOSS DUE TO OPERATING PARAMETER

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    17/92

    HEAT LOSS DUE TO OPERATING PARAMETER

    1. LOAD (PARTIAL LOADING) ACCOUNTABLE /CONTROLABLE

    2. MS PR. BEFORE ESV ACCOUNTABLE / CONTROLABLE

    3. MS TEMP. BEFORE ESV ACCOUNTABLE / CONTROLABLE4. HRH TEMP. BEFORE IV ACCOUNTABLE / CONTROLABLE

    5. RE HEATER SPRAY ACCOUNTABLE / CONTROLABLE

    6. COND VACUUM ACCOUNTABLE / CONTROLABLE

    7. CW INLET TEMP ACCOUNTABLE /UN-CONTROLABLE

    8. CW FLOW ACCOUNTABLE / CONTROLABLE

    9. DM MAKEUP ACCOUNTABLE / CONTROLABLE

    10. FW TEMP. AT HPH 6 O/L ACCOUNTABLE / CONTROLABLE

    11. APH EXIT FLUE GAS TEMP ACCOUNTABLE / CONTROLABLE

    12. EXCESS O2 ACCOUNTABLE / CONTROLABLE

    HEAT RATE IMPROVEMENT PLAN

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    18/92

    HEAT RATE IMPROVEMENT PLAN

    REAL TIME HEAT RATE

    DEVIATIONDAILY HEAT RATE

    DEVIATION

    REMEDIAL ACTION

    MONITORING

    PERFORMANCE TESTING

    BOILER EFFICIENCY TEST

    TURBINE CYCLE HEAT RATE

    CONDENSER PERFORMANCE

    HEATER PERFORMANCE

    TURBINE EFFICIENCY

    HELIUM LEAK DETECTION TESTPRESSURE SURVEY

    OXYGEN SURVEY

    RAPH PERFORMANCE

    MILL CLEAN AIR FLOW TEST

    MILL DIRTY AIR FLOW TEST

    HOT PA TRAVERSE TEST

    HIGH VELOCITY THERMOCOUPLE TEST

    COOLING TOWER PERFORMANCE TEST

    ANALYSIS OF TEST RESULT AND

    REMEDIAL ACTION

    TRENDING

    TRENDING

    OF

    KEY PARAMETE

    AND

    EFFICIENCY TERESULTS

    FOR MONITORI

    OF

    RATE OF

    DETORIATIO

    DADRI THERMAL PLANT ON LINE HEAT RATE DEVIATION

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    19/92

    DADRI THERMAL PLANT-ON LINE HEAT RATE DEVIATION

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    20/92

    DAILY HEAT RATE DEVIATION REPORT

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    21/92

    DATE: 28-May-07

    S No. Unit

    (A) Accountable Heat Rate Dev Kcal/kWh Design

    1 Load ( Partial loading) MW 210.0 211.9-2.5 214.6 -6.0 216.3 -8.18 214.6 -6.0

    2 M S Pr before ESV Kg/cm 2 150.0 150.9 -1.57 150.6 -1.01 150.6 -1.02 150.8 -1.38

    3 M.S.Temp before ESV Deg. C 537.0 538.1 -1.78 539.4 -3.77 538.1 -1.79 538.3 -2.09

    4 HRH Temp before IV Deg. C 537.0 538.6 -1.11 537.2 -0.10 536.6 0.31 535.4 1.14

    5 Reheater Attemperation T/Hr 0.0 5.83.19 4.3 2.24 8.70 4.48 7.0 3.73

    6 mm Hg

    76.0 60.1 -2.04 55.1 -11.72 60.8 -2.25 67.9 13.56

    7 C W Inlet Temp. Deg. C 32.0 27.8-29.76 27.8 -30.08 28.1 -28.15 27.8 -29.76

    8 DM Make-Up % MCR 0.0 0.0003.61 0.00 13.15 0.00 3.24 0.00 5.73

    9 FW Temp at HPH O/L Deg. C 247.0 243.2 3.1 242.0 4.5 244.1 3.3 242.3 4.3

    10 Dry Flue gas loss (DFG) % 4.77 4.89 3.06 5.1 9.04 5.81 28.09 5.73 25.39

    Effect of coal quality on DFG % 0.0 0.0 0.0 0.0

    (a) Oxygen at eco outlet % 3.54 2.62 2.35 2.57 2.86

    (b) APH exit flue gasTemp.(Corr) Deg. C 136.0 127.3 135.8 144.9 142.9

    (c) APH -A Leakage %10.0 19.4 18.8 18.6 18.2

    APH -B Leakage %10.0 16.8 14.5 19.3 16.3

    11 Wet Flue Gas Loss % 5.83 5.75-2.03 5.78 -1.21 5.82 -0.24 5.82 -0.31

    (a) Moisture in coal % 12.0 10.18 10.18 10.18 10.18

    (b) % of Hydrogen in Coal %2.26 2.76 2.76 2.76 2.76

    12 Unburnt Carbon loss %1.2

    Ref.0.80.72 -2.24 0.76 -1.01 0.79 -0.16 0.69 -2.82

    13 Startup oil Consumption KL 0.0 0.00 0.0 0.00 0.0 0.0 0.0 0.00

    14 HPT efficiency % 85.45 83.1010.87 84.23 5.59 83.03 11.27 84.22 5.65

    15 IPT efficiency % 90.38 88.18 9.99 88.01 10.67 88.00 10.90 88.32 9.28

    Total (A) Kcal/kWh -9.13 -9.7 19.8 26.4

    (B) Unaccountable H R Deviation Kcal/kWh 30.1 22.2 29.1 12.9

    Total Heat Rate Deviation ( A+ Kcal/kWh 21.0 12.5 48.8 39.3

    (C) Design Heat Rate at Full Load Kcal/kWh 2274.0 2274.0 2274.0 2274.

    (D) Derived Unit Heat Rate (A+BKcal/kWh 2295.0 2286.5 2322.8 2313.

    Condenser Back Pr (loss due

    to CW flow , load ,dirty tube

    and air ingress)

    Heat

    Rate

    Dev.

    Param

    eter

    Value

    Heat

    Rate

    Dev.

    Parame

    ter

    Value

    ParameterParam

    eter

    Value

    Heat

    Rate

    Dev.

    Param

    eter

    Value

    DAILY HEAT RATE DEVIATION REPORT

    UNIT-1 UNIT-2 UNIT-3 UNIT-4

    Heat

    Rate

    Dev.

    Accountable Heat Rate Deviation

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    22/92

    Accountable Heat Rate Deviation

    S No. Unit DESIGN1 Load ( Partial loading) MW 210.0 211.9 -2.52 M S Pr before ESV Kg/cm 2 150.0 150.9 -1.573 M.S.Temp before ESV Deg. C 537.0 538.1 -1.78

    emp e ore eg. 537.0 538.6 -1.115 Reheater Attemperation T/Hr 0.0 5.8 3.19

    6 mm Hg76.0 60.1 -2.04

    7 C W Inlet Temp. Deg. C 32.0 27.8 -29.768 DM Make-Up % MCR 0.0 0.000 3.619 FW Temp at HPH O/L Deg. C 247.0 243.2 3.1

    10 Dry Flue gas loss (DFG) % 4.77 4.89 3.06

    11 Wet Flue Gas Loss % 5.83 5.75 -2.0312 Unburnt Carbon loss % 1.2 0.72 -2.24

    13 Startup oil Consumption KL 0.0 0.00e c ency 85.45 83.10 10.87

    15 IPT efficiency % 90.38 88.18 9.99

    Total (A) Kcal/kWh -9.13

    CW flow , load ,dirty tube and air

    ingress)

    ParameterParameter

    Value

    Heat Ra

    Dev.

    Calculation of Unaccountable Heat Rate

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    23/92

    Calculation of Unaccountable Heat Rate

    1: Calculation of Unit Heat Rate by monthly Turbine

    Cycle Heat Rate Test and Boiler Efficiency Test

    Turbine Cycle Heat Rate

    2: Unit Heat Rate =--------------------------------- x100

    Boiler Efficiency

    3: Total HR Deviation = Test Unit HR- Design Unit HR

    4: Total HR Deviation = Accountable HR+ Unaccountable H

    5: Unaccountable HR= Total HR Deviation -- Accountable H

    Accountable HR is calculated taking parameters at the time o

    HEAT LOSS DUE TO EQUIPMENT

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    24/92

    HEAT LOSS DUE TO EQUIPMENT

    PERFORMANCE

    ;

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    25/92

    FACTOR AFFECTING CONDENSER BACK PR

    1 ) C W inlet temperature

    2 ) C W Flow

    3 ) Condenser Heat Load4 ) Air ingress

    5 ) Scale inside Tube

    6 ) Condenser Tube Choking

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    26/92

    EFFECT OF CW TEMP ON BACK PRESSURE

    32 35.639.9 43.7

    48.453.5

    59.365.6 72.4

    79.88

    0

    20

    40

    60

    80

    100

    15 17 19 21 23 25 27 29 31 33 3CW INLET TEMP ( DEG C)

    COND.BACK

    PRESS

    URE(MMH

    GC)

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    27/92

    EFFECT OF CW FLOW ON BACK PRESSURE

    7375.04

    76.9879.09

    81.45

    84.09

    87.15

    90.64

    70

    75

    80

    85

    90

    95

    100

    17000 18000 19000 20000 21000 22000 23000 2400CW FLOW M3/HR

    COND

    .BACK

    PRESSURE

    (MMHGC)

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    28/92

    EFFECT OF CONDENSER HEAT LOAD

    79.8

    78.2

    76

    73.8

    73

    74

    75

    76

    77

    78

    79

    80

    81

    23 23.5 24 24.5 25 25.5 26 2

    CONDENSER HEAT LOAD ( K CAL/HR)

    CONDEN

    SERBACK

    PR(M

    MHGC)

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    29/92

    CONDENSER PERFORMANCE

    EVALUATION OF CONDENSER PERFORMANCE

    1: Deviation in condenser back pressure

    2: TTD = Terminal Temperature Difference

    = Tsat- CW outlet Temp

    whereTsat = Saturation Temp corresponding to back pressure

    3: Under cooling = Tsat- Condensate temp in Hot well4: Air Depression = Tsat T air steam mixure5: DISSOLVED O2 IN CONDENSATE IN HOT WELL

    6 : DIFFERENTIAL PRESSURE OF CW IN/OUTLET

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    30/92

    CONDENSER PERFORMANCE

    Deviation in condenser back pressure

    Dev. of test condenser back pressureFrom expected back pressure

    Dev. of corr condenser back pressFrom Design back pressure

    Primary Method LMTD MethodLMTD Method

    CALCULATION OF EXPECTED SATURATION TEMP AND

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    31/92

    CALCULATION OF EXPECTED SATURATION TEMP ANDEXPECTED BACK PRESSURE AT VARIATION OFDIFFERENT OPERATING PARAMETERS

    The following equations are used

    Expected Tsat = CW inlet temp + CW temp rise + TTD( General Equation)

    Expected back pressure = Pressure corresponding toExpected saturation temp

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    32/92

    1) Expected Tsat (d) = CW inlet temp (d) + CW temp

    rise (d) + TTD (d)

    32 (deg C)+ 10.8 (deg C)+ 3.2 (deg C) = 46 ( deg

    Expected back pressure (d) = Pressure

    corresponding to Expected saturation temp (d)76 mm HgC = Pd

    Eff t f CW i l t l

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    33/92

    2) Effect of CW inlet aloneExpected Tsat = CW inlet temp (a) + CW temp rise (d

    + TTD (d)

    Expected back pressure = Pressure correspondingto Expected saturation temp = PcwiVariation due to CW inlet temp = Pd Pcwi

    Example:C W inlet temperature ( Avg) = 17.7 Deg CDesign C W inlet temperature = 32.0 Deg C

    Expected Tsat = 17.7+10.8+3.2 = 31.7 Deg C

    Expected back pressure = 35.12 mmHgcGain due to CW inlet temp = 76-35.12 = 40.88 mm

    Hgc

    3) Eff f CW i l CW fl d l d

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    34/92

    3) Effect of CW inlet , CW flow and loadExpected Tsat = CW inlet temp (a) + CW temp rise (a

    + TTD (d)= CW outlet temp (a) + TTD (d)Expected back pressure = Pressure correspondingto Expected saturation temp = Pcwif

    Variation due to CW flow and load = Pcwif PcwiExample: CW Inlet temp = 17.7 , CW outlet temp =32Expected Tsat = 32+3.28 = 35.28 Deg CExpected back pressure = 42.83

    Deviation due to CW flow and Load= 42.83-35.12=7.71 mm HGC

    Back pr variation due to air and dirty tube ( Bad

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    35/92

    performance of condenser

    Actual condenser back pr = 40.90 mm HgCExpected Back pressure = 42.83 mm HgC

    = Condenser Back Pressure (a)- Pcwif

    =40.90-42.83 = -1.93

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    36/92

    CALCULATION OF EXPECTED BACK

    PRESSURE BY LOG MEAN TEMP

    DIFFERENCE ( LMTD ) METHOD

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    37/92

    CONDENSER PERFORMANCE

    CALCULATION OF EXPECTED SATURATION TEMP ANDEXPECTED BACK PRESSURE BY CHANGE IN LMTD METHOD.

    DETERMINATION OF CONDENSER DUTY

    Condenser Duty = (Heat Added MS + Heat Added CRH +Heat added by BFP + Heat added by RH

    Attemperation) - 860 (Pgen + Pgen

    losses + Heat Loss rad.)

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    38/92

    CONDENSER PERFORMANCE

    DETERMINATION OF CONDENSER FLOW:

    Cond DutyCW Flow = ------------------------ m3/hr

    Cp (Tout Tin) x DWhere:

    C.W Flow = m3/hrCond Duty = kcal/hrCp = 1 kcal/kg o C (Specific heat of water)D = 1000 kg/cubic meter (Density of water)Tout = OC (Average C.W Outlet temp.)Tin = OC (Average C.W Inlet temp.)

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    39/92

    CONDENSER PERFORMANCE

    Water Velocity in Condenser Tube

    C.W Flow Rate x 106Tube Velocity = ---------------------------------------------------

    --3600 x Tube Area x (Number Tubes

    NumberPlugged)

    Where:Tube Velocity = m/sec

    C.W Flow Rate = m3/hrTube Area = mm2

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    40/92

    CONDENSER PERFORMANCE

    Computation of Log Mean Temperature Difference (LMTDTout - Tin

    LMTD = -------------------Tsat Tin

    Ln ----------Tsat Tout

    Where:LMTD = 0C

    Tsat = 0 C (saturation temp corresponding to backpressure)

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    41/92

    DETERMINATION OF EXPECTED LMTD FOR DEVIATION FROM DESIGN VALUE

    * Correction for C.W. inlet temperature (ft)

    Saturation Temp Test - LMTD testFt = -------------------------------------------Saturation Temp Design - LMTD design

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    42/92

    Correction for C.W. flow (fw)

    1/2Tube velocity test

    fw = -----------------------Tube velocity design

    *Correction for condenser heat load (fq)Cond. duty design

    fq = ------------------------Cond. duty test

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    43/92

    Expected LMTDLMTD expected = LMTD test x ft x fw x fq oC

    Determination of Expected Saturation Temperature:(taking into consideration deviation in operating value fromdesign values)

    [Tin Tout x eZ]Sat. Temp. Expected: = --------------------------- oC

    [1 - eZ

    ]Where:Tin = Design C.W. inlet temp.Tout = Design C.W. outlet temp.

    Tout Tin

    Z = ----------------------Expected LMTD

    Expected Back Pressure = Derived from steam tablecorresponding to expected saturation temperature.

    ACTION FOR IMPROVINGCONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    44/92

    CONDENSER PERFORMANCE

    1: REGULAR MONITORING OF CONDENSER PERFO

    2: IDENTIFICATION AND ATTENDING OF HIGH

    ENERGY DRAIN VALVE PASSING

    3:IDENTIFICATION OF AIR INGRESS POINTS BY

    HELIUM LEAK DETECTION TEST ( WHEN UNIT IS RUNNI

    4: IDENTIFICATION OF AIRINGRESS POINT BYSTEAM PRESSURISATION TEST(DURING UNIT OVERHAUL

    5:MAINTAINING PROPER SEAL STEAM PRESSURE

    AND TEMP

    7: PROPER SEALING OF ALL THE VALVE GLANDSIN LINES UNDER VACUUM

    ACTION FOR IMPROVINGCONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    45/92

    CONDENSER PERFORMANCE

    8: PROPER SEALING OF GLANDS OF STANDBY C E

    9:MONITORING SEAL WATER PARAMETERS OF

    VACUUM PUMP

    10: MONITORING OF AIR DEPRESSION

    11: JET/CONCO CLEANING OF WATER TUBES

    12: PROPER VENTING OF WATER BOX DURINGCHARGING OF CONDENSER

    13:ENSURE PROPER OPERATION OF HP FLASH BO

    SPRAY SYSTEM

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    46/92

    IDENTIFICATION OF AIR INGRESS

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    47/92

    AIR INGRESS IDENTIFICATION

    HELIUM

    LEAK DETECTION TEST

    CONDENSER FLOOD TEST

    STEAM PRESSURISATION TEST

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    48/92

    WORKING PRINCIPLE:

    The Helium Leak Detection Test is new method based on heliumacting as tracer gas that allows an easy and quick location of leaksThe use of helium is advantageous because it is a nontoxic,nonflammable, relatively inexpensive and quickly diffuses throughsmall leaks.

    Helium is sprayed at the point where leak is to be checked bymeans of portable unit which has facility of helium spray. If there iany ingress inside condenser, Helium will also enter with air which

    is displayed in Heli Test Gen.

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    49/92

    Heliu

    mCylinder

    Spray gun

    Set up for Helium Spray

    PREPARATION FOR TEST:-(A)Set up for Helium Spray:1: Install a gas regulator on Helium gas cylinder.

    2: Connect a spray gum through PVC tube. The Portable Leak Detector ( PLI ) may be also usefor spraying helium .

    3: Adjust helium gas pressure 1.5 to 2.0 Kg / cm 2.

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    50/92

    Vacuum Pump

    Exhaust

    Vacuumpump

    Helium leak

    Detector

    Moisture

    separator

    Vacuum

    Pump

    Connecting pipe

    Water drop

    separator

    Silica gel

    Set for Helium leak Detection

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    51/92

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    52/92

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    53/92

    CONDENSER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    54/92

    CONDENSER FLOOD TEST

    &STEAM PRESSURISATIONTEST Condenser flood test is done by feeling DM water incondenser shell side and water leakage is checked ( if any)Standard procedure should be folllowed for Condenser flood

    testSteam pressurisation test is done by pressurisation ofcondenser by steam leakage is checked ( if any)Standard procedure should flow for Condenser steampressurisation test

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    55/92

    LP/HP HEATERS PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    56/92

    LP / HP HEATER PERFORMANCE IS MONITORED BY

    MONITORING FOLLOWING PERFORMANCES INDICES

    TERMINAL TEMP DIFFERENCE ( TTD)

    TTD= Ts-FW outlet temp

    DRAIN COOLER APPROACH ( DCA)

    DCA = DRIP TEMP- FW inlet temp

    TEMP RISE = (FW outlet temp- FW inlet temp )

    LP/HP HEATERS PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    57/92

    TTD HIGH:

    FOULING IN SIDE TUBE

    SCALE OUTSIDE OF TUBE

    AIR BLANKETING

    MIXING OF WATER THROUGH PARTING PLANE OF

    WATER BOX ( SHORT CIRCUITING) ONE OR MORE PREVIOUS HEATER/S OUT OF SERVICE

    HIGH LEVEL OF HEATER ie POOR CASCADING SYSTE

    HIGH DCA

    LP/HP HEATERS PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    58/92

    HIGH DCAHEATER LEVEL TOO LOW ie POOR CASCADING SYSTEM

    LOW TEMP RISE LOW EXTN STEAM PRESSURE

    From turbine extration

    Isolating valve not fully open

    FOULING IN SIDE TUBE

    SCALE OUTSIDE OF TUBE

    AIR BLANKETING

    MIXING OF WATER THROUGH PARTING PLANE OFWATER BOX ( SHORT CIRCUITING)

    ONE OR MORE PREVIOUS HEATER/S OUT OF SERVICE

    HIGH LEVEL OF HEATER ie POOR CASCADING SYSTE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    59/92

    TURBINE EFFICIENCY

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    60/92

    Used Energy

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    61/92

    Used EnergyTurbine Efficiency =

    Available Energy

    hin - hout=

    hin hisen

    Wherehin = Enthalpy at Cylinder Inlet conditionshout = Enthalpy at Cylinder Outlet conditionshisen = Isentropic Enthalpy

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    62/92

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    63/92

    COOLING TOWERPERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    64/92

    Wet Bulb Temperature (WBT) at Tower inlet

    WBT/ DBT for RH

    Cold Water Temperature

    Hot Water Temperature

    CW Flow to each Tower

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    65/92

    Approach

    Difference between the Cold Water Temperatureat CT outlet and Inlet air Wet Bulb Temperature

    RangeDifference between the Hot Water Temperature(inlet to CT) and Cold Water Temperature(outlet of CT)Effectiveness

    Ratio of Range to Range+Approach

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    66/92

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    67/92

    Tower Capability

    The most reliable means to assess thecooling tower thermal performance.

    It is defined as the percentage of water thatthe tower can cool to the design cold watertemperature when the inlet wet-bulb,cooling range, water flow rate at theirdesign value.

    Tower Capability

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    68/92

    Tower Capability in Percentage = Test Flow RatePredicted Water

    Test flow rate :Measured by 3 port hydraulic pitot

    Predicted Water Flow Rate

    Calculated from Manufacturer graphs and actual

    test condition

    T C bilit

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    69/92

    Tower Capability

    Tower Capability in Percentage = Adjusted Test Flow RatePredicted Water Flow Rate

    Adjusted Test = Measured flow x { Design KW of fans}0.333

    Flow Rate { Test KW of Fans }

    Predicted Water Flow Rate = Calculated from Manufacturergraphs and actual test

    conditionsi.e. WBT, Range and Cold water

    temperature.

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    70/92

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    71/92

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    72/92

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    73/92

    Dry flue gas loss

    BOILER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    74/92

    Dry flue gas loss

    Loss due to fuel moisture

    Loss due to fuel hydrogen

    Loss due to air moisture

    Loss due to unburnt carbon

    Radiation loss

    Other losses like sensible heat loss

    ONLY TWO LOSSES ie DFG LOSS AND

    UNBURNT CARBON LOSS ARECONTROLLABLE

    BOILER PERFORMANCE

    S N Heat Losses (%) design Correcte

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    75/92

    S.N Heat Losses (%) design CorrecteTest Va

    1 Dry Gas Loss % 4.77 5.303

    Wet flue gas loss % 5.83 5.83

    2

    Loss due to UnburntCarbon

    %

    1.2 0.97

    4Loss due to moisture in

    air%

    0.12 0.12

    5

    Radiation & unaccountedLoss

    %

    0.78 0.78

    Total loss 12.7 13.0BOILER EFFICIENCY % 87.3 87.00

    OPTIMISATION OF BOILER EFFICIENCY

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    76/92

    HCV ALL LOSSES EFFICIENCY

    GAS OUT TEMPLOSSES (DRY GAS, HYDROGEN

    FUEL MOISTURE AIR

    MOISTURE, SENSIBLE HEAT

    RATE LOSS OF ASH)

    EFFICIENCY

    EXCESS AIR

    LOSSES (DRY GAS, AIR

    MOISTURE )

    UNBURNTS LOSS

    EFFICIENCY

    FUEL MOISTURE LOSSEFFICIENCY

    AIR MOISTURELOSS EFFICIENCY

    OPTIMISATION OF BOILER EFFICIENCY

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    77/92

    H2 IN FUEL H2 LOSS EFFICIENCY

    UNBURNTSUNBURNTS EFFICIENCY

    MILL REJECT RATE LOSS EFFICIENCY

    FUEL MOISTURE LOSSEFFICIENCY

    MILL REJECT CVLOSS EFFICIENCY

    DRY FLUE GAS LOSS HIGH

    BOILER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    78/92

    DRY FLUE GAS LOSS HIGH

    INEFFECTIVE SOOT BLOWING

    HIGH DRAFT

    POOR RAPH PERFORMANCE

    SEAL LEAKAGE IN APH

    HIGH EXCESS AIR

    HIGH TEMPERING AIR

    AIR INGRESSHIGH APH DP

    UNBURNT CARBON LOSS:

    BOILER PERFORMANCE

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    79/92

    POOR COAL FINNESS

    IMPROPER COMBUSTION

    Performance Indicators

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    80/92

    Air-in-Leakage

    Gas Side Efficiency

    X - ratio

    Gas & Air side pressure drops

    AH Performance Monitoring

    O2 & CO2 in FG at AH Inlet

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    81/92

    2 2

    O2 & CO2 in FG at AH Outlet

    Temperature of gas entering / leaving air heater

    Temperature of air entering / leaving air heater

    Diff. Pressure across AH on air & gas side

    Air Heater Leakage - Calculation

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    82/92

    Empirical relationship using the change in

    concentration of O2 in the flue gas

    = O2out - O2in * 0.9 * 100

    (21- O2out

    )

    Gas Side Efficiency

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    83/92

    Ratio of Gas Temperature drop across the air

    heater, corrected for no leakage, to the temperaturehead.

    = (Temp drop / Temperature head) * 100

    where Temp drop = Tgas in -Tgas out (no

    leakage)

    Temp head = Tgasin - T air in

    Gas Side Efficiency = (333.5-150.5) / (333.5-36.1) = 61.5 %

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    84/92

    Tgas out (no leakage) = The temperature at which

    the gas would have left the air heater if there were nAH leakage

    = AL * Cpa * (Tgas out - Tair in) + Tgas out

    Cpg * 100

    X Ratio

    Ratio of heat capacity of air passing through the air

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    85/92

    heater to the heat capacity of flue gas passing

    through the air heater.

    = Wair out * Cpa

    Wgas in * Cpg

    = Tgas in - Tgas out (no leakage)

    Tair out - Tair in

    Design 0.69 %

    X-Ratio depends onAir infiltration, air & gas mass flow rates

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    86/92

    , gX-ratio does not provide a measure of thermal

    performance of the air heater, but is a measure of theoperating conditions.

    A low X-ratio indicates either excessive gas weight

    through the air heateror that air flow is bypassing the airheater.

    A lower than design X-ratio leads to a higher thandesign gas outlet temperature & can be used as an

    indication of excessive tempering air to the mills or

    excessive boiler setting infiltration.

    Air Ingress Calculations

    Ai i tifi ti i d ith th

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    87/92

    Air ingress quantification is done with the same

    formulae as those used for calculation of AHleakage

    Air ingress = O2out - O2in * 0.9 * 100

    (21- O2out)

    The basis of O2 or CO2 calculation should be the

    same either wet or dry.

    PASSING OF VALVES

    VALVE PASSING

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    88/92

    INCREASES CONDENSER HEAT LOAD

    INCREASES HEAT RATE

    HP/LP BY PASS VALVE PASSINGEFFECTS ON HEAT RATE

    CONCLUDING REMARKS:CONCLUDING REMARKS

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    89/92

    FOR IMPROVING HEAT RATE

    Maintain critical parameter as per rated value

    Maintain optimum HP heater level.

    There is possibility of air ingress in LP heater1 and LP heater -2 as both heaters are running

    in vacuum even at full load. Air evacuation

    valve connected to condenser may be kept crac

    open

    Identify air ingress in vacuum system and getCONCLUDING REMARKS

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    90/92

    attended

    Ensure proper sealing of valves which are in

    vacuum

    Reduce High energy drain passing

    Monitor for critical valve (like HP/LP by pass

    valve) passing

    Avoid R H spray

    Minimize system water / steam leakage

    Optimize deaerator vent openingCONCLUDING REMARKS

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    91/92

    Optimize excess oxygen

    Optimize tempering air

    Monitor vacuum pump seal water temp

  • 7/29/2019 Www.emt India.net Presentations2010 12 Power 13 14May2010 DahanuHeatRateImprovement13.05.2010

    92/92