Top Banner
Lurgi MegaMethanol Technology Delivering the building blocks for future fuel and monomer demand Presented at the DGMK Conference „Synthesis Gas Chemistry“, October, 4. – 6., 2006 Dr. Thomas Wurzel, Lurgi AG
45
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Lurgi MegaMethanol Technology Delivering the building blocks for future fuel and monomer demand

    Presented at the DGMK Conference Synthesis Gas Chemistry, October, 4. 6., 2006

    Dr. Thomas Wurzel, Lurgi AG

  • 2Agenda

    Motivation

    Todays methanol industry

    Towards larger capacities a joint effort of R&D, catalyst development and plant engineering

    Monomer and fuel from Methanol

    Conclusions

  • 302468

    1 01 21 41 61 820222426283 0

    1970 198 0 1990 2 001 2 02 0 2 05 0

    Billion tons of coal equivalent

    Increasing energy demand

  • 4How will the future look like?

    Sources:www.spiegel.de/fotostrecke/0,5538,16327,00.htmlhttp://www.pacificrenewables.com/fischer-tropsch.htm

  • 5Spoilt for feedstock choices

    1110 hits 754 hits

    1380 hits

  • 6Syngas & MeOH the flexible dream team

    CoalNatural GasBioMassTar Sands etc.

    Syngas Methanol

    ChemicalsPropyleneDMEFuels

  • 7Chemical Methanol Market

    Today developmentFormaldehyde 12 MM tpa upMTBE 6 MM tpa down Acetic Acid 3 MM tpa up Miscellaneous Uses 11 MM tpa upTOTAL 32 MM tpa

    annual increase 3 % i. e. 1 MM tpa

    pre-dominant feedstock: natural gas

    close the gap in low cost methanol supply: MegaPlants (> 1 million tpy) selection of syngas technology is key 60 65 % of ISBL costto economic methanol production

  • 8Ways to produce Syngas

    TubularReforming

    Tubular Reforming

    Pre-reforming

    H2SRectisol

    MPG

    H2SRectisol

    Gasification

    TubularReforming

    Cold BoxPSA

    CO2Removal

    Autotherm.Reforming

    CO ShiftConversion

    MPG

    Pre-reforming

    Secondary Reforming

    PSA

    Coal NaphthaHeavyResidue

    Synthesis Gas

    Natural GasRefinery

    Off-gasesLPG

    H2 H2 CO

  • 9H2/CO Ratios for Syngas Generation

    CMR= Co m b i n e d Me t h a n e Re f o r m i n g

    1 2 3 4 5

    MPG

    A T R

    C MR

    S MR

    H2/CO ratioF e e d N atu ral G as

  • 10

    Typical Single-Train Capacities

    100 1.000 10.000 100.000 1.000.000

    MeOH Reforming

    MPG- PartialOxidation

    AutothermalReforming

    Steam Reforming

  • 11

    Lurgi Highlights for Syngas Production

    Lurgi offers all gas-b ased sy n gas t ec h n ologies W orld largest sin gle t rain sy n gas un it ( A T LA S ) W orld largest m ult ip le t rain sy n gas un it ( M osselb ai) H igh est out let t em p erat ure for a st eam reform er ( B P

    S ic h uan p lan t ) V ast ex p erien c e in h an d lin g ox y gen ( sin c e 1 9 2 8 ) 5 0 + y ears ex p erien c e in A T R ( sin c e 1 9 5 4 ) M ore t h an 1 0 0 , 0 0 0 , 0 0 0 N m 3 / d ay c ap ac it y in st alled P ilot p lan t t o t est m ore sev ere op erat in g c on d it ion s

  • 12

    Syngas Benchmarks for MeOH

    Parameter Steam Reforming

    Autothermal Reforming

    Combined Reforming

    Stoechiometric number, SN

    2.95 2.05 2.05

    CO/CO2 ratio 2.3 2.5 2.8

    Methane slip, % (dry)

    3.28 1.76 2.10

    Steam reformer duty, GJ/hr

    1740 - 460

    Syngas flow at compressor suction, m3eff. / hr

    43713 20240 19433

  • 13

    Syngas Benchmarks for MeOH

    Parameter Conventional Technology

    MegaMethanol Technology

    Capacity, MTPD 2500 5000

    Natural gas consumption (MMBTU/ton MeOH)

    30 28.5

    Investment1), % 100 130

    Operating cost, % 100 97

    Production cost, % 100 79

    1) Oxygen supply over the fence

  • 14

    Preferred route: Oxygen-based

    ATR: homogeneous/heterogeneous formation of syngas

    principle reactions:

    combustion of methane

    steam reforming of methane

    Water gas shift reaction

  • 15

    Features of Autothermal Reformer

    Low S/C ratio 1.5 - 0.5 mol/mol

    high CO selectivity

    low CO2 emission

    Outlet temperature 950 - 1050 C

    Low methane slip

    Close approach to equilibrium

    Pressure: 40 bar realised (large scale)

    70 bar realised Demoplant

    High gas throughput possible

    Up to 1,000,000 Nm3 gas /hr

  • 16

    Reactor Design

    uncooled burner (no CW circuit) proper mixing and combustion free of vibration

    Burner and Reactor as one unit

    no start-up burner

    low SiO2 -Al2O3 Nickel catalyst high thermal stability

    multilayer refractory lining thermal protection

  • 17

    Development steps towards MegaSyn

    Atlas Methanol - 5000 mt/d, commissioned 2004

  • 18

    Milestones in ATR History

    1922 Autothermal Reforming(recuperative mode)

    1928 Lurgi introduces oxygen-based gas production (coal gasification)

    1954 First Lurgi ATR (Towngas production)

    1979 First application of combined reforming

    2004 First MegaSyn Application in operation(ATLAS plant)

  • 19

    Development of Technology

    Picture 1 Towngas, Hamburg, 1954

    Picture 2 FT Syngas, Mosselbai, 1993

    Picture 3 MegaMethanol, ATLAS, 2004

  • 20

    Towngas, Hamburg, 1954

    Feedstock: Refinery OffgasProduct: TowngasCapacity: 25.2 MMSCFD

  • 21

    PetroSA, Mosselbay, 1993

    Feedstock: Natural GasProduct: Fischer-Tropsch SyngasCapacity: 252 MMSCFD per train

  • 22

    ATLAS, Trinidad, 2004

    Feedstock: Natural gasProduct: Methanol SyngasCapacity: 420 MMSCFD

  • 23

    Base of Fluid Dynamical Simulation

    Thermo-chemicalModel

    Navier-StokesEquations

    Reactor/Burner

    Geometry

    Velocitytemperature pattern

    CFD was introduced approx. 15 years ago in-house expert group established and growing standard tool for design work intensive model validation performed

  • 24

    Advantages of Oxygen-based Syngas Generation

    Reduced investment (20 30 %) compared to conventional steam reforming

    Higher energy efficiency (less CO2 emissions)

    Higher flexibility towards feedstock fluctuation

    Availability of one single train plant is higher than of two smaller trains

  • 25

    The next generation:HP POX Pilot Plant

    Demonstrationplant for production of Syngas from Natural Gas, Liquid Hydrocarbons/Slurries at pressures up to 100 bar sponsored by BMWA, SMWK, mg technologies

  • 26

    Development of Synthesis Loop1. Conventional Synthesis Loop

    Synthesis Gas16 bar

    Cooling Water

  • 27

    Development of Synthesis LoopLurgi Steam Raising Reactor

    Quasi isothermal Operation Extremely quick transfer of Reaction Heat Methanol Yield up to 1.8 kg MeOH/l Catalyst Long Catalyst Operation Life 80 % of Reaction Heat converted to MP steam Safe and uniform Temperature Control Overheating of Catalyst impossible Thermosyphon Circulation - no Pumps Easy Start-up by direct Steam Heating Fast Load Changes possible Easy and fast Load/Discharge of Catalyst

  • 28

    240

    245

    250

    255

    260

    265

    270

    275

    280

    0 0,2 0,4 0,6 0,8 1Catalyst Height

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    C

    ReactionCooling Water

    Development of Synthesis LoopTemperature Profile Steam Raising Reactor

  • 29

    Development of Synthesis LoopSteam Raising Reactors

    Steam Drum

    Inter-changer

    Reactors

  • 30

    Development of Synthesis Loop2. Two-Step Methanol Synthesis

    PurgeGas

    RecycleCompressor

    CrudeMethanol

    Compressed Synthesis Gas

    Boiler FeedWater

    Gas-cooledReactor

    Steam RaisingReactor

    MP-Steam

  • 31

    Development of Synthesis LoopLurgis Two Reactor Concept (CMC)

  • 32

    Large Single Train CapacityLow Investment CostOperation at the Optimum Reaction Route

    High Equilibrium Driving Force High Conversion Rate

    Lowest recycle/syngas ratioHigh methanol content (11 %) at reactor outlet

    Development of Synthesis LoopGas Cooled Reactor

  • 33

    0

    50

    100

    150

    200

    250

    300

    0 0,2 0,4 0,6 0,8 1Catalyst Height

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    C

    ReactionCooling Gas

    Development of Synthesis LoopTemperature Profile Gas Cooled Reactor

  • 34

    Development of Synthesis LoopSummary of Highlights / Two-Step Methanol Synthesis

    g Operation at the Optimum Reaction Route

    High Equilibrium Driving Force

    High Conversion Rateg Elimination of Reactor Feed Preheater

    g Elimination of Catalyst PoisoningThermodynamically controlled

    Steam Raising Reactor

    g Simple and Exact Reaction Control

    g Quasi Isothermal Operationg High Methanol Yieldg High Energy Efficiency

    Gas Cooled Reactor

    High Syngas Conversion Efficiency Extended Catalyst Life (almost unlimited) Large Single Train Capacity Low Investment

    g Heat of Reaction converted to MP steam(80 %)Kinetically controlled gg

  • 35

    Development of Synthesis LoopSynthesis Design Parameters

    Syngas Flow m3N/t MeOH 2580 2550

    Recycle Flow m3N/t MeOH 8500 5100

    Synthesis Loop Pressure bar 80 75

    Methanol Content mol% 7 11Reactor Outlet

    The implementation of the MegaMethanol technology represents a unique joint effortcomprising technology development and catalyst research (Sd-Chemie)

    Two step synthesis

    Conventional synthesis

  • 36

    Propylene Demand by Derivative 1990 - 2025

    Main growth by PP!

    0

    20000

    40000

    60000

    80000

    100000

    120000

    140000

    160000

    1990 1995 2000 2005 2010 2015 2020 2025

    T

    h

    o

    u

    s

    a

    n

    d

    t

    o

    n

    s

    PP ACN Cumene Oxos PO Others

    Demand growth 1990Demand growth 1990--2001 = 8.3% p.a.2001 = 8.3% p.a.Demand growth 2001Demand growth 2001--2025 = 4.5% p.a.2025 = 4.5% p.a.

    World

    source: ChemSystems

  • 37

    Steam cracker Propanedehydrogenation (PDH)C2=:C3= = 3:1 selective C3= production

    selected locations (rich NG)

    Proven Routes for C3= production

  • 38

    MTP: Simplified Process Flow Diagram

    Propylene474 kt/a 1)

    Gasoline 185 kt/a

    Fuel Gas internal use

    Process Water 935 kt/afor internal use

    DMEPre-Reactor

    ProductConditioning LPG

    41 kt/a

    Water Recycle

    Olefin Recycle

    Methanol1.667 Mt/a = 5000 t/d

    Product Fractionation

    MTP Reactors(2 operating + 1 regenerating)

    Ethylene

    1) Polymer grade

    20 kt/a

    optional

  • 39

    MTP Projects gas- and coal-based

    2009Order, Dec.05474China I (coal based)2009Order, June. 06474China II (coal based)

    2010BE in progress100Iran

    exp.s-u

    StatusproductionP/PP, kt/aPlantlocation

    Various prospects are not listed

  • 40

    Olefin Production

    Olefin Oligo-merisation

    Gasoline877 t/d

    LPG741 t/d

    Kero/Diesel6,961 t/d

    H2,70 t/d,from Methanol

    synthesisWaterrecycle

    Hydrocarbon Recycle

    Methanol19,200 t/d

    Productseparation

    + MD Hydrogenation

    Hydrocarbon Recycle

    Process water, 10,115 t/d,can replace raw water maximum diesel case

    64,000 bpd total products

    Gas-based Refinery via Methanol: Lurgis MtSynfuels

  • 41

    Synfuels, Mossel Bay, RSA

  • 42

    Natural GasC o al

    R e si d ueB i o m ass

    SyngasP l ant

    P o l y-p r o p yl e ne

    P l ant

    O l e f i n P r o d u c t i o n

    M e t h ano l P l ant

    Block Flow Diagram Routes to Fuel & Monomer

    P r o p yl e ne b o o st i ng

    O l i go m e r -i sat i o n D i e se l p o o l

  • 43

    Conclusions

    Syngas/MeOH are the key intermediate to convert any carbon containing feedstock into value added products

    Lurgi offers the whole technological chain (syngas, MeOH and monomer/fuel)

    Down-stream methanol is not a vision, it is reality!

  • 44

    Thank you!

    Methanol production

    Conventional Outlets

    Monomer Production (today)

    Fuel Production (tomorrow)

  • 45

    Comments?

    Contact :

    Dr. Thomas WurzelDirector Gas to ChemicalsDept. L-TGPhone +49 69 5808 2490Fax +49 69 5808 3032e-mail [email protected]

    Lurgi AG Lurgiallee 5D-60295 Frankfurt am MainGermanyInternet: www.lurgi.com