Top Banner
WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws Conservation Laws in low-multiplicity in low-multiplicity collisions collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University
34

WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

Dec 22, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 1

Conservation LawsConservation Lawsin low-multiplicity collisions in low-multiplicity collisions

Zbigniew Chajęcki and Michael A. Lisa

The Ohio State University

Page 2: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 2

OutlineOutline

Introduction / Motivation– Non-femtoscopic correlations in low-multiplicity collisions :

OPAL, NA22, STAR, … * data features not under control: Energy-momentum conservation?

Analytic calculation of Energy and Momentum Conservation Induced Correlations for– single particle spectra– two-particle correlations

• Experimentalists’ recipe: Fitting correlation functions

– Minv correlation function & background subtraction

– V2

– Two-particle correlations– Resonance contribution to non-femtoscopic correlations - (π+,π-)– (π+,π-) correlations in p+p(p) at 200 GeV collisions from PYTHIA

Conclusion

Page 3: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 3

Non-femtoscopic correlations : Non-femtoscopic correlations : OPALOPAL

OPAL, CERN-PH-EP/2007-025(submitted to Eur. Phys. J. C.)

1D projections of 3D CF

Femtoscopic correlations should go to the constant number at large Q(no directional dependence!)

Qx<0.2 GeV/c

Page 4: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 4

Non-femtoscopic correlations : Non-femtoscopic correlations : NA22NA22

NA22, Z. Phys. C71 (1996) 405 1D projections of 3D CF

Page 5: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 5

Non-femtoscopic correlations : Non-femtoscopic correlations : STARSTAR

d+Au: peripheral collisions

STAR preliminary

Non-femtoscopic q-anisotropicbehaviour at large |q|

does this structure affect femtoscopic region as well?

Qx<0.12 GeV/c

STAR, NPA 774 (2006) 599

Clear interpretation clouded by data features

Page 6: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 6

Spherical harmonic decompositionSpherical harmonic decomposition

∑→→ ΔΔ

=binsall

iiiiimlml QCYQA

.

,

cos

, ),cos|,(|),(|)(| φθφθπ

φθ

4 QOUT

QSIDE

QLONG Q

: [0,2] : [0,]

OUT

SIDE

TOT

LONG

LONGSIDEOUT

Q

Q

Q

Q

QQQQ

arctan

)cos(

222

=

=

++=

φ

Z.Ch., Gutierrez, Lisa, Lopez-Noriega, nucl-ex/0505009

Page 7: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 7

Non-femtoscopic correlations : Non-femtoscopic correlations : STARSTAR

Baseline problem is increasing

with decreasing multiplicity

STAR preliminary

Page 8: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 8

C(qo,qs,ql ) = C femto(qo,qs,ql ) ⋅F(qo,qs,ql )

F(qo,qs,ql ) = 1+ δo qo + δs qs + δl ql

F(qo,qs,ql ) = 1+ δoqo + δsqs + δlql

• MC simulations

• ‘ad-hoc’ parameterizations

• OPAL, NA22, …

Common approaches to „remove” Common approaches to „remove” non-femtoscopic correlationsnon-femtoscopic correlations

•A possibility: energy-momentum conservation?

–must be there somewhere!–but how to calculate / model ?(Upon consideration, non-trivial...)

• “zeta-beta” fit by STAR [parameterization of non-femtoscopic correlations in Alm’s]

Page 9: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 9

GenBodGenBodPhase-Space Event

Generator

Page 10: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 10

GenBod: Phase-space sampling GenBod: Phase-space sampling with energy/momentum with energy/momentum

conservationconservation• F. James, Monte Carlo Phase Space CERN REPORT 68-15 (1 May 1968)• Sampling a parent phasespace, conserves energy & momentum explicitly

– no other correlations between particles !

Events generated randomly, but each has an Event Weight

WT =1

Mm

M i+1R2 M i+1;M i,mi+1( ){ }i=1

n−1

WT ~ probability of event to occur

Rn = δ 4 P − p j

j=1

n

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ δ pi

2 − mi2

( )d4pi

i=1

n

∏4 n

where

P = total 4 - momentum of n - particle system

pi = 4 - momentum of particle i

mi = mass of particle i

P conservation

δ 4 P − p j

j=1

n

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Induces “trivial” correlations(i.e. even for M=1)

Energy-momentum conservation in n-body systemEnergy-momentum conservation in n-body system

Page 11: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 11

N=9, N=9, KK=0.5 GeV, LCMS Frame - no cuts=0.5 GeV, LCMS Frame - no cuts

The shape of the CF is sensitive to:

• kinematic cuts

• frame

• particle multiplicity

• total energy : √s

Page 12: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 12

FindingsFindings

• Energy and Momentum Conservation Induced Correlations (EMCICs) “resemble” our data

so, EMCICs... on the right track...

• But what to do with that?– Sensitivity to s, multiplicity of particles of interest and other particles

– will depend on p1 and p2 of particles forming pairs in |Q| bins

risky to “correct” data with Genbod...

• Solution: calculate EMCICs using data!!– Danielewicz et al, PRC38 120 (1988)

– Borghini, Dinh, & Ollitraut PRC62 034902 (2000)

we generalize their 2D pT considerations to 4-vectors

Page 13: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 13

k-particle distributions w/ phase-space k-particle distributions w/ phase-space constraintsconstraints

˜ f ( pi) = 2E i f ( pi) = 2E i

dN

d3 pi

single-particle distributionw/o P.S. restriction

˜ f c(p1,...,pk ) ≡ ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟⋅

d3pi

2E i

˜ f (pi)i= k +1

N

∏ ⎛

⎝ ⎜

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

d3pi

2E i

˜ f (pi)i=1

N

∏ ⎛

⎝ ⎜

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

= ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟⋅

d4piδ(pi2 − mi

2)˜ f (pi)i= k +1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

d4piδ(pi2 − mi

2)˜ f (pi)i=1

N

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟∫ δ 4 pi

i=1

N

∑ − P ⎛

⎝ ⎜

⎠ ⎟

k-particle distribution (k<N) with P.S. restriction

observed

P - total 4-momentum

Page 14: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 14

Central Limit TheoremCentral Limit Theorem

˜ f c(p1,...,pk ) = ˜ f (pi)i=1

k

∏ ⎛ ⎝ ⎜ ⎞

⎠ ⎟ N

N − k

⎝ ⎜

⎠ ⎟2

exp −

pi,μ − pμ( )i=1

k

∑ ⎛

⎝ ⎜

⎠ ⎟

2

2(N − k)σ μ2

μ = 0

3

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

where

σ μ2 = pμ

2 − pμ

2

pμ = 0 for μ =1,2,3

k-particle distribution in N-particle system

For simplicity we will assume that all particles are identical (e.g. pions) and that they share the same parent distribution (same RMS of energy/momentum)

Then, we can apply CLT (the distribution of averages from any distribution approaches Gaussian with increase of N)

˜ f c (p1,..., pk ) ∝ exp

pi,n

i=1

k

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2

2(N − k)σ n2

n=1

3

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

exp

E i − E( )i=1

k

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2

2(N − k)σ E2

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

Can we assume that E and p are not correlated ?

Page 15: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 15

E - p correlations?E - p correlations?

Page 16: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 16

EMCICs in single-particle EMCICs in single-particle distributiondistribution

˜ f c(pi) = ˜ f (pi)N

N −1

⎝ ⎜

⎠ ⎟2

exp −pi,μ − pμ( )

2

2(N −1)σ μ2

μ = 0

3

∑ ⎛

⎜ ⎜

⎟ ⎟

= ˜ f (pi)N

N −1

⎝ ⎜

⎠ ⎟2

exp −1

2(N −1)

px,i2

px2

+py,i

2

py2

+pz,i

2

pz2

+E i − E( )

2

E 2 − E2

⎜ ⎜

⎟ ⎟

⎜ ⎜

⎟ ⎟

What if all events had the same “parent” distribution f(p),and all multiplicity (centrality) dependence of spectra was due just to loosening of P.S. restrictions as N increased?

Page 17: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 17

EMCIC’s in spectraEMCIC’s in spectra

˜ f c (pT , i) = ˜ f (pT , i)N

N −1

⎝ ⎜

⎠ ⎟

3 / 2

exp −1

2(N −1)

2 pT, i2

pT2

+E i − E( )

2

E 2 − E2

⎜ ⎜ ⎜

⎟ ⎟ ⎟

⎜ ⎜ ⎜

⎟ ⎟ ⎟

fc (pT , i) → f (pT , i)

For N

~

~

Page 18: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 18

EMCICs: Ratio of particle EMCICs: Ratio of particle spectra spectra

˜ f c (pT , i) = ˜ f (pT , i)N

N −1

⎝ ⎜

⎠ ⎟

3 / 2

exp −1

2(N −1)

2 pT, i2

pT2

+E i − E( )

2

E 2 − E2

⎜ ⎜ ⎜

⎟ ⎟ ⎟

⎜ ⎜ ⎜

⎟ ⎟ ⎟

˜ f c (pT , i) =

˜ f (pT , i)C(N, pT

2 , E 2 , E )

˜ f c (pT , i)N small

˜ f c (pT , i)N larg e

=

˜ f ( pT, i)Nsmall

C(Nsmall , pT2 , E 2 , E )

˜ f (pT , i)Nlarge

C(Nlarge , pT2 , E 2 , E )

=C(Nsmall , pT

2 , E 2 , E )

C(N l arg e, pT2 , E 2 , E )

Ph

ys. Rev. D

74

(20

06) 0

320

06

p+p @ 200GeV, STARpT spectra from GenBodSimulations: Ratio of pT spectra for N=9 and N=18.

Ratio of pT spectra in p+p@STAR for the lowest and the highest multiplicity events

Page 19: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 19

k-particle correlation k-particle correlation functionfunction

C(p1,...,pk ) ≡˜ f c(p1,...,pk )

˜ f c(p1)....̃ f c(pk )

=

N

N − k

⎝ ⎜

⎠ ⎟2

N

N −1

⎝ ⎜

⎠ ⎟2k

exp −1

2(N − k)

px,ii=1

k

∑ ⎛ ⎝ ⎜ ⎞

⎠ ⎟2

px2

+py,ii=1

k

∑ ⎛ ⎝ ⎜ ⎞

⎠ ⎟2

py2

+pz,ii=1

k

∑ ⎛ ⎝ ⎜ ⎞

⎠ ⎟2

pz2

+E i − E( )

i=1

k

∑ ⎛ ⎝ ⎜ ⎞

⎠ ⎟2

E 2 − E2

⎜ ⎜ ⎜

⎟ ⎟ ⎟i=1

k

⎜ ⎜ ⎜

⎟ ⎟ ⎟

exp −1

2(N −1)

px,i2

px2

+py,i

2

py2

+pz,i

2

pz2

+E i − E( )

2

E 2 − E2

⎜ ⎜

⎟ ⎟

i=1

k

∑ ⎛

⎜ ⎜

⎟ ⎟

C( p1, p2 ) ≡˜ f c ( p1, p2 )

˜ f c (p1) ˜ f c (p2 )

=

N

N − 2

⎝ ⎜

⎠ ⎟

2

N

N −1

⎝ ⎜

⎠ ⎟

4

exp −1

2(N − 2)

px, ii=1

2

∑ ⎛ ⎝ ⎜

⎞ ⎠ ⎟2

px2

+py, ii=1

2

∑ ⎛ ⎝ ⎜

⎞ ⎠ ⎟2

py2

+pz, ii=1

2

∑ ⎛ ⎝ ⎜

⎞ ⎠ ⎟2

pz2

+E i − E( )i=1

2

∑ ⎛ ⎝ ⎜

⎞ ⎠ ⎟2

E 2 − E2

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟i=1

2

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

exp −1

2(N −1)

px, i2

px2

+py, i

2

py2

+pz, i

2

pz2

+E i − E( )

2

E 2 − E2

⎜ ⎜ ⎜

⎟ ⎟ ⎟i=1

2

∑ ⎛

⎜ ⎜ ⎜

⎟ ⎟ ⎟

Dependence on “parent” distrib f vanishes,except for energy/momentum means and RMS

2-particle correlation function (1st term in 1/N expansion)

C(p1,p2) ≅1−1

N2

r p T,1 ⋅

r p T,2

pT2

+pz,1 ⋅pz,2

pz2

+E1 − E( ) ⋅ E 2 − E( )

E 2 − E2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2-particle correlation 2-particle correlation functionfunction

Page 20: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 20

2-particle CF (1st term in 1/N 2-particle CF (1st term in 1/N expansion)expansion)

C(p1,p2) ≅1−1

N2

r p T,1 ⋅

r p T,2

pT2

+pz,1 ⋅pz,2

pz2

+E1 − E( ) ⋅ E 2 − E( )

E 2 − E2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

“The pT term” “The pZ term” “The E term”

Names used in the following plots

Page 21: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 21

EMCICsEMCICs

An example of EMCICs:An example of EMCICs:Effect of varying Effect of varying

multiplicitymultiplicity

Same plots as before, but now we look at:

• pT (), pz () and E () first-order terms

• full () versus first-order () calculation

• simulation () versus first-order () calculation

Page 22: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 22

N=9, N=9, KK=0.9 GeV, LabCMS Frame - no cuts=0.9 GeV, LabCMS Frame - no cuts

Page 23: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 23

N=18, N=18, KK=0.9 GeV, LabCMS Frame - no =0.9 GeV, LabCMS Frame - no cutscuts

Page 24: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 24

FindingsFindings

CF from GenBod (as well as EMCICs) depends on – multiplicity– frame– energy of the collisions

first-order and full calculations agree well for N>9– will be important for “experimentalist’s recipe”

Non-trivial competition/cooperation between pT, pz, E terms– all three important

pT1•pT2 term does affect “out-versus-side” (A22)

pz term has finite contribution to A22 (“out-versus-side”)

calculations come close to reproducing simulation for reasonable (N-2) and energy

Page 25: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 25

NN=12,N=12,NKK=3,N=3,Npp=3, =3, KK=0.9 GeV, LCMS Frame - no cuts=0.9 GeV, LCMS Frame - no cuts

Page 26: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 26

The Experimentalist’s RecipeThe Experimentalist’s Recipe

C( p1, p2 ) = 1−2

N pT2

r p 1,T ⋅

r p 2,T{ } −

1

N pZ2

p1,Z ⋅ p2,Z{ }

−1

N E 2 − E2 ⎛

⎝ ⎜

⎞ ⎠ ⎟

E1 ⋅E2{ } +E

N E 2 − E2 ⎛

⎝ ⎜

⎞ ⎠ ⎟

E1 + E2{ } −E

2

N E 2 − E2 ⎛

⎝ ⎜

⎞ ⎠ ⎟

C( p1, p2 ) = 1− M1

r p 1,T ⋅

r p 2,T{ } − M2 p1,Z ⋅ p2,Z{ } − M3 E1 ⋅E2{ } + M4 E1 + E2{ } −

M4( )2

M3

Fitting formula:

{X}(Q) - average of X over # of pairs for each Q-bin

Page 27: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 27

EMCIC’s FIT: N=18, EMCIC’s FIT: N=18, KK=0.9GeV, =0.9GeV, LCMSLCMS

Page 28: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 28

The Complete Experimentalist’s The Complete Experimentalist’s RecipeRecipe

C( p1, p2 ) = Norm ⋅ 1+ λ ⋅ Kcoul (Qinv ) 1+ exp −Rout2 Qout

2 − Rside2 Qside

2 − Rlong2 Qlong

2( )( ) −1[ ]{ } ×

1− M1

r p 1,T ⋅

r p 2,T{ } − M2 p1,Z ⋅ p2,Z{ } − M3 E1 ⋅E2{ } + M4 E1 + E2{ } −

M4( )2

M3

⎢ ⎢

⎥ ⎥

or any other parameterization of CF

9 fit parameters

- 4 femtoscopic

- normalization

- 4 EMCICs

Fit this ….

or image this …

C(q) + M1

r p 1,T ⋅

r p 2,T{ } + M2 p1,Z ⋅ p2,Z{ } + M3 E1 ⋅E2{ } − M4 E1 + E2{ }

Page 29: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 29

MMinvinv distribution w/ background distribution w/ background subtraction subtraction

N=18

Page 30: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 30

EMCICs contribution to vEMCICs contribution to v22

C( p1, p2 ) =

N

N − 2

⎝ ⎜

⎠ ⎟

2

N

N −1

⎝ ⎜

⎠ ⎟

4

exp −1

2(N − 2)

px, ii=1

2

∑ ⎛ ⎝ ⎜

⎞ ⎠ ⎟2

px2

+py, ii=1

2

∑ ⎛ ⎝ ⎜

⎞ ⎠ ⎟2

py2

+pz, ii=1

2

∑ ⎛ ⎝ ⎜

⎞ ⎠ ⎟2

pz2

+E i − E( )i=1

2

∑ ⎛ ⎝ ⎜

⎞ ⎠ ⎟2

E 2 − E2

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟i=1

2

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

exp −1

2(N −1)

px, i2

px2

+py, i

2

py2

+pz, i

2

pz2

+E i − E( )

2

E 2 − E2

⎜ ⎜ ⎜

⎟ ⎟ ⎟i=1

2

∑ ⎛

⎜ ⎜ ⎜

⎟ ⎟ ⎟

(cos mΔφ) cos( nΔφ)dΔφ = δmnπ∫ for v2 n=2

1N

: − 2r p T,1 ⋅

r p T ,2

pT2

+E1 − E( ) E2 − E( )

E 2 − E2

⎜ ⎜ ⎜

⎟ ⎟ ⎟

rp T,1 ⋅

r p T ,2 ~ cos( Δφ) no contribution to v2 from 1/N term

1N2

: 2r p T ,1 ⋅

r p T,2

pT2

+E1 − E( ) E2 − E( )

E 2 − E2

⎜ ⎜ ⎜

⎟ ⎟ ⎟

2

rp T ,1 ⋅

r p T,2( )

2~ cos 2 (Δφ) ~ cos( 2Δφ)

contribution to v2 from 1/N2 term

1N3

: 2r p T ,1 ⋅

r p T,2

pT2

+pz,1 ⋅ pz,2

pz2

+E1 − E( ) E2 − E( )

E 2 − E2

⎜ ⎜ ⎜

⎟ ⎟ ⎟

3

rp T ,1 ⋅

r p T,2( )

2~ cos 2 (Δφ) ~ cos( 2Δφ)

contribution to v2 from 1/N3 term

Page 31: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 31

Non-id correlations (Resonance Non-id correlations (Resonance contrib.)contrib.)

Page 32: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 32

Non-id correlations (PYTHIA@200 GeV)Non-id correlations (PYTHIA@200 GeV)

Page 33: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 33

SummarySummary• understanding particle spectra, two-particle correlations,

v2, resonances in small systems– important physics-wise

– should not be attempted until data fully under control

• Restricted P.S. due to energy-momentum conservation– sampled by GenBod event generator

– generates EMCICs [femtoscopy : quantified by Alm’s]

– stronger effects for small multiplicities and/or s

• Analytic calculation of EMCICs– k-th order CF given by ratio of correction factors

– “parent” only relevant in momentum variances

– first-order expansion works well for N>9

– non-trivial interaction b/t pT, pz, E conservation effects

• Physically correct “recipe” to fit/remove EMCICs [femtoscopy]– 4 new parameters, determined @ large |Q|

Page 34: WPCF 2007 - Aug. 1-3, 2007 1 Conservation Laws in low-multiplicity collisions Zbigniew Chajęcki and Michael A. Lisa The Ohio State University.

WPCF 2007 - Aug. 1-3, 2007 34

Thanks to:Thanks to:

• Alexy Stavinsky & Konstantin Mikhaylov (Moscow) [suggestion to use Genbod]

• Jean-Yves Ollitrault (Saclay) & Nicolas Borghini (Bielefeld)[original correlation formula]

• Adam Kisiel (Warsaw) [don’t forget energy conservation]

• Ulrich Heinz (Columbus)[validating energy constraint in CLT]

• Mark Baker (BNL)

[local momentum conservation]• Dariusz Miskowiec (GSI)

[multiply (don’t add) correlations]