Top Banner
Impacts of Running-In-Place on LETKF analyses and forecasts of the 24 May 2011 outbreak Corey K. Potvin 1,2 , Louis J. Wicker 2 , and Therese E. Thompson 1,3 1 Cooperative Institute for Mesoscale Meteorological Studies 2 NOAA/OAR National Severe Storms Laboratory 3 School of Meteorology, University of Oklahoma
19

WoF Challenge: “Spin-Up” Problem

Feb 23, 2016

Download

Documents

Said

- PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: WoF  Challenge: “Spin-Up” Problem

Impacts of Running-In-Place on LETKF analyses and forecasts of the 24 May 2011 outbreak

Corey K. Potvin1,2, Louis J. Wicker2, and Therese E. Thompson1,3

 1Cooperative Institute for Mesoscale Meteorological Studies

2NOAA/OAR National Severe Storms Laboratory3School of Meteorology, University of Oklahoma

Page 2: WoF  Challenge: “Spin-Up” Problem

WoF Challenge: “Spin-Up” Problem

• During first several analysis cycles of storm, convective-scale state & error covariances often poor

• Initial radar DA thus inefficient

• Goal: accelerate spin-up  longer forecast lead time

• Spin-up not just at start of DA – new storms can form after initial development

Page 3: WoF  Challenge: “Spin-Up” Problem

Running-In-Place (RIP; Kalnay & Yang 2010)

• Under ideal conditions, obs should be used once• During spin-up, re-assimilating obs extracts additional 

information• Step 0: Regular LETKF update• Step 1: Use LETKF weights at current analysis time tn to

update xa(tn-1) - “no-cost” smoother

• Step 2: Covariance inflation at tn-1

• Step 3: Integrate ensemble tn-1 tn • Repeat until RMS difference between obs & forecasts 

converge (or max # iters reached) 

Page 4: WoF  Challenge: “Spin-Up” Problem

Previous Work• Kalnay and Yang (2010) – RIP rapidly spins up idealized 

QG model• Yang et al. (2012a) – RIP helpful even given strong 

nonlinearity (Lorenz-63 model)• Yang et al. (2012b) –perfect-model typhoon OSSEs 

(WRF)• Yang et al. (2013) – RIP applied to real typhoon• Wang et al. (2013) – iterative EnSRF; perfect- and 

imperfect-model supercell OSSEs (WRF)• No published real-supercell experiments

Page 5: WoF  Challenge: “Spin-Up” Problem

EnKF Configuration

• NSSL-LETKF – uses Miyoshi’s LETKF core• WRF v3.4.1 -- Δ=3km, 170 × 170 × 51 points, 

Thompson microphysics• 36 members; 5-min analysis cycles• 3 WSR-88D’s (Δ=6km); objectively QC’d• No mesonet assimilation• Additive noise (Dowell & Wicker 2009) + adaptive 

multiplicative inflation (Miyoshi 2011; Hunt et al. 2007)• GEFS-NME-based ensemble initial condition

Page 6: WoF  Challenge: “Spin-Up” Problem

1845 UTC Experiments

• First storm echoes• IC very poor• Best forecasts obtained: – with 3 vs. 1 RIP iterations– stopping RIP after 19 UTC

MRMS 1850 UTC

Multi-Radar/Multi-Sensor (MRMS) reflectivity mosaic 

at 2 km AGL

Page 7: WoF  Challenge: “Spin-Up” Problem

1910 & 1920 UTC AnalysesRIP greatly accelerates spin-up of dBZ, w, ζ

2 km

AGL

dBZ

Page 8: WoF  Challenge: “Spin-Up” Problem

1905 UTC 1-h Forecasts

Red = neighborhood (3 × 3) ensemble prob ζ > .005 s-1 somewhere over lowest 3 kmPink = tornado damage pathsContours = 2 km AGL 40 dBZobs at 1905 Z and 2005 ZDots = interpolated 19-20 UTC NSSL rotation tracks > .005 s-1, .010 s-1, .015 s-1

CNTL RIP

Page 9: WoF  Challenge: “Spin-Up” Problem

1910 UTC 1-h Forecasts

Red = neighborhood (3 × 3) ensemble prob ζ > .005 s-1 somewhere over lowest 3 kmPink = tornado damage pathsContours = 2 km AGL 40 dBZobs at 1910 Z and 2010 ZDots = interpolated 19-20 UTC NSSL rotation tracks > .005 s-1, .010 s-1, .015 s-1

RIPCNTL

Page 10: WoF  Challenge: “Spin-Up” Problem

1915 UTC 1-h Forecasts

Red = neighborhood (3 × 3) ensemble prob ζ > .005 s-1 somewhere over lowest 3 kmPink = tornado damage pathsContours = 2 km AGL 40 dBZobs at 1915 Z and 2015 ZDots = interpolated 19-20 UTC NSSL rotations > .005 s-1, .010 s-1, .015 s-1

CNTL RIP

Page 11: WoF  Challenge: “Spin-Up” Problem

2000 UTC Experiments

• Begin DA once storms already mature• Mesoscale background storms displaced

2005 NME prior MRMS

Page 12: WoF  Challenge: “Spin-Up” Problem

Cold pool problem• Default RIP (1 or 3 iters) generates too-cold cold pools• Likely from repeated assimilation of large-innovation dBZ in 

same locations – analysis increments not retained during forecast cycle, as in Dowell et al. (2011)

• What helped: – Use only 1 RIP iteration– Don’t update θ – but colds pools still too cold, indicating other 

covariances problematic– Only assimilate Vr, and only update u, v, w – still too cold!– Increase obs error estimates (“gentle” approach)– mitigates cold pool 

bias as well as no-theta update

• Final solution: 1 iter with σVr = 4, σdBZ = 8

Page 13: WoF  Challenge: “Spin-Up” Problem

RIP_gentle RIP_default

CNTL MRMS

2010 UTC Analyses

• Spin-up in gentler approach nearly as fast as in default

• w, ζ improved faster than dBZ

Page 14: WoF  Challenge: “Spin-Up” Problem

2015 UTC AnalysesRIP_gentle RIP_default

CNTL MRMS

• Spin-up in gentler approach nearly as fast as in default

• w, ζ improved faster than dBZ

Page 15: WoF  Challenge: “Spin-Up” Problem

2005 UTC 1-h Forecasts

Red = neighborhood (3 × 3) ensemble prob ζ > .005 s-1 somewhere over lowest 3 kmPink = tornado damage pathsContours = 2 km AGL 40 dBZobs at 2005 Z and 2105 ZDots = interpolated 20-21 UTC NSSL rotation tracks > .005 s-1, .010 s-1, .015 s-1

CNTL RIP

Page 16: WoF  Challenge: “Spin-Up” Problem

2010 UTC 1-h Forecasts

Red = neighborhood (3 × 3) ensemble prob ζ > .005 s-1 somewhere over lowest 3 kmPink = tornado damage pathsContours = 2 km AGL 40 dBZobs at 2010 Z and 2110 ZDots = interpolated 20-21 UTC NSSL rotation tracks > .005 s-1, .010 s-1, .015 s-1

CNTL RIP

Page 17: WoF  Challenge: “Spin-Up” Problem

2015 UTC 1-h Forecasts

Red = neighborhood (3 × 3) ensemble prob ζ > .005 s-1 somewhere over lowest 3 kmPink = tornado damage pathsContours = 2 km AGL 40 dBZobs at 2015 Z and 2115 ZDots = interpolated 20-21 UTC NSSL rotation tracks > .005 s-1, .010 s-1, .015 s-1

CNTL RIP

Page 18: WoF  Challenge: “Spin-Up” Problem

Conclusions

• RIP can accelerate spin-up in radar DA• Added forecast value restricted to 2-3 analysis 

cycles in this case• Inflated error variances may be useful, at least 

when mean IC very poor

Page 19: WoF  Challenge: “Spin-Up” Problem

RIP - Outstanding Questions

• Better to restrict to large-innovation regions?• Substantial improvement over simply re-

assimilating obs (“poor-man’s RIP”) or Quasi-Outer Loop?

• Better or worse than directly forcing updrafts (e.g., thermal bubbles, dBZ-based w nudging)?

• How does impact change given less favorable environment?