Top Banner

of 40

WirelessSymp802_11adPHY

Jun 02, 2018

Download

Documents

rfidguys
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/11/2019 WirelessSymp802_11adPHY

    1/40

    2012 Agilent TechnologiesWireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    IEEE 802.11ad PHY Layer Tes tin g

    Presented by: David Grieve, Agilent Technologies

  • 8/11/2019 WirelessSymp802_11adPHY

    2/40

    2012 Agilent TechnologiesWireless Communications

    2 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Agenda

    Overview of IEEE 802.11ad

    Tutorial introduction to the PHY layer

    PHY Measurement challenges

    PHY Measurements

    Have I got a signal?

    Basic diagnostics

    Demodulating the CPHY

    Modulation quality

    Decoding the data

    Conclusions

  • 8/11/2019 WirelessSymp802_11adPHY

    3/40

    2012 Agilent TechnologiesWireless Communications

    3 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    IEEE 802.11ad Overview

    What? A backwards-compatible extension to the IEEE 802.11-2007specification that adds a new MAC/PHY to provide shortrange, high capacity links in the 60 GHz unlicensed band.

    Where? The 60 GHz MAC/PHY specification was initially developed

    privately by the Wireless Gigabit Alliance. It was contributedto the IEEE TGad in May 2010 and has subsequently beendeveloped to a final draft standard in IEEE.

    When? The specification will be signed off by TGad in June 2012and formally released for publication in Dec 2012. Weexpect first commercial silicon in 2H 2012, and anticipatefirst certified product announcements in Jan 2013.

    IEEE 802.11ad Overview

  • 8/11/2019 WirelessSymp802_11adPHY

    4/40

    2012 Agilent TechnologiesWireless Communications

    4 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    IEEE 802.11ad Overview

    Why? The 2.4 and 5 GHz wireless bands are congested andfundamentally lack the capacity to deliver multi-gigabit data.802.11ac endeavours to address this, but may find it difficult todeliver to multiple users.

    The globally available 60 GHz wireless band is green -field andcan meet the demand for short-range multi-gigabit links, bothtechnically and commercially.

    How? A managed ad-hoc network of directional, short-range, point-to-point links at 60 GHz.

    The PHY uses RF burst (packet) transmissions. Packets start with a common sync preamble followed by header and payload

    data. The common preamble always uses single-carrier (SC) modulation, theheader and data may use SC or OFDM modulation depending on the selectedmode.

    The PHY supports active antenna beam forming / steering (but not MIMO). The MAC augments the standard IEEE 802.11 MAC with new, 60 GHz specific,

    capabilities.

    IEEE 802.11ad Overview

  • 8/11/2019 WirelessSymp802_11adPHY

    5/40

  • 8/11/2019 WirelessSymp802_11adPHY

    6/40

    2012 Agilent TechnologiesWireless Communications

    6 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    60GHz Channel Plan by Region

    6

    *

    Spectrum Mask

    Channel 4Channel 3Channel 2Channel 1

    U.S. and Canada (57.05 GHz 64.00 GHz)

    European Union (57.00 GHz 66.00 GHz)

    Japan (59.00 GHz 66.00 GHz)

    China (59.00 GHz 64.00 GHz)

    South Korea (57.00 GHz 64.00 GHz)

    Australia (59.40 GHz 62.90 GHz)

    57.00GHz

    57.24GHz

    59.40GHz

    61.56GHz

    63.72GHz

    65.88GHz

    66.00GHz

    Fc = 58.32 GHz F c = 60.48 GHz F c = 62.64 GHz F c = 64.80 GHz

  • 8/11/2019 WirelessSymp802_11adPHY

    7/40 2012 Agilent Technologies

    Wireless Communications

    7 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Header Data

    Header Data

    Header Data

    Preamble

    Preamble

    Preamble

    PHY Modes (Packet Overview)

    STF CEF

    Control

    Single Carrier

    OFDM

    STF

    STF CEF

    BeamformingTraining

    BeamformingTraining

    BeamformingTraining

    /2-BPSK /2-BPSK/QPSK/QAM16

    /2-BPSK QPSK-OFDM SQPSK/QPSK/QAM16/QAM64-OFDM

    /2-BPSK /2-DBPSK

    CEF

  • 8/11/2019 WirelessSymp802_11adPHY

    8/40 2012 Agilent Technologies

    Wireless Communications

    8 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Preambles

    The preamble always comprises twofields;

    Short Training Field (STF)

    Timing estimation

    AGC adjustment

    Channel Estimation Field (CEF) Channel estimation

    Header Data

    Header Data

    Header Data

    Preamble

    Preamble

    Preamble

    STF CEF

    STF

    STF CEF

    BFT

    BFT

    BFT

    CEF

  • 8/11/2019 WirelessSymp802_11adPHY

    9/40 2012 Agilent Technologies

    Wireless Communications

    9 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Preamble Variants(showing basic construction)

    Gb 128 Gb 128 Gb 128 -Gb 128 -Ga 128

    CPHY Short Training Field (STF) 5120 Tc SC Channel Estimation Field (CEF) 1152 T c

    Ga 128 Ga 128 Ga 128 Ga 128 -Ga 128

    Short Training Field (STF) 2176 T c SC Channel Estimation Field (CEF) 1152 T c

    Ga 128 Ga 128 Ga 128 Ga 128 -Ga 128

    Short Training Field (STF) 2176 T c OFDM Channel Estimation Field (CEF) 1152 T c

    -Gb 128 -Ga 128 Gb 128 -Ga 128 -Gb 128 Ga 128 -Gb 128 -Ga 128 -Gb 128

    -Gb 128 -Ga 128 Gb 128 -Ga 128 -Gb 128 Ga 128 -Gb 128 -Ga 128 -Gb 128

    -Gb 128 Ga 128 -Gb 128 -Ga 128 -Gb 128 -Ga 128 Gb 128 -Ga 128 -Gb 128

  • 8/11/2019 WirelessSymp802_11adPHY

    10/40 2012 Agilent Technologies

    Wireless Communications

    10 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Complementary Golay Codes

    Used extensively in 802.11ad;

    Synchronization and AGC

    Data Spreading

    Channel Estimation

    Gain and phase tracking

    Important attributes of Golay codes are;

    Low side lobes and low DC content under /2 rotation.

    Sum of Ga and Gb autocorrelations is perfect.

    Ga and Gb autocorrelations can be performed in parallelusing a single correlator.

    OR

    Ga

    Gb

    Receive side - fast Golay correlator

  • 8/11/2019 WirelessSymp802_11adPHY

    11/40

    2012 Agilent TechnologiesWireless Communications

    11 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Golay Correlator Output

    Ga 128 Ga 128 Ga 128 Ga 128 -Ga 128-Gb 128 -Ga 128 Gb 128 -Ga 128 -Gb 128 Ga 128 -Gb 128 -Ga 128

    -Gb 128Gv 512Gu 512

  • 8/11/2019 WirelessSymp802_11adPHY

    12/40

    2012 Agilent TechnologiesWireless Communications

    12 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Preamble Variants(showing CEF grouping)

    Gv 128

    SC Channel Estimation Field (CEF) 1152 T c

    Gv 128

    SC Channel Estimation Field (CEF) 1152 T c

    Gv 128

    OFDM Channel Estimation Field (CEF) 1152 T c

    Gb 128 Gb 128 Gb 128 -Gb 128 -Ga 128

    CPHY Short Training Field (STF) 5120 Tc

    Ga 128 Ga 128 Ga 128 Ga 128 -Ga 128

    Short Training Field (STF) 2176 T c

    Ga 128 Ga 128 Ga 128 Ga 128 -Ga 128

    Short Training Field (STF) 2176 T c

    -Gb 128 -Ga 128 Gb 128 -Ga 128 -Gb 128 Ga 128 -Gb 128 -Ga 128Gv 512Gu 512

    -Gb 128 -Ga 128 Gb 128 -Ga 128 -Gb 128 Ga 128 -Gb 128 -Ga 128

    Gv 512Gu 512

    -Gb 128 -Ga 128 Gb 128 -Ga 128Gu 512

    -Gb 128 Ga 128 -Gb 128 -Ga 128Gv 512

  • 8/11/2019 WirelessSymp802_11adPHY

    13/40

    2012 Agilent TechnologiesWireless Communications

    13 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    correlator

    Channel Estimation Opportunity

    Gb 256 Ga256

    Ga

    Gb

    -Ga 128-Gb 128 -Ga 128 Gb 128 -Ga 128 -Gb 128

    Gu 512

  • 8/11/2019 WirelessSymp802_11adPHY

    14/40

    2012 Agilent TechnologiesWireless Communications

    14 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Principle of Channel Estimation(application of Golay codes)

    H( )a h t

    a Golaycorrelator

    ( ) R a a a h t

    ( ) R b b b h t H

    ( )b h t b

    Golaycorrelator

    ( ) ( )

    ( )

    ( )

    ( )

    output R a R b

    a a h t b b h t

    a a b b h t

    t h t

    h t

    + =

    Ga Gb Ga + Gb

    + =

  • 8/11/2019 WirelessSymp802_11adPHY

    15/40

    2012 Agilent TechnologiesWireless Communications

    15 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Header Variants

    4 10 bits 5 bits 16 bits

    S

    cramblerInitialization

    P

    ackettype

    Length

    1 2

    T

    rainingLength

    R

    eservedbits

    H

    CS

    S

    IFSresponse

    1

    R

    eserved(diffdetectorinit)

    1

    SIFSresponse

    LastRSSI

    Beam TrackingRequest

    7 bits 18 bits 5 bits 16 bits

    ScramblerInitialization

    Packettype

    Length

    1 1

    TrainingLength

    HCS

    5 bits

    MCS

    AdditionalPPDU

    1 1

    Aggregation

    4 bits

    Reserved

    4 bits 1

    7 bits 18 bits 5 bits 16 bits

    ScramblerInitialization

    Packettype

    Length

    1

    TrainingLength

    HCS

    5 bits

    MCS

    AdditionalPPDU

    1 1

    Aggregation

    2

    Reserved

    Beam TrackingRequest

    TonePairingType

    DTPIndicator

    1 1 1

    SIFSresponse

    LastRSSI

    4 bits 1

    Control

    Single Carrier

    OFDM

    Header Data

    Header Data

    Header Data

    Preamble

    Preamble

    Preamble

    STF CEF

    STF

    STF CEF

    BFT

    BFT

    BFT

    CEF

  • 8/11/2019 WirelessSymp802_11adPHY

    16/40

    2012 Agilent TechnologiesWireless Communications

    16 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Header Data

    Header Data

    Header Data

    Preamble

    Preamble

    Preamble

    PHY Header/Payload Modulation

    STF CEF

    Control

    Single Carrier

    OFDM

    STF

    STF CEF

    BeamformingTraining

    BeamformingTraining

    BeamformingTraining

    /2-BPSK /2-BPSK/QPSK/QAM16

    /2-BPSK QPSK-OFDM SQPSK/QPSK/QAM16/QAM64-OFDM

    /2-BPSK /2-DBPSK

    CEF

  • 8/11/2019 WirelessSymp802_11adPHY

    17/40

    2012 Agilent TechnologiesWireless Communications

    17 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Modulation and Coding Schemes (MCS)

    Key Points

    Very robust 27.5 Mbps ControlChannel

    Variable Error Protection

    Variable Modulation Complexity

    Hence EVM specs.from -6dB to -25dB

    Variable Data Rates

    from 385 Mbps (MCS1)to 6756.75 Mbps (MCS24)

    Mandatory modes ensure all 802.11addevices capable of at least 1Gbps

    Control (CPHY)MCS Coding Modulation Raw Bit Rate

    0 1/2 LDPC, 32x Spreading /2-DBPSK 27.5 MbpsSingle Carrier (SCPHY)

    MCS Coding Modulation Raw Bit Rate1-12 1/2 LDPC, 2x repetition

    1/2 LDPC,5/8 LDPC3/4 LDPC

    13/16 LDPC

    /2-BPSK,/2-QPSK,

    /2-16QAM

    385 Mbpsto

    4620 Mbps

    Orthogonal Frequency Division Multiplex (OFDMPHY)MCS Coding Modulation Raw Bit Rate

    13-24 1/2 LDPC,5/8 LDPC3/4 LDPC

    13/16 LDPC

    OFDM-SQPSKOFDM-QPSK

    OFDM-16QAM

    OFDM-64QAM

    693 Mbpsto

    6756.75 Mbps

    Low-Power Single Carrier (LPSCPHY)MCS Coding Modulation Raw Bit Rate

    25-31 RS(224,208) +Block Code(16/12/9/8,8)

    /2-BPSK,/2-QPSK

    625.6 Mbpsto

    2503 Mbps

  • 8/11/2019 WirelessSymp802_11adPHY

    18/40

  • 8/11/2019 WirelessSymp802_11adPHY

    19/40

    2012 Agilent TechnologiesWireless Communications

    19 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    OFDM Modulation

    Variable modulation depth Date rates up to

    6.76 Gbps 16 Static pilots Fc and Fc 1 nulled Shares common preamble

    with SCPHY for timing andchannel estimation

    Different sample rate to SC.Preamble is up-sampledfrom SC definition by aspecified interpolation filter.

    Parameter Value

    Occupied BW 1.825 GHz

    Ref. sampling rate 2.640 Gsamples/s

    No. of subcarriers 512

    FFT period ~ 194 ns

    Subcarrier spacing 5.15625 MHzCyclic prefix 128 symbols, ~ 48.4 ns

    Symbol duration ~242 ns

    Data subcarriers 336

    DC subcarriers 3

    Pilots 16Null subcarriers 157

    Modulation SQPSK, QPSK, 16-QAM, 64-QAM

    Error Protection LDPC 1/2, 5/8, 3/4 or 13/16

  • 8/11/2019 WirelessSymp802_11adPHY

    20/40

    2012 Agilent TechnologiesWireless Communications

    20 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Control PHY (MCS 0)(Header & Payload Encoding)

    /2-BPSKModulation

    DifferentialEncoding

    32xSpreading

    Scrambler (x7+x4+1)

    LDPCEncoder (Shortened 3/4)

    SpectrumShaping Up Conversion

    Ga32 correlator output showingthe results of 32x despreading.

  • 8/11/2019 WirelessSymp802_11adPHY

    21/40

    2012 Agilent TechnologiesWireless Communications

    21 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    SC PHY (MCS 1 to 12)(Header & Payload Encoding)

    /2-BPSK/2-QPSK

    /2-16QAMModulation

    Scrambler (x7+x4+1)

    LDPCEncoder

    (1/2, 3/4, 5/8, 13/16)

    2xRepetition

    (header only)

    SpectrumShaping Up Conversion

    Data Blocking andGuard Interval(448 block + 64 GI = 512)

    448 symbolsGa 64 guardinterval

    512 symbol modulation block

    Ga64 correlator output showingthe regular guard interval.

  • 8/11/2019 WirelessSymp802_11adPHY

    22/40

    2012 Agilent TechnologiesWireless Communications

    22 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    OFDM PHY (MCS13 to 24)(Header & Payload Encoding)

    Scrambler (x7+x4+1)

    LDPCEncoder

    (1/2, 3/4, 5/8, 13/16)

    CarrierMapping

    (QPSK, QAM16, QAM64)

    CyclicPrefix

    (25% repetition)

    3xRepetition

    (header only)

    Pilot andDC NullInsertion

    WindowingFunction

    (Transition smoothing)

    Up ConversionIFFT(512 points)

    SQPSK QPSK 16QAM 64QAM

  • 8/11/2019 WirelessSymp802_11adPHY

    23/40

  • 8/11/2019 WirelessSymp802_11adPHY

    24/40

    2012 Agilent TechnologiesWireless Communications

    24 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Low Density Parity Check (LDPC)

    First proposed by Gallager in 1960, but ignored

    Re- discovered by McKay and others in the mid 1990s

    Even better than turbo codes performance hassince stimulated a lot of research.

    LDPC codes are systematic block codes that useparity check as the error detection /correctionmechanism.

    A large, sparse, randomly populated parity matrix,coupled with a soft-decision iterative decodingalgorithm can produce error correcting codes withperformance within 0.05dB of the Shannon Limit.

    The 802.11ad parity matrix is optimized for simplecodeword generation by back-substitution on the paritymatrix and efficient hardware implementation of theiterative soft decoding algorithm.

    m-bit message

    encode

    belief propagation

    soft-decision decode

    m = r x 672 wherer = 1/2, 5/8, 3/4, or 13/16

    m-bit message

    m-bit message parity bits

    672-bit codeword

  • 8/11/2019 WirelessSymp802_11adPHY

    25/40

    2012 Agilent TechnologiesWireless Communications

    25 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    PHY Measurement Challenges

    Practical Problems

    Connectivity! Modulation Bandwidth

    PHY Challenges

    Phase stability / frequencyaccuracy

    Quadrature errors

    DC/LO feedthrough I / Q Mismatch

    Transmit power

    DAC LPF

    DAC LPF

    090

    Baseband ASIC RF ASIC with antennaarray bonded directly on

    top of RFIC.

  • 8/11/2019 WirelessSymp802_11adPHY

    26/40

    2012 Agilent TechnologiesWireless Communications

    26 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Step 1 Have I got a signal?

    Time Domain

    SNR? Clipping? Transients? Structure? Etc

    Frequency Domain

    Shape? Flatness?

    Bandwidth? Spurs? Etc

  • 8/11/2019 WirelessSymp802_11adPHY

    27/40

    2012 Agilent TechnologiesWireless Communications

    27 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Step 2 Golay Correlator Outputs

  • 8/11/2019 WirelessSymp802_11adPHY

    28/40

    2012 Agilent TechnologiesWireless Communications

    28 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Step 3 Control PHY Demodulation

    The CPHY uses differential encoding, codespreading, BPSK modulation and a rate1/2 LDPC FEC to ensure reliablecommunication at very high path loss.

  • 8/11/2019 WirelessSymp802_11adPHY

    29/40

    2012 Agilent TechnologiesWireless Communications

    29 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Phase Error and Carrier Tracking

  • 8/11/2019 WirelessSymp802_11adPHY

    30/40

    2012 Agilent TechnologiesWireless Communications

    30 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Channel Impulse Response(estimated from CEF field)

  • 8/11/2019 WirelessSymp802_11adPHY

    31/40

    2012 Agilent TechnologiesWireless Communications

    31 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Channel Frequency Response

  • 8/11/2019 WirelessSymp802_11adPHY

    32/40

  • 8/11/2019 WirelessSymp802_11adPHY

    33/40

    2012 Agilent TechnologiesWireless Communications

    33 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    EVM versus Time and Frequency

  • 8/11/2019 WirelessSymp802_11adPHY

    34/40

    2012 Agilent TechnologiesWireless Communications

    34 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    OFDM EVM by Symbol and by Carrier

  • 8/11/2019 WirelessSymp802_11adPHY

    35/40

  • 8/11/2019 WirelessSymp802_11adPHY

    36/40

    2012 Agilent TechnologiesWireless Communications

    36 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Step 5 FEC Codewords and Data

  • 8/11/2019 WirelessSymp802_11adPHY

    37/40

    2012 Agilent TechnologiesWireless Communications

    37 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Agilent 81199A User Interface

  • 8/11/2019 WirelessSymp802_11adPHY

    38/40

    2012 Agilent TechnologiesWireless Communications

    38 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Agilent 60 GHz PHY Test Solution

    DUT

    8267D-520-016 (I/Q Modulation)

    N5152A 5GHz/60GHz U.C.

    N5183A-520 MXG (Tx LO)

    N1999A 60GHz/5GHz D.C.

    M8190A Wideband AWG (I/Q Generation)

    N5183A-520 MXG (Rx LO)

    Controlling PC(Could be Desktop, Laptop or Embedded)

    81199A WidebandWaveform Center (WWC)

    Wfm Data

    Acq'd Signal

    DSO90404A Infiniium Real-time Oscilloscope

    89601B Vector Signal Analyzer

  • 8/11/2019 WirelessSymp802_11adPHY

    39/40

    2012 Agilent TechnologiesWireless Communications

    39 2012 Agilent Technologies

    Wireless Communications

    Greater insight. Greater confidence. Accelerate next-generation wireless.

    Conclusions

    802.11ad capable devices will start to appear late 2012, early 2013.

    802.11ad extends the highly successful 802.11 WLAN family.

    Wireless Gigabit Alliance, IEEE and Wi-Fi Alliance are working in closecollaboration to specify, certify and promote this technology.

    802.11ad mixes single carrier and OFDM modulation techniques tosupport a wide range of price/performance points up to 6.75 Gbps.

    Golay codes are a foundation of the WiGig/802.11ad specification thatalso enable significant measurement insight.

    There are many design challenges for PHY development at 60 GHz, thinkin terms of 10x to 100x 802.11a, compounded by the need to do RFtesting over-the-air.

    Agilent has unique solutions for developing and verifying PHY designs.

  • 8/11/2019 WirelessSymp802_11adPHY

    40/40

    Wi l C i i

    QUESTIONS?