Top Banner
GREGOR Telescope, AO, BBI Dirk Soltau Kiepenheuer-Institut für Sonnenphysik CASSDA School, April 20 th , 2015
65

Wie konstruiert man ein Sonnenteleskop?€¦ · • Desired resolution at 550 nm : 0.1 arcsec – D = 1.4 m • Pixel size = 10 µm – image scale = 0.1 arcsec/20 µm = 5 arcsec/mm

Oct 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • GREGORTelescope, AO, BBI

    Dirk SoltauKiepenheuer-Institut für Sonnenphysik

    CASSDA School, April 20th, 2015

  • The demand for high spatial resolution

  • Show the simulations the truth?

    Courtesy Oskar Steiner, KIS

  • Show the simulations the truth?

    Solar Tornado

    Credits: Wedemeyer-Böhm (2012). Image produced with VAPOR

  • High Resolution

  • Diffraction Limited Resolution

    http://www.olympusmicro.com/primer/anatomy/numaperture.html

    Dλθ 22.1=

    Example:

    λ = 550 nmD = 1 m

    θ = 0.67 µrad = 0.14 arcsec

    [rad]

  • By the way: There is no free lunch

    • Number of photons per arcsec2 ∝ T × D2

    • Size of the resolution element in arcsec2 ∝ 1/ D2

  • Strehl

    Strehl > 0.6 „good“Strehl > 0.8 „diffraction limited“

  • GREGOR Modulation Transfer Function(MTF)

    1“ 0.5“ 0.1“

  • Aperture, f-ratio, field of view• Desired resolution at 550 nm : 0.1 arcsec

    – D = 1.4 m• Pixel size = 10 µm

    – image scale = 0.1 arcsec/20 µm = 5 arcsec/mm– f = 41.2m– f-ratio = f/30

    • Number of pixels = 4096– FOV = 200 arcsec

    f

    1 mm5 arcsec

    image scale [arcsec/mm] = ( f[mm] * tan(1“) )-1

    = 206270/ f[mm]

  • Three types of mirror telescopesNewton Cassegrain Gregory

  • Optical Design 1The Simple Solution

  • McMath-Pierce, f/54

    f=86 m

  • McMath-Pierce (Lazy Seven, f/54)

  • D = 0.7 mf = 45 m

    f/64

    Vacuum Tower Telescope (VTT)

  • VTT opticallayout

  • SOLIS: A solar Cassegrain telescope

  • The Gregory Coudé telescope

    Picture taken fromhttp://www.irsol.ch/Poster/ao-poster.pdf

    D = 0.45 mf = 25 m

    f/55

  • From Gregory to GREGOR• Has to be shorter than 4 m to fit into dome• Diameter : 1.5 m

    • f/# of primary appr. 2• Diffraction limited resolution = 0.08 arcsec

    • Central obscuration < 0.3 f/# M2 > 1• Secondary focus F2

    FF1F2

  • Heat load in a solar telescope focus

    • Solar power density (max) 0.1 W/cm2

    2

    10000ionmagnificatdensity power

    fD

    Power density in GREGOR F1 ≈ 300 W/cm2 !!

    In any solar telescope focus:

  • Optical Design

    D = 1.5 mf/40

  • Power mirrorsRadius of curv. Conic const f/#

    M1 -5013 mm -1 f/1.8

    M2 -1039 mm -0.306 f/1.2

    M3 -2797 mm -0.538 f/4

    Foci (FOV = 150 arcsec)f/# Image scale Magn. FOV Power Power dens.

    F1 1.8 82 arsec/mm 1.8 mm 1600 W 300 W/cm2

    F2 6 23.6 arcsec/mm

    3.5 6.3 mm 10 W 30 W/cm2

    F3 40 3.6 arcsec/mm 6.6 41.6 mm 4 W 0.3 W/cm2

  • Scatter diameter:150 µm = 12 arcsec

    Optical quality in F1 (FOV = 200“)

  • Scatter diameter:40 µm = 1 arcsec

    30 W/cm2

    Optical quality in F2 (FOV = 200“)

  • Scatter diameter:20 µm = 0.07 arcsec

    0.7 W/cm2

    Optical quality in F3 (FOV = 200“)

  • Overview of telescope structure and optical

    path

    Dr. Reiner Volkmer, Kiepenheuer Institut für Sonnenphysik, Freiburg

  • Dr. Reiner Volkmer, Kiepenheuer Institut für Sonnenphysik, Freiburg 28

    Telescope structure

    • Sun heats structure and mirrors open telescope and completely foldable dome (telescope in free air flow). Telescopes with 1.5 m free aperture and evacuated light path are very difficult to build

    • full performance at wind speeds up to 20 m/s with relative pointing error (rms): 0.5“ (open loop)

    • temperature difference to ambient :+0.2 K < ∆T < -0.5 K

  • Structure

  • Dr. Reiner Volkmer, Kiepenheuer Institut fürSonnenphysik, Freiburg 30

    Why Silicon Carbide main mirrors?• solar radiation on surface of 1.5 m main mirror: 2000 W• ∆T mirror – ambient temperature should be < 1K (internal seeing)• heating of mirrors is critical !!!• silicon carbide has high thermal conductivity:

    K(silicon carbide) ~ 100 x K(Zerodur) • silicon carbide mirrrors can be "thinned" and structured (high stiffness)

    – ► light weight mirror (M1 ~ 90 kg) faster reaction on temperature changes

    – ► removal of heat on back side• GREGOR: Primary, secondary and tertiary are silicon carbide mirrors

    M336 cm2.5 kg

    raw

    finished

  • Mirror seeing - Mirror Cooling

    • Heat transfer bythermal conductivity:

    TAd

    Q ∆⋅= λ.

    Material λ[W/(mK)]

    Air 0.03

    Glass 0.76

    Cesic 121

    Zerodur 1.46

    Copper 403

    d = thicknessA = area

    Example M1:ZerodurD = 30 mmA = 1.7 sqm∆T = 3 K dQ/dt = 250 W

    Example F1 heat stop:CopperD = 10 mmA = 0.0005 sqm∆T = 10 K dQ/dt = 200 W

  • Primary mirror and field stop cooling

    Air flowM1 mirror

    Nozzle

    Heatexchanger

    FanHousing

  • Thermal control system

  • The enemy

  • Some atmospheric optics(index of refraction for air)

    62 10)22.16.272(1)( −++=

    λλn

    6106.771)( −=−T

    Prn

    Wave length dependence of n

    T and P –dependence of n

    Example : P=1000 mbar, T=293 K → ∆n=10-6 per degree

  • Some atmospheric optics(turbulence)

    viscosity:scale spatial :d

    velocity:vdensity:

    η

    ρη

    ρ dvRe⋅⋅

    =

    3/11)( −∝ kkE

    Reynolds number Re: 105, i.e. . Atmosphere is always turbulent and never laminar

    Kolmogorov spectrum

    Kolmogorov’s theory of turbuklence

    van Gogh, „Starry Night“

  • Some atmospheric optics: structure function

    [ ] 3/22211 )()( −=−+= rCrnrrnD nrrn

    Dn = Structure function Cn2 = structure constant (unit m-2/3 )

    Cn2 is a function of height

    Cn2 = 10-17 m-2/3

    Cn2 = 10-14 m-2/3 37

  • D. Soltau, Mai 2000 38

    Cn2 profile (Example Hufnagel model)

    ( )2/120

    5

    2

    ),(1500/161000/2

    10532

    )(15

    1

    1027

    210.2)(

    =

    +

    =

    −−−−

    km

    km

    thrhhn

    dhhvkm

    W

    eeeWhhC

  • D. Soltau, Mai 2000 39

    Fried’s Parameter r0

    λπ

    β

    2

    )()sec(423.05/3

    0

    220

    =

    =

    k

    dhhCkrL

    n

    5/60 λ∝r

    [ ]223/5

    0

    2 364.0 radDr

    Dtilt

    =

    λσÜbrigens: Allein die Korrektur für tip/tilt halbiert die durch die Turbulenz verursachte Varianz

    r0 is a kind of atmospheric “aperture”

  • Measuring r0 (example)

    [ ]223/5

    0

    2 364.0 radDr

    Dtilt

    =

    λσ

  • DIMM = „Differential image motion monitor“

  • Adaptive Optics: The Idea

    • Babcock (1953): The possibility of compensating astronomical seeing

    Horace Welcome Babcock, 1912 - 2003

  • Adaptive Optics:An Additional Requirement for a

    Telescope Design

    We need a pupil image

    http://lyot.org/background/adaptive_optics.html

    Relay Optics

    fast

  • GREGOR AO System: GAOS

  • GAOS: How many actuators do weneed?

    Subapertur: 10 cm x 10 cm

    r0 = 5 cm

    r0 = 10 cm

  • How large is the corrected FOV?

    Hr0314.0=θ

    Example: r0 = 10 cmH = 2 km

    θ = 1.6 10-5 rad = 3 arcsec

  • Deformable mirror

    DM Characteristics•stacked-Piezo, made by CILAS•256 actuators, 196 illuminated•48mm illuminated diameter•5μm stroke•3.2mm actuator pitch•new glueing technology•first resonance frequency > 10 kHz

  • CILAS DM: 256 actuators

  • Shack Hartmann WFS

  • Solar AO• Target: Granulation

    – Intrinsiccontrast: 14%

    – in telescope 2% bis 5%

    – structure sizetypical 2“

    Observations mostly done in thevisible and near infrared

  • Minimum size of subaperture?

    1/arcsec

  • taken from ATST archive 52D. Soltau (KIS), Delft Workshop 21./22.02.1321.02.2013

  • Bottle neck: The WFS camera

    1600 fps

  • GREGOR AO GUI

    54D. Soltau (KIS), Delft Workshop 21./22.02.1321.02.2013

  • Night time AO performance

  • Night time performance with AO

    FWHM = 0.2 arcsec

  • Multi ConjugateAO for GREGOR

  • GREGORF1

    F2

    F3

    F4 Pupil

  • Back end instruments

    • GRIS• GFPI• BBI (Broad Band Imager)

  • Instrument Floor

    BBIGFPI

    GRIS

  • Broad Band Imager

    F4

    F4

    WFS

    Collim.

    Pupil

    Pupil

    Filter

    Cameraf = 260 mm

    Detector 1

    BS BS

    Detector 2

    (PCO 4000)PCO Sensicam

    Filter(wheel)

    f = 400 mm Cameraf = 486 mm

    fromtelescope

  • Broadband Imager

  • First Results - BBI

    • June 2013, parallel with Sunrise flight

    • Courtesy A. Lagg, R. Schlichenmaier, M. Franz

  • Summary

    • GREGOR provides world class observingcapabilities. It is:– A large telescope– at an excellent site– fully equipped with AO and backend instruments– beside an excellent Vacuum Tower Telescope

    GREGOR�Telescope, AO, BBIThe demand for high spatial resolutionShow the simulations the truth?Show the simulations the truth?High ResolutionDiffraction Limited ResolutionBy the way: There is no free lunchStrehlGREGOR Modulation Transfer Function (MTF)Aperture, f-ratio, field of viewThree types of mirror telescopesOptical Design 1�The Simple SolutionMcMath-Pierce, f/54McMath-Pierce (Lazy Seven, f/54)Vacuum Tower Telescope (VTT)VTT optical layoutSOLIS: A solar Cassegrain telescopeFoliennummer 18The Gregory Coudé telescopeFrom Gregory to GREGORHeat load in a solar telescope focusOptical DesignPower mirrorsOptical quality in F1 (FOV = 200“)Optical quality in F2 (FOV = 200“)Optical quality in F3 (FOV = 200“)Overview of telescope structure and optical pathTelescope structureStructureWhy Silicon Carbide main mirrors?Mirror seeing - Mirror CoolingPrimary mirror and field stop coolingThermal control systemThe enemySome atmospheric optics�(index of refraction for air)Some atmospheric optics�(turbulence)Some atmospheric optics: �structure functionCn2 profile (Example Hufnagel model)Fried’s Parameter r0Measuring r0 (example)DIMM = „Differential image motion monitor“Adaptive Optics: The IdeaAdaptive Optics:�An Additional Requirement for a Telescope DesignGREGOR AO System: GAOSGAOS: How many actuators do we need?How large is the corrected FOV?Deformable mirrorCILAS DM: 256 actuatorsShack Hartmann WFSSolar AOMinimum size of subaperture?Foliennummer 52Bottle neck: The WFS cameraGREGOR AO GUINight time AO performanceNight time performance with AOMulti Conjugate AO for GREGORGREGORBack end instrumentsInstrument FloorBroad Band ImagerBroadband ImagerFoliennummer 63First Results - BBISummary