Top Banner
Written Home Work Solutions PHYS111.02 SFSU Eradat [WH#1 CHAPTERS 13] 1 Chapter 1 39. Picture the Problem: The lottery winnings are represented either by quarters or paper dollars. Strategy: There are about 5 quarters and about 30 dollar bills per ounce. Solution: 1. (a) Multiply by conversion factors: 4 × 12 × 10 6 quarters ( ) 1 oz 5 quarters 1 lb 16 oz = 600,000 lb 10 6 lb 2. (b) Repeat for the dollar bills: 12 × 10 6 dollars ( ) 1 oz 30 dollars 1 lb 16 oz = 25,000 lb 10 4 lb Insight: Better go with large denominations or perhaps a single check when you collect your lottery winnings! Even the dollar bills weigh over ten tons! 40. Picture the Problem: This is a dimensional analysis question. Strategy: Manipulate the dimensions in the same manner as algebraic expressions. Solution: 1. (a) Substitute dimensions for the variables: v = at m s = m s 2 s () = m s The equation is dimensionally consistent. 2. (b) Substitute dimensions for the variables: v = 1 2 at 2 m s 1 2 m s 2 s () 2 = m NOT dimensionally consistent 3. (c) Substitute dimensions for the variables: t = a v s ms 2 ms = 1 s NOT dimensionally consistent 4. (d) Substitute dimensions for the variables: v 2 = 2ax m 2 s 2 = 2 m s 2 m ( ) = m 2 s 2 dimensionally consistent Insight: The number 2 does not contribute any dimensions to the problem. 46. Picture the Problem: This is a units conversion problem. Strategy: Multiply the known quantity by appropriate conversion factors to change the units. Solution: 1. (a) The acceleration must be greater than 14 ft/s 2 because there are about 3 ft per meter. 2. (b) Convert m/s 2 to ft/s 2 : 14 m s 2 3.28 ft m = 46 ft s 2 3. (c) Convert m/s 2 to km/h 2 : 14 m s 2 1 km 1000 m 3600 s h 2 = 1.8 × 10 5 km h 2 Insight: Conversion factors are conceptually equal to one, even though numerically they often equal something other than one. They are often helpful in displaying a number in a convenient, useful, or easy tocomprehend fashion.
6

WHW1 Ch1 3 - Erbion Consultants

Jan 22, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: WHW1 Ch1 3 - Erbion Consultants

Written  Home  Work  Solutions            PHYS111.02  SFSU  Eradat                                    [WH#1  CHAPTERS  1-­‐3]   1    Chapter  1  39.     Picture  the  Problem:  The  lottery  winnings  are  represented  either  by  quarters  or  paper  dollars.  

  Strategy:  There  are  about  5  quarters  and  about  30  dollar  bills  per  ounce.  

  Solution:  1.  (a)  Multiply  by    conversion  factors:  

4 ×12 ×106 quarters( ) 1 oz5 quarters

⎛⎝⎜

⎞⎠⎟

1 lb16 oz

⎛⎝⎜

⎞⎠⎟= 600,000 lb ≅ 106 lb

 

 2.  (b)  Repeat  for  the  dollar  bills:  

12 ×106 dollars( ) 1 oz

30 dollars⎛⎝⎜

⎞⎠⎟

1 lb16 oz

⎛⎝⎜

⎞⎠⎟= 25,000 lb ≅ 104 lb  

  Insight:  Better  go  with  large  denominations  or  perhaps  a  single  check  when  you  collect  your  lottery  winnings!    Even  the  dollar  bills  weigh  over  ten  tons!  

 40.     Picture  the  Problem:  This  is  a  dimensional  analysis  question.  

  Strategy:  Manipulate  the  dimensions  in  the  same  manner  as  algebraic  expressions.  

  Solution:  1.  (a)  Substitute    dimensions  for  the  variables:  

v = a tms=

ms2

⎛⎝⎜

⎞⎠⎟

s( ) = ms

∴ The equation is dimensionally consistent.

    2.  (b)  Substitute  dimensions    

for  the  variables:  

v = 12 at2

ms≠ 1

2

ms2

⎛⎝⎜

⎞⎠⎟

s( )2= m ∴ NOT dimensionally consistent

 

  3.  (c)  Substitute  dimensions    for  the  variables:  

t = a

v ⇒ s ≠

m s2

m s=

1s

∴ NOT dimensionally consistent  

  4.  (d)  Substitute  dimensions    for  the  variables:  

v2 = 2a xm2

s2= 2

ms2

⎛⎝⎜

⎞⎠⎟

m( ) = m2

s2 ∴ dimensionally consistent

 

  Insight:  The  number  2  does  not  contribute  any  dimensions  to  the  problem.    46.     Picture  the  Problem:  This  is  a  units  conversion  problem.     Strategy:  Multiply  the  known  quantity  by  appropriate  conversion  factors  to  change  the  units.     Solution:  1.  (a)  The  acceleration  must  be  greater  than  14  ft/s2  because  there  are  about  3  ft  per  meter.    

2.  (b)  Convert  m/s2  to  ft/s2:  

14 ms2

⎛⎝⎜

⎞⎠⎟

3.28 ftm

⎛⎝⎜

⎞⎠⎟= 46 ft

s2  

 3.  (c)  Convert  m/s2  to  km/h2:  

14 m

s2

⎛⎝⎜

⎞⎠⎟

1 km1000 m

⎛⎝⎜

⎞⎠⎟

3600 sh

⎛⎝⎜

⎞⎠⎟

2

= 1.8 ×105 kmh2  

  Insight:  Conversion  factors  are  conceptually  equal  to  one,  even  though  numerically  they  often  equal  something  other  than  one.    They  are  often  helpful  in  displaying  a  number  in  a  convenient,  useful,  or  easy-­‐to-­‐comprehend  fashion.  

     

Page 2: WHW1 Ch1 3 - Erbion Consultants

  2  

 Chapter  2  23.     Picture  the  Problem:  Following  the  motion  specified  in  the  

position-­‐versus-­‐time  graph,  the  father  walks  forward,  stops,  walks  forward  again,  and  then  walks  backward.  

  Strategy:  Determine  the  direction  of  the  velocity  from  the  slope  of  the  graph.    Then  determine  the  magnitude  of  the  velocity  by  calculating  the  slope  of  the  graph  at  each  specified  point.  

  Solution:  1.  (a)    The  slope  at  A  is  positive  so  the  velocity  is  positive.      (b)  The  velocity  at  B  is  zero.    (c)  The  velocity  at  C  is  positive.    (d)  The  velocity  at  D  is  negative.  

 2.  (e)  Find  the  slope  of  the  graph  at  A:  

vav = Δx

Δt= 2.0 m

1.0 s= 2.0 m/s

   

 3.  (f)  Find  the  slope  of  the  graph  at  B:  

vav = Δx

Δt= 0.0 m

1.0 s= 0.0 m/s  

 4.  (g)  Find  the  slope  of  the  graph  at  C:  

vav = Δx

Δt= 1.0 m

1.0 s= 1.0 m/s  

 5.  (h)  Find  the  slope  of  the  graph  at  D:  

vav = Δx

Δt= −3.0 m

2.0 s= −1.5 m/s  

  Insight:  The  signs  of  each  answer  in  (e)  through  (h)  match  those  predicted  in  parts  (a)  through  (d).    With  practice  you  can  form  both  a  qualitative  and  quantitative  “movie”  of  the  motion  in  your  head  simply  by  examining  the  position-­‐versus-­‐time  graph.  

 29.     Picture  the  Problem:  The  given  position  function  indicates  the  particle  begins  traveling  in  the  positive  

direction  but  is  accelerating  in  the  negative  direction.  

  Strategy:  Create  the  x-­‐versus-­‐t  plot  using  a  spreadsheet,  or  calculate  individual  values  by  hand  and  sketch  the  curve  using  graph  paper.    Use  the  known  x  and  t  information  to  determine  the  average  speed  and  velocity.  

   

 

Solution:  1.  (a)  Use  a  spreadsheet  to  create  the  plot:    

   

2.  (b)  Find  the  average    velocity  from  t  =  0.35  to    t  =  0.45  s:  

vav = ΔxΔt

=2 m/s( ) 0.45 s( ) − 3 m/s3( ) 0.45 s( )3⎡

⎣⎢⎤⎦⎥− 2 m/s( ) 0.35 s( ) − 3 m/s3( ) 0.35 s( )3⎡⎣⎢

⎤⎦⎥

0.10 s= 0.55 m/s

 

 3.  (c)  Find  the  average    velocity  from  t  =  0.39  to    t  =  0.41  s:  

vav = ΔxΔt

=2 m/s( ) 0.41 s( ) − 3 m/s3( ) 0.41 s( )3⎡

⎣⎢⎤⎦⎥− 2 m/s( ) 0.39 s( ) − 3 m/s3( ) 0.39 s( )3⎡⎣⎢

⎤⎦⎥

0.41− 0.39 s= 0.56 m/s

 

Page 3: WHW1 Ch1 3 - Erbion Consultants

Written  Home  Work  Solutions            PHYS111.02  SFSU  Eradat                                    [WH#1  CHAPTERS  1-­‐3]   3       4.  (d)  The  instantaneous  speed  at  t  =  0.40  s  will  be  closer  to  0.56  m/s.    As  the  time  interval  becomes  

smaller  the  average  velocity  is  approaching  0.56  m/s,  so  we  conclude  the  average  speed  over  an  infinitesimally  small  time  interval  will  be  very  close  to  that  value.  

  Insight:  Note  that  the  instantaneous  velocity  at  0.40  s  is  equal  to  the  slope  of  a  straight  line  drawn  tangent  to  the  curve  at  that  point.    Because  it  is  difficult  to  accurately  draw  a  tangent  line,  we  usually  resort  to  mathematical  methods  like  those  illustrated  above  to  determine  the  instantaneous  velocity.      

 54.     Picture  the  Problem:  The  two  cars  are  

traveling  in  opposite  directions.  

  Strategy:  Write  the  equations  of  motion  based  upon  equation  2-­‐11,  and  set  them  equal  to  each  other  to  find  the  time  at  which  the  two  cars  pass  each  other.  

 

  Solution:    1.  (a)  Write  equation  2-­‐11  for  car  1:  

x1 = x0,1 + v0,1t +12 a1t

2 = 0 + 20.0 m/s( ) t + 1.25 m/s2( ) t2  

  2.  Write  equation  2-­‐11  for  car  2:   x2 = x0,2 + v0,2t +

12 a2t

2 = 1000 m − 30.0 m/s( ) t + 1.6 m/s2( ) t2  

  3.  (b)  Set   x1 = x2  and  solve  for  t:  

20.0 m/s( ) t + 1.25 m/s2( ) t2 = 1000 m − 30.0 m/s( ) t + 1.6 m/s2( ) t2

0 = 1000 − 50t + 0.35t2

t =50 ± 502 − 4 0.35( ) 1000( )

0.70= 24, 119 s ⇒ 24 s

 

  Insight:  We  take  the  smaller  of  the  two  roots,  which  corresponds  to  the  first  time  the  cars  pass  each  other.    Later  on  the  larger  acceleration  of  car  2  means  that  it’ll  come  to  rest,  speed  up  in  the  positive  direction,  and  overtake  car  1  at  119  s.  

 103.  Picture  the  Problem:  A  youngster  bounces  straight  up  and  down  on  a  trampoline.  The  child  rises  straight  

upward,  slows  down,  and  momentarily  comes  to  rest  before  falling  straight  downward  again.  

  Strategy:  Find  the  time  of  flight  by  exploiting  the  symmetry  of  the  situation.    If  it  takes  time  t  for  gravity  to  slow  the  child  down  from  her  initial  speed  v0  to  zero,  it  will  take  the  same  amount  of  time  to  accelerate  her  back  to  the  same  speed.    She  therefore  lands  at  the  same  speed  v0  with  which  she  took  off.    Use  this  fact  together  with  equation  2-­‐7  to  find  the  time  of  flight.    The  maximum  height  she  achieves  is  related  to  the  square  of  v0,  as  indicated  by  equation  2-­‐12.  

  Solution:  1.  (a)  Because  the  time  of  flight  depends  linearly  upon  the  initial  velocity,  doubling  v0  will  increase  her  time  of  flight  by  a  factor  of  2.  

  2.  (b)  Because  the  time  of  flight  depends  upon  the  square  of  the  initial  velocity,  doubling  v0  will  increase  her  maximum  altitude  by  a  factor  of  4.  

 3.  (c)  The  time  of  flight  for v0 = 2.0 m/s ,  using  Eq.  2-­‐7:  

t =

v − v0

−g=

−v0( ) − v0

−g=

2v0

g=

2 2.0 m/s( )9.81 m/s2 = 0.41 s  

 4.  The  time  of  flight  for v0 = 4.0 m/s :  

t =

2v0

g=

2 4.0 m/s( )9.81 m/s2 = 0.82 s  

 5.    The  maximum  height  for v0 = 2.0 m/s ,  using  Eq.  2-­‐

Δx =

v2 − v02

−2g=

02 − v02

−2g=

v02

2g=

2.0 m/s( )2

2 9.81 m/s2( ) = 0.20 m

Page 4: WHW1 Ch1 3 - Erbion Consultants

  4  

12:    

 6.  The  maximum  height  for v0 = 4.0 m/s :  

Δx =

v02

2g=

4.0 m/s( )2

2 9.81 m/s2( ) = 0.82 m  

  Insight:  The  reason  the  answer  in  step  6  is  not  exactly  four  times  larger  than  the  answer  in  step  5  is  due  to  the  rounding  required  by  the  fact  that  there  are  only  two  significant  digits.    If  you  recalculate  using  2.00  m/s  and  4.00  m/s,  the  answers  are  0.204  and  0.816  m,  respectively.  

                                                                             

Page 5: WHW1 Ch1 3 - Erbion Consultants

Written  Home  Work  Solutions            PHYS111.02  SFSU  Eradat                                    [WH#1  CHAPTERS  1-­‐3]   5    Chapter  3  26.     Picture  the  Problem:  The  vectors  involved  in  the  problem  

are  depicted  at  right.  

 Strategy:  Add  the  vectors  using  the  component  method  in  order  to  find  the  components  of  the  vector  sum.    Use  the  components  to  find  the  magnitude  and  the  direction  of  the  vector  sum.  

  Solution:  1.  (a)  Make  estimates    

from  the  drawing:   A +B +C ≈ 20 m θ ≈ 1.5°  

  2.  (b)  Add  the  vector  components:  

A +B +C = 0 + 20.0 m( )cos 45° + 7.0 m( )cos −30°( )⎡⎣ ⎤⎦ x +

−10.0 m( ) + 20.0 m( )sin 45° + 7.0 m( )sin −30°( )⎡⎣ ⎤⎦ yA +B +C = 20.2 m( ) x + 0.64 m( ) y

 

 3.  Use  the  components  to  find  the  magnitude:  

A +B +C = 20.2 m( )2 + 0.64 m( )2 = 20.2 m  

 4.  Use  the  components  to  find  the  angle:  

θ = tan−1 0.64 m

20.2 m⎛⎝⎜

⎞⎠⎟= 1.8°  

  Insight:  Resolving  vectors  into  components  takes  a  little  bit  of  extra  effort,  but  you  can  get  much  more  accurate  answers  using  this  approach  than  by  adding  the  vectors  graphically.    Notice,  however,  that  when  your  calculator  returns  the  angle  of  1.8°  in  step  4,  you  must  have  a  picture  of  the  vectors  in  your  head  (or  on  paper)  to  correctly  determine  the  direction.  

 53.     Picture  the  Problem:  The  vectors  involved  in  this  problem  are  

depicted  at  right.  

 Strategy:  Let  

vpg = velocity  of  the  plane  relative  to  the  ground,  

vpa = velocity  of  the  plane  relative  to  the  air,  and  

vag =  velocity  

of  the  air  relative  to  the  ground.    The  drawing  at  right  depicts  the  vectors  added  according  to  equation  3-­‐8,

vpg = vpa + vag .  

Determine  the  angle  of  the  triangle  from  the  inverse  sine  function.      

 Solution:  1.  (a)  Use  the  inverse  sine  function  to  find  θ:  

 

θ = sin−1

vag

vpa

⎝⎜

⎠⎟ = sin−1 65 km/h

340 km/h⎛⎝⎜

⎞⎠⎟= 11° west of north

 

  2.  (b)  The  drawing  above  depicts  the  vectors.    

  3.  (c)  If  the  plane  reduces  its  speed  but  the  wind  velocity  remains  the  same,  the  angle  found  in  part  (a)  should  be  increased  in  order  for  the  plane  to  continue  flying  due  north.  

  Insight:  If  the  plane’s  speed  were  to  be  reduced  to  240  km/h,  the  required  angle  would  become  16°.    

C

 x  

 y  B

 

A  

+ +A B C

 

θ  

45°  

30°  

Page 6: WHW1 Ch1 3 - Erbion Consultants

  6  

75.     Picture  the  Problem:  The  velocities  of  the  surfer   vss  and  the  

waves   vws  relative  to  the  shore  are  shown  in  the  diagram  at  

right.     Strategy: Set the y component of the surfer’s velocity equal to the

velocity of the waves, and solve for the angle θ. Then apply equation 3-8 to find the surfer’s velocity relative to the wave.

  Solution:  1.  (a)  Set

vss, y = vws :  

vss sinθ = vws

θ = sin−1 vws

vss

⎝⎜⎞

⎠⎟= sin−1 1.3 m/s

7.2 m/s⎛⎝⎜

⎞⎠⎟= 10°

   

  2.  (b)  Apply  equation  3-­‐8:   vss =

vsw + vws ⇒ vsw = vss −vws = vss cosθ x + vss sinθ y⎡⎣ ⎤⎦ − vws y  

  3.  Since vss sinθ = vws ,  the      y  components  cancel  out:  

vsw = vss cosθ x = 7.2 m/s( )cos10° x = 7.1 m/s( ) x  

  4.  (c)  If  the  y  component  stays  the  same,  but  the  vector  increases  in  length,  the  angle  it  makes  with  the  x-­‐axis  must  decrease.  

  Insight:  In  this  problem  we  assumed  that  the  water  is  at  rest  relative  to  the  shore,  so  that  the  surfer’s  speed  relative  to  the  water  is  the  same  as  the  surfer’s  speed  relative  to  the  shore.  

 

shore  

ssv  

wsv  

x  

 y  

θ