Top Banner
What can emission lines tell us? lecture 1 Grażyna Stasińska QuickTime™ et u décompresseur TIFF (n sont requis pour visi QuickTime™ et un décompresseur TIFF (n sont requis pour visi QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visionner cette image. QuickTime™ et décompresseur TIFF sont requis pour vi QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visionner cette image. QuickTime™ et u décompresseur TIFF ( sont requis pour vis QuickTime™ et un décompresseur TIFF (non compressé sont requis pour visionner cette i QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visionner cette image. QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visionner cette image. QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visionner cette image. QuickTime™ et un décompresseur TIFF (LZW) sont requis pour visionner cette image. QuickTime™ et décompresseur TI sont requis pour vi QuickTime™ et un décompresseur TIFF (no sont requis pour vision
44
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: What can emission lines tell us? lecture 1 Grażyna Stasińska.

What can emission lines tell us?

lecture 1

Grażyna Stasińska

QuickTime™ et undécompresseur TIFF (non compressé)sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (LZW)sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

Page 2: What can emission lines tell us? lecture 1 Grażyna Stasińska.

What can emission lines tell us?

lecture 1

Grażyna Stasińska

QuickTime™ et undécompresseur TIFF (non compressé)sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (LZW)sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

Page 3: What can emission lines tell us? lecture 1 Grażyna Stasińska.

some basic literature dealing with the ionized ISM

books•Physical Processes in the Interstellar Medium, Spitzer, 1978 •Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, Second Edition,

Osterbrock & Ferland, 2005

•Astrophysics of the Diffuse Universe, Dopita & Sutherland, 2003

lectures

•Stasinska 2002 astro-ph/0207500

« Abundance determinations in HII regions and planetary nebulae »

•Stasinska 2007 astro-ph « What can emission lines tell us? »

Page 4: What can emission lines tell us? lecture 1 Grażyna Stasińska.

What can emission lines tell us?

The mere presence of emission lines indicates

• the existence of gas

• eg emission line galaxies contain gas in large amount while galaxies emitting only a continuum with absorption features (such as elliptical galaxies) do not

• the existence of an ionizing agent (most emission lines come from ionized species)

• hot star(s)

• active nucleus

• (shocks) …

Page 5: What can emission lines tell us? lecture 1 Grażyna Stasińska.

a gallery of nebular spectra

Page 6: What can emission lines tell us? lecture 1 Grażyna Stasińska.

a g the galaxy

Te diagnostic

Page 7: What can emission lines tell us? lecture 1 Grażyna Stasińska.

IFU data for the most metal-poor HII galaxy I Zw 18

Kehrig et al 2006

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.QuickTime™ et un

décompresseur TIFF (LZW)sont requis pour visionner cette image.

[OIII] image H image

Page 8: What can emission lines tell us? lecture 1 Grażyna Stasińska.

deep UV-FIR spectrum of the high excitation planetary nebula NGC 7027

Zhang et al 2005

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

observed

dereddened

Page 9: What can emission lines tell us? lecture 1 Grażyna Stasińska.

high resolution spectrum of the PN NGC 6153 showing many recombination lines

Liu et al 2000

Page 10: What can emission lines tell us? lecture 1 Grażyna Stasińska.

SPITZER IRS spectrum of the PN SMP83 in the LMCBernard-Salas et al 2004

Page 11: What can emission lines tell us? lecture 1 Grażyna Stasińska.

XMM spectrum of the corona of α Cen Liefke & Schmitt 2006

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

Page 12: What can emission lines tell us? lecture 1 Grażyna Stasińska.

line displacements tell about radial velocitiesand allow one to measure

• redshifts of galaxies

• dark matter mass in galaxies using PNe as test particles (eg Romanowsky et al 2003)

• internal motions in zones of line emission (eg line broadening in AGNs)

• expansion velocities

high resolution multislit spectroscopy of the PN NGC 7009 in the [NeIII] line showing expansion of the envelope

Wilson 1958

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

Page 13: What can emission lines tell us? lecture 1 Grażyna Stasińska.

Basic mechanisms in ionized nebulae and emission line production

• ionisation and recombination processes• heating and cooling processes• line production mechanisms• about radiation transfer in nebulae• equilibrium versus out of equilibrium• the nebular physicist’s compendium

Page 14: What can emission lines tell us? lecture 1 Grażyna Stasińska.

ionisation and recombination processes

ionization• Photoionization

• Collisions

• Charge exchange

Recombination• Radiative recombination

• Dielectronic recombination

• Charge exchange

Page 15: What can emission lines tell us? lecture 1 Grażyna Stasińska.

heating and cooling processes

Heating

• Photoionization

• Collisional ionization

cooling• Free-free radiation

• Free-bound radiation

• Bound-bound radiation

Page 16: What can emission lines tell us? lecture 1 Grażyna Stasińska.

what determines the ionic fractions and the temperature?

Ionization

Ionic fractions

Recombination

Heating

Electron temperature

Cooling

• Photoionization• Collisions• Charge exchange

• Radiative recombination• Dielectronic recombination• Charge exchange

• Photoionization (mainly H and He)• Collisional ionization

• Free-free radiation• Free-bound radiation• Bound-bound radiation (mainly O)

Page 17: What can emission lines tell us? lecture 1 Grażyna Stasińska.

line production mechanisms

Recombination followed by cascade

(these lines are named with the recombined ion)

• H lines: Balmer …, Paschen etc …• He I lines (He I 5876…)• He II lines (He II 4686…)

Collisional excitation followed by radiative deexcitation

• Forbidden lines: [OIII]5007, [NII]6584• Semi-forbidden lines : CIII]1907 …• Resonance lines: CIV 1550, NV 1240, OVI 1035, SiIV 1400

Photoexcitation and fluorescence• Bowen lines: OIII 3133, 3444 (Bowen 1934)• Fe K line (probe of astrophysical black holes Fabian et al 2000)

notes

• Each line can be produced by several processes, but usually only one dominates• H Ly is produced both by recombination and by collisional excitation

Page 18: What can emission lines tell us? lecture 1 Grażyna Stasińska.

about radiation transfer in ionized nebulae

• Lyman continuum photons from the ionizing source

• ionizing photons produced by the nebula

• non-ionizing photons

Page 19: What can emission lines tell us? lecture 1 Grażyna Stasińska.

Lyman continuum photons from the ionizing source

• They suffer geometrical dilution away from the source

• They suffer line-of-sight absorption (main absorbers H and He)

• The first ones to be absorbed are the ones with energies close to the ionization threshold (-3)

• => hardening of the ionizing radiation field in external zones

Page 20: What can emission lines tell us? lecture 1 Grażyna Stasińska.

ionizing photons produced by the nebula

• those photons are emitted in all directions

The “on the spot approximation”

• assumes that all ground-state recombination photons are reabsorbed OTS• is justified for analytical order of magnitude estimations• but computed Te is incorrect by ~1000K-2000K (Gruenwald et al’s 3D code)

The “outward only approximation”• Radial outward only (Ferland’s Cloudy)• Full outward only (Stasinska’s PHOTO)

“complete” treatment• Traditional iterative way (Harrington, Rubin)• Using Monte-Carlo transfer (Ercolano’s Mocassin)

• resonance iine radiation is locally scattered many times• Can be treated with a “quasi on the spot” approximation (Ferland’s Cloudy)• Can be treated with an “local escape probability” approximation • Can be treated “exactly” (Dumont’s Titan)

Page 21: What can emission lines tell us? lecture 1 Grażyna Stasińska.

non-ionizing photons (including lines emitted by the nebula)

In general • they escape freely (the optical thickness of the nebulae is small enough)• They can be attenuated by dust absorption

Exceptions• resonance lines

• which suffer scattering (eg H Ly ) and may be selectively destroyed by dust• FIR lines

• can suffer self-absorption as abs is larger than for optical lines (Rubin 1968)• but turbulent/expansion velocities favour their escape (Abel et al 2003)

Page 22: What can emission lines tell us? lecture 1 Grażyna Stasińska.

equilibrium versus out of equilibrium

typical timescales for nebulae with n=103cm-3

Recombination time• trec= 1/(ne) 100 yr

Cooling time• tcool= (nkTe)/50 yr

Dynamical time• tdyn=R/vexp 2x104 yr for a single star HII region

Stellar evolution time • t* 5x106 yr for HII regions (=tMS)

1x104 yr for PNe (=tPAGB)

Most ionized nebulae are in ionization and thermal equilibrium

low density plasmas can be out of equilibrium

Page 23: What can emission lines tell us? lecture 1 Grażyna Stasińska.

The nebular physicist’s compendium

• The Stromgren sphere

• The H luminosity and surface brightness

• What drives the electron temperature?

• What determines the ionization structure of a nebula?

• Why is the gas temperature roughly uniform in photoionized nebulae?

• Comments on energy losses

• Other comments on the gas temperature

• Comments on line intensities

Page 24: What can emission lines tell us? lecture 1 Grażyna Stasińska.

The nebular physicist’s compendium

• The Stromgren sphere

• The H luminosity and surface brightness

• What drives the electron temperature?

• What determines the ionization structure of a nebula?

• Why is the gas temperature roughly uniform in photoionized nebulae?

• Comments on energy losses

• Other comments on the gas temperature

• Comments on line intensities

Page 25: What can emission lines tell us? lecture 1 Grażyna Stasińska.

The nebular physicist’s compendium

• The Stromgren sphere

• The H luminosity and surface brightness

• What drives the electron temperature?

• What determines the ionization structure of a nebula?

• Why is the gas temperature roughly uniform in photoionized nebulae?

• Comments on energy losses

• Other comments on the gas temperature

• Comments on line intensities

Page 26: What can emission lines tell us? lecture 1 Grażyna Stasińska.

QH [ph/sec] M*[M] Mion [M] Mion [M]

(n=102) (n=104)

PN 3x1047 .6 15 .15

O7 star 3x1048 30 150 1.5

starburst 3x1050 104 15000 150

the Strömgren radius

• In a homogeneous medium of density n and filling factor , the radius RS up to which gas is fully ionized is obtained from

QH = 4/3 RS3 n2 B(H) => RS [cm] = 9720 (QHn-2-1)1/3

• nb: The transition region between ionized and neutral gas is usually small:

maximum nebular mass that can be ionized• Mion= 4/3 RS

3 n mH => Mion [M] = 5 x 10-45 QH n-1

Page 27: What can emission lines tell us? lecture 1 Grażyna Stasińska.

The nebular physicist’s compendium

• The Stromgren sphere

• The H luminosity and surface brightness

• What drives the electron temperature?

• What determines the ionization structure of a nebula?

• Why is the gas temperature roughly uniform in photoionized nebulae?

• Comments on energy losses

• Other comments on the gas temperature

• Comments on line intensities

Page 28: What can emission lines tell us? lecture 1 Grażyna Stasińska.

density bounded case:

LH = Mneb n (H)/ mH

LH is independent of QH

ionization bounded case:

LH = QH (H)/ B(H)

LH is a measure of QH

Hluminosity: LH = 4/3 R3 n2 (H)

H surface brightness: SH = LH / (4 R2)

ionization bounded case:

SH = A (QH n4 2)1/3

narrow slit spectra are of better quality for denser nebulae

density bounded case:

SH = B (Mneb n5 2)1/3

narrow slit spectra are of better quality for denser nebulae

Page 29: What can emission lines tell us? lecture 1 Grażyna Stasińska.

The nebular physicist’s compendium

• The Stromgren sphere

• The H luminosity and surface brightness

• What drives the electron temperature?

• What determines the ionization structure of a nebula?

• Why is the gas temperature roughly uniform in photoionized nebulae?

• Comments on energy losses

• Other comments on the gas temperature

• Comments on line intensities

Page 30: What can emission lines tell us? lecture 1 Grażyna Stasińska.

• energy gains :

G = i, jni j i

j

where the i j are the gains per ion (photoionization and collisional ionization)

• energy losses :

L = i, jni j i

j

where the i j the losses per ion

(recombination and collisional excitation followed by photon emission)

• net energy gain :dE / dt = G - L

• If thermal equilibrium is achieved, the temperature is determined by: G = L

Page 31: What can emission lines tell us? lecture 1 Grażyna Stasińska.

The nebular physicist’s compendium

• The Stromgren sphere

• The H luminosity and surface brightness

• What drives the electron temperature?

• What determines the ionization structure of a nebula?

• Why is the gas temperature roughly uniform in photoionized nebulae?

• Comments on energy losses

• Other comments on the gas temperature

• Comments on line intensities

Page 32: What can emission lines tell us? lecture 1 Grażyna Stasińska.

ionization equilibrium equation

between ni and ni+1, at a fraction f of the Stromgren radius RS

ni 4J i d= ni+1 nei

where the mean intensity of the radiation field in photons s-1

is

4J = QH g (T*) / r2

=> expression of the ionization state as a function of QH, n, f,T*:

ni+1 / ni = (QHn2)1/3 f-2 g(T*)

ionization parameter • definition: U = QH / (4R2 n c)

• quivalent expression:e U = A (QHn2)1/3

the ionization state is fully defined by the product QHn2 once T* is specified

the average ionization is higher for larger QH and larger n

in a given nebula, regions of higher n are more recombined

Page 33: What can emission lines tell us? lecture 1 Grażyna Stasińska.

The nebular physicist’s compendium

• The Stromgren sphere

• The H luminosity and surface brightness

• What drives the electron temperature?

• What determines the ionization structure of a nebula?

• Why is the gas temperature roughly uniform in photoionized nebulae?

• Comments on energy losses

• Other comments on the gas temperature

• Comments on line intensities

Page 34: What can emission lines tell us? lecture 1 Grażyna Stasińska.

• Energy gained by photoionization of H at a distance r from the source

G = n(H°) 4J (h-h°) derg cm-3 s-1]

• Ionization equilibrium equation of H at distance r

n(H°) J d= n(H+) ne B(H)

• Substituting:

G = n(H+) ne B(H) < E >

with < E > = 4J (h-h°) d4J d

<E> is the mean energy gain per absorbed photon

<E> ≈ A T*

Energy gains due to photoionization of H are • independent of distance to the star• proportional to the star temperature

Page 35: What can emission lines tell us? lecture 1 Grażyna Stasińska.

The nebular physicist’s compendium

• The Stromgren sphere

• The H luminosity and surface brightness

• What drives the electron temperature?

• What determines the ionization structure of a nebula?

• Why is the gas temperature roughly uniform in photoionized nebulae?

• Comments on energy losses

• Other comments on the gas temperature

• Comments on line intensities

Page 36: What can emission lines tell us? lecture 1 Grażyna Stasińska.

• The most important cooling process is collisionally excited line radiation

• For a given ion in a two-level approximation, the cooling rate is given by

Lcoll = n2 A21 h21 erg cm-3 s-1]

where n2 results from the equilibrium equation of levels 1 and 2 :

n1 ne q12 = n2 (A21 + ne q21)

• In the limit of small ne one has

Lcoll = n1 ne q12 h21

where q12 is the collisional excitation rate

q12 = 8.629 10-6 (1,2) /1 Te-0.5 exp (-E12/kTe)

note for « normal abundances » • the most important cooling ion is O++

• H and He have too high excitation potentials to be excited at “normal temperatures”

Cooling by collisional line excitation is more important for• abundant ions • lines corresponding to large• levels that can be easily attained at the temperature of the medium

Page 37: What can emission lines tell us? lecture 1 Grażyna Stasińska.

The nebular physicist’s compendium

• The Stromgren sphere

• The H luminosity and surface brightness

• What drives the electron temperature?

• What determines the ionization structure of a nebula?

• Why is the gas temperature roughly uniform in photoionized nebulae?

• Comments on energy losses

• Other comments on the gas temperature

• Comments on line intensities

Page 38: What can emission lines tell us? lecture 1 Grażyna Stasińska.

Spatial variations of Te

• are mostly determined by • the mean energy of the absorbed photons• the populations of the main cooling ions

• are generally small • except at high metallicities

• in the O++ zone cooling is very efficient through emission of [OIII]52, 88 lines which have very low excitation potentials

• in the O+ zone the cooling efficiency is smaller (O+ has no low-lying levels)

photoionization models showing

the effect of metallicity

Stasinska 1978- - - Z < Z __ Z > Z

General dependence of Te with the defining properties of the nebulae

• for a given T*, Te as Z

• for a given Z, Te as T*

• for given T* , ionization state and Z, Te if n above ncrit

Te

Page 39: What can emission lines tell us? lecture 1 Grażyna Stasińska.

The nebular physicist’s compendium

• The Stromgren sphere

• The H luminosity and surface brightness

• What drives the electron temperature?

• What determines the ionization structure of a nebula?

• Why is the gas temperature roughly uniform in photoionized nebulae?

• Comments on energy losses

• Other comments on the gas temperature

• Comments on line intensities

Page 40: What can emission lines tell us? lecture 1 Grażyna Stasińska.

Temperature dependence of emission lines

Collisionally excited lines (CEL)

I CEL= n1(X) ne 8.629 10-6 (1,2) /1 Te-0.5 exp (-E12/kTe) h21

Recombination lines (RL)

I RL= n(X) ne Te- ( with ≈ 1)

Temperature dependence of line ratios

• Ratios RL / RL are almost independent of Te

• Ratios CEL(IR) / RL almost independent of Te

• Ratios CEL(opt or UV) / CEL(opt or UV) usually depend on Te

• Ratios CEL(opt) / RL strongly depend on Te

Page 41: What can emission lines tell us? lecture 1 Grażyna Stasińska.

temperature dependence of emission lines

The example of lines emitted by O++

Page 42: What can emission lines tell us? lecture 1 Grażyna Stasińska.

vthe Orion Nebulao’Dell http://vis.sdsc.edu/research/orion.html

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

Page 43: What can emission lines tell us? lecture 1 Grażyna Stasińska.

volume visualization of the Orion Nebulao’Dell http://vis.sdsc.edu/research/orion.html

QuickTime™ et undécompresseur codec YUV420

sont requis pour visionner cette image.

Page 44: What can emission lines tell us? lecture 1 Grażyna Stasińska.

a new view of the Orion Nebulaimages resolved in velocity and ionization

Garcia-Diaz & Henney 2006

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.