Top Banner
86
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Westerman Table
Page 2: Westerman Table
Page 3: Westerman Table
Page 4: Westerman Table

Westerm

ann Tables

1

Materials

Classification and categories

General properties of m

aterials

Chem

ical elements

Specific weight—

Melting points—

Coefficient of linear (therm

al) expansion

Sym-

Elem

entSpecific

Melting

Coefficient

Sym-

Elem

entSpecific

Melting

Coefficient

bolw

eightor solidi-

of linearbol

weight

or solidi-of linear

gf/cm3

fication(therm

al)gf/cm

3fication

(thermal)

pointexpansion

pointexpansion

°C α

°C α

Ag

Silver

10.5961

0.000 020N

iN

ickel8.9

14530.000 013

Al

Alum

inium2.7

6600.000 024

PP

hosphorus1.82

440.000 124

Au

Gold

19.31063

0.000 014P

bL

ead11.35

3270.000 029

Ba

Barium

3.74704

Pt

Platinum

21.451769

0.000 009B

eB

eryllium1.85

12830.000 012

Ra

Radium

5.00700

Bi

Bism

uth9.75

2710.000 013

SS

ulphur2.06

1130.000 064

CC

arbonS

bA

ntimony

6.69630

0.000 011G

raphite2.25

35500.000 008

Se

Selenium

4.5217

0.000 037D

iamond

3.523600

0.000 001S

iS

ilicon2.4

14100.000 008

Ca

Calcium

1.55850

Sn

Tin

7.3232

0.000 023C

dC

admium

8.64321

0.000 029T

aT

antalum16.6

30300.000 007

Ce

Cerium

6.9775

Th

Thorium

11.21827

0.000 011C

oC

obalt8.8

14920.000 013

Ti

Titanium

4.521812

0.000 009C

rC

hromium

7.11800

0.000 007U

Uranium

18.71132

Cu

Copper

8.91083

0.000 017V

Vanadium

5.961730

Fe

Iron7.86

15350.000 012

WT

angsten19.27

33800.000 004

IrIridium

22.422443

0.000 006Z

nZ

inc7.13

4200.000 026

KP

otassium0.86

630.000 084

Zr

Zirconium

6.51852

0.000 005L

aL

anthanum6.18

826H

gM

ercury13.5

– 39L

iL

ithium0.53

1800.000 058

Cl

Chlorine

– 101M

gM

agnesium1.74

6500.000 026

HH

ydrogen– 259

Mn

Manganese

7.31244

0.000 023H

eH

elium– 272

Mo

Molybdenum

10.212610

0.000 005N

Nitrogen

– 210N

aS

odium0.97

980.000 071

Ne

Neon

– 249N

bN

iobium8.55

24150.000 007

OO

xygen– 219

Ferrousmetals

Structuralsteel

Cast

iron

Copper,LeadZinc,Tin,N

ickel,Al

Toolsteel

Malleableiron

Cast

steel

Carbonsteel

Grey

castironC

opperalloysA

lalloysZinc

alloys

Carbon

toolsteel

White-

heartm

alleableiron

Alloy

steelA

lloycastiron

Solders

PVC

Vulcani-

zedfibre

Am

ino-plasts

Phenol-plasts

Alloy

toolsteel

Black-

heartm

alleableiron

Non-

ferrousm

etalsPlastics

IronSteel

Page 5: Westerman Table

2W

estermann T

ablesSpecific Weight—

Melting Point—

Coefficient of T

hermal E

xpansion—Shrinkage

Specific weight =

Weight per unit volum

e (gf/cm3 or kgf/dm

3)

Melting point (Fusion point) =

Tem

perature at which particular m

aterial starts melting

Coefficient of linear (therm

al) = Increase in length of unit length of a

expansionα

solid for temperature rise of 1°C

.

Materials

Material

Specific weight

Melting point °C

Material

Coefficient of

gf/cm3

linear expansion

Steel

7.851350…

1450Iron and Steel

0.000 012C

ast steel7.85

Chrom

e steel0.000 010

Grey cast iron

7.21150…

1250N

ickel steel0.000 012

High-speed steel

9.0≈

2000T

ungsten carbide0.000 006

Tungsten carbide

14.75≈

2000Invar

0.000 0015C

onstantan8.89

≈1600

Chrom

ium0.000 007

Invar (36% N

i)8.7

1450C

onstantan0.000 015

Brass

8.5≈

900E

lectron0.000 024

Al bronze

8.4A

luminium

0.000 023A

l cast bronze7.6

Magnesium

0.000 026T

in bronze8.6

≈ 900

Gold

0.000 014L

ead bronze9.5

Silver0.000 019

Al-alloy (A

l, Cu, M

g)2.8

≈ 650

Zinc

0.000 030M

g-alloy1.8

≈ 650

Tin

0.000 023B

abbitt metal 7.5...10.1

300…400

Lead

0.000 029P

lexiglass1.2

Nickel

0.000 013P

latinum0.000 009

Alcohol at 18°C

0.79–110

Brass

0.000 018Petrol at 15°C

0.72–150

Brouce

0.000 017C

opper sulphate1.11

Plexiglass

0.000 010W

ater at 4°C1.0

0G

lass0.000 008

Porcelain

0.000 003A

cetylene at 0°C1.17 kg/m

3–84

Carbon dioxide at 0°C

1.90 kg/m3

–78A

ir at 0°C1.29 kg/m

3–194

Propane at 0°C2.00 kg/m

3–43

Shrinkage = difference in volum

e of the mould com

pared with the

volume of the casting after cooling, in percent

Material

ShrinkageM

aterialShrinkage

Grey cast iron

1%B

rass1.5%

Cast steel

2%C

opper1%

Malleable iron

1.6%T

in, lead1%

Brouce

1.5%Z

inc alloys1.5%

Gun m

etal1.5%

Al, M

g alloys1.25%

1

α

1

1° C

Page 6: Westerman Table

Westerm

ann Tables

3

System of D

esignation of Iron and SteelIS

:1762–1961IS

:4843–1968

CS-Steel C

astingsF

G-G

rey Iron Castings

SG-Spherical or N

odularM

alleable Iron Castings

Graphite Iron C

astings

CS 125—

Unalloyed steel castings w

ithFG

15—G

rey iron castings with

SG 80/2—

Spheroidal or Nodu-

BM

35—B

lack heart malleable

minim

um tensile strength 125 kgf/m

m2

minim

um tensile strength 15

lar graphite iron castings with

iron castings with m

inimum

CSM

35—U

nalloyed special steel cast- kgf/m

m2

minim

um T

ensile strength 80 tensile strength 35 kgf/m

m2

ings with m

inimum

tensile strengthFG

35 Si 15—Special grey iron

kgf/mm

2 and minim

um elongation

PM 70—

Pearlitic malleable iron

35 kgf/mm

2 castings w

ith minim

um total

2% on gauge length equal to five

castings with m

inimum

tensileG

S 50 Cr 1V

20—A

lloy steel castings carbon percentage =

3.5 and tim

es the diameter of test bar

strength 70 kgf/mm

2

with average percentage

average Silicon percentageW

M 42—

White heart m

alleable of C

= 0.50; C

r = 1.00; V

= 2.20

= 1.50

iron castings with m

inimum

tensile strength 42 kgf/mm

2

CSH

—H

eat resistant steel castingsA

FG—

Austenitic flake

ASG

—A

ustenitic spheroidal orA

BR

—A

brasion resistant ironC

SC—

Corrosion resistant steel castings

graphite iron castings nodular graphite iron castings

castings

Tensile strengths are on 30 m

m D

ia Test B

ars as-cast.

Steel

Plaincarbon

steelsA

lloysteels

<0.5

%<

0.8%

<0.1

%<

0.25%

SiliconM

anganeseA

lorTiorC

opper

>0.5

%>

0.8%

>0.1

%>

0.25%

Steelsnotrequired

toreceive

heattreatment

Steelsrequired

toreceive

heattreatment

Carbon

toolsteelsL

owalloy

steels<

5%special

alloyingelem

ent

High

alloysteels

>5%

specialalloying

element

TheSystem

ofDesignation

isasfollows

1.LetterSt2.M

inimum

tensilestrength

inkgf/m

m2

1.LetterCforC

arbon2.Index

numberfor

carbonfollow

ingletterC

,denotingaverage

Carbon

contentinhundredths

ofapercent

LetterTforToolsteels

umberforC

ar-bon

following

letterT,ting

averageC

arboncontentin

hun-dredthsofa

percent

Indexn

deno

1.AverageC

contentinhundredthsofa

percentwithout

prefixC

andw

ithprefix

TforA

lloyToolSteels

2.Chem

icalsymbolsofthe

significantelementsarranged

indescending

orderofpercentagecontents

3.Alloy

Indexindicating

theaverage

percentageofeach

alloyingelem

ent

e.g.St.42Steelhaving

am

inimum

ten-sile

strengthof

42kgf/m

m2

e.g.C35

Carbon

steelhaving

anaverage

of0.35%

Carbon

e.g.T90

Toolsteelhaving

anaverage

of0.90%

Carbon

e.g.15C

r65C

hrome

steelwith

averagepercentagesofC

=0.15

andC

r=0.65

e.g.20C

r18N

i2C

hrome

NickelSteelw

ithaverage

percentagesofC=

0.20;C

r=18

andN

i=2.00

Applicable

forsteelsw

hichare

standardizedon

thebasisoftheir

tensilestrength

withoutdetailed

chemicalcom

-position

Steelswith

speciallim

itsformaxim

umS

&P,receive

thesuffix

“K”,e.g.

C35

K

Toindicate

thetreat-

mentgiven

tothe

steel,symbolsare

used,e.g.T90a,“a”

isusedto

indicatean-

nealing(ref.Page

4,Add.sym

bols)

Alloy

indexnum

berisassignedasfollow

s:N

ominalor

averagealloy

content1.U

pto

1percent.

2.1percentand

over.

Averagealloy

contentupto

2decim

alplacesunderlined

bya

barR

oundedto

thenearestw

holenum

ber.U

pto

0.5rounded

down,0.5

andover

roundedup.

Alloy

indexnum

ber

1.Symbolsindicating

thetype

ofcastings2.Sym

bolformechanicalproperties

1.Symbolsindicating

thetype

ofcastings2.Average

carboncontentin

hundredthsofa

percentfollowing

thetype

symbolsof

castings3.C

hemicalsym

bolsforthesignificant

elementsarranged

indescending

order4.A

lloyindex

numberforthe

averagepercentagesofalloying

elements

1.Symbolsindicating

thetype

ofcastings2.Sym

bolforchemicalcom

positionsim

ilarto

thedesignation

ofsteels

OR

SystemofD

esignationofPlain

Castings

SystemofD

esignationofA

lloyC

astingsC

astings

Page 7: Westerman Table

4W

estermann T

ables

Additional sym

bolsD

enoting special properties

Steel qualityT

reatment given

A–N

on-ageing qualityR

–Rim

ming quality

a–Annealed or softened

o–SpherodizedE

–Stabilized against stress corrosionG

–Grain size controlled

c–Case carburized

p–PatentedL

–Control cooled to ensure freedom

from flakes

H–H

ardenability controlledd–H

ard drawn, cold reduced

q–Hardened and tem

peredD

–Fully killedI–Inclusion controlled

h–Hot-rolled

s–Stress relievedD

2 –Semi killed

M–Structural hom

ogeneityn–N

ormalized

t–Tem

peredguaranteed by M

acro-etch test

e.g., St 42 An–N

on-ageing steel with 42 kgf/m

m2

15 Cr 3c–C

hromium

steel with average percentages

minim

um tensile strength-norm

alizedof C =

0.15, Cr =

3.0 and case carburized

E–E

lectric Furnace Steel; R–O

pen Hearth Steel; B

O–B

asic Oxygen

Grey iron castings

IS:210–1970

Transverse test

Code for

Grades

Tensile strength

Breaking load

Corresponding transverse

Deflection

Typical applications

designationM

in, kgf/mm

2M

in, kgfrupture stress kgf/m

m2

Min, m

m

FG 15

1515

80034.0

4.0Parts requiring no special grades for general

FG 20

2020

90038.2

4.5structural purposes

FG 25

2525

100042.4

5.0Parts subjected to severe strains such as

FG 30

3030

110046.7

5.5cylinder parts, etc.

FG 35

3535

135057.3

5.5FG

4040

401500

63.75.5

For extraordinary use

IS:2108–1962M

alleable iron castingsIS:2640–1964IS:2107–1962

Code for

Grades

Tensile strength,

0.5% P

roofE

longation % (gauge

Brinell

Phosphorous

Typical applications

designationM

in, kgf/mm

2stress, M

in,length =

3 dia ofhardness

contactkgf/m

m2

test bars) Min

HB

Max

% M

ax

BM

35A

3521

14149

0.12T

hin walled castings; m

assB

M 30

C30

–6

1630.20

production parts wheels,

PM 70

A70

552

241 to 2850.12

keys, Parts for locks andPM

45E

4528

7149 to 201

0.12sew

ing machine parts.

WM

42A

4226

4217

0.15W

M 35

B35

–3

2170.15

Steel castingsIS:1030–1962

Code for

Grades

Tensile strength

Elongation %

on gaugeS %

Max

P %

Max

Typical applications

designation M

in, kgf/mm

2length 5.65

S0, M

in,

CS 55

155

120.060

0.060U

sed for general engineering purposes instead of greyC

S 472

4717

0.0600.060

iron castings if greater strength and tenacity areC

S 413

4118

0.0600.060

to be met.

CS 65

165

170.050

0.050H

igh strength, good toughness and high abrasionC

S 852

8512

0.0500.050

resistance properties; used in transportationC

S 1253

1255

0.0500.050

equipment and agricultural m

achinery parts.

Alloy steel castings for high tem

perature serviceIS:3038–1965IS:2856–1964

Grades

Tensile

Elongation %

Yield stress

C %

Si %M

n %S %

P %

Typical applications

strengthon 5.56

S0gauge

or 0.5% proof

Max

Max

Min, kgf/m

m2

length, Min

stress Min, kgf/m

m2

155

1735

0.20–0.250.15–4.40

1.25–1.450.050

0.050C

ast parts which

247

1725

0.25 Max

0.20–0.500.50–1.00

0.0500.050

preferably are to3

5215

310.15 M

ax0.40 M

ax0.40–0.80

0.0500.050

withstand tem

peratures4

4917

280.20 M

ax0.60 M

ax0.50–0.80

0.0500.050

between 300°C

to5

5217

310.08–0.15

0.35 Max

0.30–0.700.050

0.050525°C

663

1543

0.20 Max

0.75 Max

0.40–0.700.050

0.0507

6315

430.20 M

ax1.00 M

ax0.30–0.70

0.0500.050

CS

N –C20

4220

210.25 M

ax0.60 M

ax0.70 M

ax0.050

0.050Parts w

hich to beC

Sw –C

2549

1825

0.30 Max

0.60 Max

1.00 Max

0.0500.050

fusion welded

}}

Page 8: Westerman Table

Westerm

ann Tables

5

Specification on Structural and Heat treatable Steels

General structural steels

IS:1977–1969; IS:2062–1969

IS: 226–1969; IS: 961–1962

Designation

Tensile

Yield strength

Elongation %

C %

S %P

%of steel

strengthfor thicknesses

on gauge lengthM

axM

axM

ax T

ypical applicationskgf/m

m2

upto 20 mm

20–40 mm

5.65 S

0 , Min

St 32–O32–44

——

26—

0.070.07

Intended for general engineeringSt 42–O

42–5426.0

—23

—0.07

0.07purposes.

St 42–S42–54

26.024.0

230.25

0.0550.055

Intended for all types of structures weld-

able upon certain conditions.St 42–W

42–5426.0

24.023

0.200.055

0.055C

an be subjected to fusion welding.

St 58–HT

58 Min

36.035.0

200.27

0.0550.055

Intended for use in structures where

fabrication is done by methods other

than welding.

St 55–HT

W55 M

in36.0

35.020

0.200.055

0.055Intended for use in structures w

herew

elding is employed for fabrication and

where guaranteed w

eldability is required.

Standard sizes of hot-rolled products made of general structural steels

IS Num

ber P

roductP

ageIS N

umber

Product

Page

808B

eam, channel and angle sections

211732

Round and square bars

191173

Tee bars

221863

Bulb plates

—1252

Bulb angles

—1864

Unequal angles

211730

Plates, sheet and strip20

3954C

hannel sections for general engineering purposes22

1731Flats

20

Case hardening steels

IS: 4432–1967

Case hardened

Tem

peratures for°C

Designation

Tensile strength

Elongation

Carburizing

SofteningC

aseA

nnealing T

ypical applications of steel

Min kgf/m

m2

% M

inhardening

C10, C

14, 19 S11

5017

900–920650–680

760–780—

14 Mn IS14, 11M

n260

17900–930

650–680760–780

800–920T

hese steels are used for compo-

15 Cr 65

6013

900–930650–680

770–800870–900

nents requiring high wear

17 Mn 1 C

r 9580

10900–930

650–680810–840

850–880resistant surfaces, coupled w

ith20 M

n Cr 1

1008

900–930650–680

810–840850–880

tough cores to resist shock loads16 N

i 80 Cr 60

7015

880–920650–680

780–820850–880

and strength to give longer16 N

i 1 Cr 80

8512

900–930650–660

780–820850–880

service life.13 N

i 3 Cr 80

8512

900–930620–650

760–780860–880

15 Ni 4 C

r 1135

9900–930

600–630760–780

860–88020 N

i 2 Mo 25

8512

880–920650–660

760–780—

20 Ni 55 C

r50 Mo 20

9011

880–920650–660

780–820—

15 Ni C

r 1 Mo 12

1009

900–930630–650

780–820860–880

15 Ni 2 C

r 1 Mo 15

1109

900–930630–650

780–820860–880

16 Ni C

r 2 Mo 20

1359

900–930630–650

800–820850–880

Flame and induction hardening steels

IS: 3930-1966

Properties in quenched and tem

pered conditionsH

ardening temperature

Designation

Tensile range

0.2% proof

Izod impact

SurfaceF

or oilF

or water

Typical applications

of steelkgf/m

m2

stress, Min

Min. kgf.m

hardnessquench

quenchkgf/m

m2

obtainableH

RC

C 30

60 to 7536

5.545–50

860–890860–890

These w

rought unalloyed andC

4570 to 85

443.5

55–61830–860

820–850alloyed steels for flam

e andT

7070 to 85

402.8

60–63810–840

780–810induction hardening are used

37 Mn 2

60 to 7540

4.853–59

850–870840–860

when high cold strength and

40 Mn 2S 12

70 to 8546

4.853–59

850–870840–860

good impact properties are

35 Mn 2 M

o 4580 to 95

565.5

53–59840–860

830–850required.

50 Cr 1

80 to 9548

2.857–62

850–870840–860

50 Cr 1 V

2380 to 95

482.8

57–62850–870

840–86040 N

i 380 to 95

565.5

54–60830–860

840–87040 N

i2 Cr 1 M

o 2890 to 105

665.5

54–60830–840

810–83031 N

i3 Cr 65 M

o 5590 to 105

665.5

49–54850–880

820–840

Page 9: Westerman Table

6W

estermann T

ables

Steels for hardening and tempering

IS: 5517–1969

Properties in hardened

and tempered condition

Designation

Tensile

Yield

Norm

alizingH

ardeningQ

uenchingT

empering

Typical

of steelstrength

stress Min,

temperature

temperature

medium

temperature

applicationskgf/m

m2

kgf/mm

2°C

°C°C

C 30

60 to 7540

860 to 890860 to 890

Water or oil

550 to 660T

hese wrought

C 35 M

n 7560 to 75

40850 to 880

840 to 880W

ater or oil530 to 760

unalloyed andC

4060 to 75

38830 to 860

830 to 860W

ater or oil550 to 660

alloyed steels in theC

4560 to 75

38830 to 860

830 to 860W

ater or oil530 to 670

form of billets and

C 50

80 to 9554

810 to 840810 to 840

Oil

550 to 660bars for general

C 55 M

n 7580 to 95

54810 to 840

810 to 840O

il550 to 660

engineering purposes40 S 18

70 to 8548

830 to 860830 to 860

Oil

550 to 660are intended to be

40 Mn 2 S 12

60 to 7540

840 to 870840 to 870

Oil

550 to 660used in the hardened

20 Mn 2

60 to 7544

860 to 900860 to 900

Water or oil

550 to 660and tem

pered27 M

n 270 to 85

46840 to 880

840 to 880W

ater or oil550 to 660

condition35 M

n 2 Mo 45

100 to 11580

—840 to 860

Oil

550 to 66055 C

r 7090 to 105

66800 to 850

800 to 850O

il500 to 700

40 Cr 1

80 to 9560

850 to 880850 to 880

Oil

550 to 70040 C

r 1 Mo 28

80 to 9560

850 to 880850 to 880

Oil

550 to 72040 C

r Al I M

o 1890 to 105

70—

850 to 900O

il550 to 700

40 Ni 3

90 to 10570

830 to 860850 to 860

Oil

550 to 65035 N

i 1 Cr 60

90 to 10570

—820 to 850

Water or oil

550 to 66030N

i4 Cr 1

120 to 135130

—810 to 830

Air or oil

> 250

40Ni 2 C

r 1 Mo 28

120 to 135130

—830 to 850

Oil

550 to 66031N

i 3 Cr 65 M

o 55120 to 135

10—

830 to 850O

ilupto 660

40 Ni 3 C

r 650

Mo 55

120 to 135130

830 to 850830 to 850

Oil

upto 660

Cold rolled carbon steel sheets

IS: 513–1963

Tensile strength

C %

Mn %

S %P

% F

or all types T

ypical applications

Types

(for designM

axM

axM

axM

axD

eliverySurface

purpose only)condition

finishkgf/m

m2

O: O

rdinary28

0.15—

0.0600.060

(1) Scale-freeC

oarseC

ourse or rough forD

: Draw

ing28

0.120.50

0.0500.050

or rough enam

elling and lacquering

DD

: Deep

280.10

0.500.040

0.040(2) Im

provedM

ediumM

edium or dull for

drawing

surfaceor dull

general purposes (not suitable for plating)

ED

D: E

xtra28

0.100.50

0.0350.035

(3) Best

Fine orFine or bright for

deep drawing

surfacebright

electroplating

Note: Sheet conform

ing to this standard are of weldable quality and are suitable both for fusion and spot w

elding.

Hot rolled carbon steel sheet and strip

IS: 1079–1968

Tensile

Yield

Elongation

C%

Mn%

S%P

% D

eliveryT

ypical G

radestrength

stress%

Min

Max

Max

Max

Max

conditionapplications

kgf/mm

2kgf/m

m2

O-1079

——

——

—0.060

0.060H

ot-rolledU

sed for coldD

-1079—

——

0.120.50

0.0500.050

Annealed

formed structural

DD

-107927–40

—23

0.100.50

0.0400.040

Norm

alizedm

embers and for

ED

D-1079

27–39—

250.10

0.500.035

0.035and

other generalSt 34-1079

34–4221.0

250.15

—0.050

0.050D

escaledengineering

St 42-107942–50

24.022

0.25—

0.0500.050

purposesSt 50-1079

50–6030.0

200.30

—0.050

0.050St 52-1079

52–6236.0

200.22

—0.050

0.050

Page 10: Westerman Table

Westerm

ann Tables

7

Spring steelH

ot-rolled spring steelIS:3431–1965

Designation

Grade

C %

Mn %

Si %S %

max

P %

max

Cr %

V %

Typical applications

of steel

50 Cr IV

231

0.45–0.550.50–0.80

0.10–0.350.050

0.0500.90–1.20

0.1–0.30Steels in the form

of Barm

and55 Si 2 M

n 902

0.50–0.600.80–1.00

1.50–2.000.050

0.050—

—flats for m

anufacture of volute, helical and lam

inated springsfor autom

ative suspension.

Cold-rolled steel strip for springs

IS: 2507–1965

Grade

Tensile strength

C %

Si%H

ardenedA

nnealed D

esignationkgf/m

m2

in oil at °Cat °C

of steelH

ardenedA

nnealed T

ypical applications

and tempered

max

C 45

1120–145

600.40–0.50

0.10–0.35830–860

600–650C

old rolled steel strip for theC

653

120–14560

0.60–0.700.10–0.35

810–840600–650

manufacture of springs for various

C 75

5120–160

650.70–0.80

0.10–0.35780–810

600–650purposes.

C 98

8160–180

700.90–1.05

0.10–0.35770–800

620–66055 Si 2 M

n 909

160–20080

0.50–0.601.50–2.00

830–860640–680

50 Cr I

10170–230

800.45–0.55

0.10–0.35830–860

640–68050 C

r IV 23

11190–240

800.45–0.55

0.10–0.35830–860

600–680

Spring steels for use under elevated temperatures

IS:4454–1967

Tensile strength

Grades

Classification

(for wire dia

C %

Si %C

r %V

a % T

ypical applicationsup to 7 m

m) m

in

1SS denotes static

1500.45–0.55

0.15–0.350.90–1.20

0.15–0.30U

sed for manufacturing cold

1Dstressed springs; D

1450.45–0.55

0.15–0.350.90–1.20

0.15–0.00form

ed helical springs, volute2S

denotes dynamic

1750.50–0.60

1.20–1.600.50–0.80

—springs, etc. w

orking under2D

stressed springs175

0.50–0.601.20–1.60

0.50–0.80—

elevated temperatures.

Steels for Screws M

anufacture

Carbon steel w

ire for the manufacture of m

achine screws

IS: 1976–1960

Designation

Grade

Tensile strength

C %

max

Mn %

S % m

axP

% m

axT

ypical applicationsof steel

—1

44–55 kgf/mm

20.15

0.30–0.650.065

0.060U

sed for the manufacture of m

achine screws by

—2

55–71 kgf/mm

20.15

0.30–0.650.065

0.060the cold reading process.

Carbon steel w

ire for the manufacture of w

ood screws

IS: 1673–1960

C10

—460 N

/mm

20.17

0.30–0.650.055

0.055U

sed for the manufacture of w

ood screws by

C 15

—460 N

/mm

20.22

0.30–0.650.055

0.055the cold heading process.

10 S 11—

460 N/m

m2

0.170.60–0.95

0.08–0.150.055

Boilor Steel P

latesIS: 2002–1962

Grades

Tensile strength

Elongation

C %

Si %S %

max

P %

max

Typical applications

kgf/mm

2 min

% m

inm

ax

137–45

260.18

0.10–0.350.040

0.040Plates w

hich are required to be either welded, flanged

2 A42–50

250.20

0.10–0.350.050

0.050or flam

e cut plates of non-flanging quality (low tensile)

2 B52–62

200.22

0.10–0.350.050

0.050Plates of non-flanging quality (high tensile)

Seamless Steel P

ipesFor high-tem

perature serviceIS: 2002–1962

Tensile strength

Elongation

C %

Si %S %

P %

Typical applications

Designation

(normalised and

% m

inm

axm

ax of steel

tempered)

N/m

m2 m

in

16 Mo 30

440–59022

0.12–0.200.12–0.35

0.0400.040

Used w

hen the wall of pipes reach tem

peratures15 C

r 90 Mo 55

440–59022

0.10–0.200.10–0.35

0.0400.040

up to 580° C and are exposed to high pressure;

10 Cr 5 M

o 55490–640

160.15 m

ax0.55 m

ax0.030

0.030can be fused and are w

elded; can be bent or14 C

r 45 Mo 60 V

27460–610

150.10–0.35

0.10–0.350.040

0.040folded in cold state.

Seamless Steel P

ipesFor high test line pipes

IS: 1979–1971

Designation

Tensile strength

Yield strength

C %

C %

S %P

%T

ypical applicationsof steel

min kgf/m

m2

min kgf/m

m2

max

max

max

max

Y St 30

42.229.5

0.291.25

0.040.05

Cover pipes intended for use in oil industry.

Y St 32

44.332.3

0.311.35

0.040.05

Y St 37

46.436.6

0.291.25

0.040.05

For dimensional requirem

ents IS: 4431; 2507; 2591; 2002; 6630; 1979 may be referred

Page 11: Westerman Table

8W

estermann T

ables

Cold R

olled Steel Strips for general engineering purposesIS

:4030–1967

Tem

perR

ockwell hard-

C %

Mn %

S %P

%Surface

Typical applications

of strips ness (B

Scale)m

axm

axm

axm

axfinish

Min

Max

No. 1—

Hard

90—

0.250.60

0.0500.040

(a) Coarse or

Coarse or rough for enam

elling rough

and lacquering

No. 2—

Half

7090

0.250.60

0.0500.040

(b) Medium

orM

edium or dull for general

Hard

dullpurpose

No. 3—

Quarter

6075

0.250.60

0.0500.040

Hard

No. 4—

Skin—

650.15

0.600.050

0.040(c) Fine or

Fine or bright for electroplating R

olled bright

No. 5—

Dead

—55

0.150.60

0.0500.040

Soft

Steels for Rivet B

arsIS: 1148–1973IS: 1149–1973

Designation

Tensile

Elongation

C %

S %P

% T

ypical applicationsof steel

strength%

min

max

max

max

kgf/mm

2

St 42 R42 to 54

230.23

0.0550.055

For manufacture of hot forged rivets for

structural purposes.

St 47 R47 m

in22

0.230.055

0.055H

igh tensile steel rivet bars for structuralpurposes

Free Cutting Steels

IS:4431–1967

Designation

Tensile

Elongation

C %

Si %M

n %S %

P %

Typical applications

of steelstrength

% m

inm

axkgf/m

m2

10 S 1137–49

240.15 m

ax0.05–0.30

0.60 to 0.900.08 to 0.13

0.060Suitable also for case hardening

14 Mn 1S 14

44–5422

0.10–0.180.05–0.30

1.20 to 1.500.10 to 0.18

0.060

25 Mn 1S 14

50–6020

0.20–0.300.25 m

ax1.00 to 1.50

0.10 to 0.180.060

These have good m

achinability and40 S 18

55–6517

0.35–0.450.25 m

ax0.80 to 1.20

0.14 to 0.220.060

satisfactory chip-break

13 S 2537–49

220.08–0.18

0.10 max

0.80 to 1.200.22 to 0.30

0.060(R

apid machining steel for repetition

40 Mn 2 S 12

60–7015

0.35–0.450.25 m

ax1.30 to 1.70

0.08 to 0.150.060

work)

Black B

ars for production of machined parts

IS:2073–1970

Designation

Tensile

Elongation

C %

Si %M

n %S %

P %

Typical applications

of steelstrength

% m

inm

axm

axkgf/m

m2

C 14

37–4526

0.10–0.18—

0.40–0.700.055

0.055T

hese types are carbon steel black

C 20

44–5224

0.15–0.250.05–0.35

0.60–0.900.055

0.055bars for production of m

achined parts

C 30

50–6021

0.25–0.350.05–0.35

0.60–0.900.055

0.055for general engineering purposes

C 40

58–6818

0.35–0.450.05–0.35

0.60–0.900.055

0.055

C 45

63–7115

0.40–0.500.05–0.35

0.60–0.900.055

0.055

C 55 M

n 7572 m

in13

0.50–0.600.05–0.35

0.60–0.900.055

0.055

C 65

75 min

100.60–0.70

0.05–0.350.50–0.80

0.0550.055 �

Page 12: Westerman Table

Westerm

ann Tables

9

Symbolic D

esignationof essential properties of m

aterials(iron and steel)

Exam

ples and Explanations

IS No.

Title

See Page

Designation

Explanations

(example)

1977Structural steels

5St 32–0

St

= Steel; 32 kgf/m

m2 m

inimum

tensile strength1977

–do–5

St 42–0O

= O

rdinary quality 42 kgf/mm

2 minim

um tensile

strength226

–do–5

St 42–SS

= Standard quality

226–do–

5St 42–Sc

c=

Copper bearing quality

226–do–

5St 42–K

wK

= Special lim

its for max P and S

w=

Weldable

2062–do–

5St 42–W

W=

Fusion welding quality

961–do–

5St 55–H

Tw

HT

= H

igh tensile steelw

= Fusion w

eldable1148

Rivet steels

8St 42–R

R=

Rivet bars

2002B

oiler plates7

Grade 1

Plates required to be welded, flanged or flam

e-out2002

–do–7

Grade 2 A

Non-flanging quality (low

tensile)2002

–do–7

Grade 2 B

–do– (high tensile)5517

Heat-treatable steels

6C

30C

= C

arbon 30 = A

verage C contents 0.30%

5517–do–

6T

50aT

= T

ool steel; a = annealed

5517–do–

6C

35 Mn 75

C35

= A

verage carbon content 0.35%M

n75

= A

verage manganese of 0.75%

, represented w

ithout decimal point, underlined by a bar.

(Applicable for alloying elem

ent upto 1%)

4432C

ase-hardening steels5

C 10c

C=

Carbon; c =

case carburized4432

–do–5

11 Mn 2

Carbon average 0.11%

; Manganese average

1.5%. (A

verage alloy content more than 1%

is rounded to the nearest w

hole number, upto 0.5

rounded down; 0.5 and over rounded up.

3431H

ot Rolled steels

755 Si 2

h=

Hot rolled

for springsM

n 90h2507

Cold rolled steels

7C

45qq

= H

ardened and tempered

strips for springs4454

High tem

perature7

1S; 1DS

= Static stressed springs; D

= D

ynamic stressed

steels for springs1079

Hot rolled carbon

60; D

; DD

;O

= O

rdinary; D =

Draw

n; DD

= D

eep drawn

steel sheet and stripE

DD

ED

D =

Extra deep draw

n513

Cold rolled carbon

6J; J2 J3; J4

J=

Bright draw

n or bright rolled; J2 = Precision

steel sheets ground; J3 =

descalled; J4 = shot blast

513–do–

6F; F2 F3; F7

F=

Black sheet; F3 =

Pickled surface; F7 = C

old finished; F2 =

Black sheet for enam

elling and galvanizing

1030Steel castings

4C

S 125C

S=

Cast steel-unalloyed; 125 =

Minim

um tensile

strength 125 kgf/mm

2

210G

rey iron castings4

FG 15

FG=

Grey iron castings; 15 =

Minim

um tensile

strength 15 kgf/mm

2

2108M

alleable iron4

BM

35B

M=

Black heart m

alleable iron castingscastings

2640–do–

4PM

70P

M=

Pearlitic malleable iron castings

2107–do–

4W

M 42

WM

= W

hite heart malleable iron casting. For castings

tensile strengths are on 30 mm

dia test bars as cast

Page 13: Westerman Table

10W

estermann T

ables

Tool and dye steels

Tool and dye steels for hot w

orkIS

:3748–1966

Designation

C %

Si %M

n %C

r %M

o %V

%W

%B

rinell T

ypical applicationof steel

hardness(annealed)H

B, m

ax

T33W

9Cr3V

380.25–0.40

0.10–0.350.20–0.40

2.80–3.30—

0.25–0.508.00–10.0

241U

sed for extrusion dyes,

T35C

r5MolV

300.30–0.40

0.80–1.200.25–0.50

4.75–5.251.20–1.60

0.20–0.40—

229hot sw

aging dyes, for-

T35C

r5MoV

10.30–0.40

0.80–1.200.25–0.50

4.75–5.251.20–1.60

1.00–12.0—

229ging dye inserts, brass

T35C

r5MoW

1V30

0.30–0.400.80–1.20

0.25–0.504.75–5.25

1.20–1.600.20–0.40

1.20–1.60229

forging dyes, hot shear

T55W

14Cr3V

450.50–0.60

0.10–0.350.20–0.40

2.80–3.30—

0.30–0.4013.0–15.0

248blades, trim

mer dyes,

dye-casting dyes for

copper etc.

Tool and dye steels for cold w

orkIS

:3749–1966

T50

0.45–0.550.10–0.35

0.60–0.90—

——

—240

Covers the requirem

ents

T60

0.50–0.600.10–0.35

0.60–0.90—

——

—240

for plain carbon and

T70M

n650.65–0.75

0.10–0.350.50–0.80

——

——

240alloy tool and dye steels

T80M

n 650.75–0.85

0.10–0.350.50–0.80

——

——

240in the form

of bars,

T90

0.85–0.950.10–0.30

0.20–0.35—

——

—200

blanks, rings, and other

T103

0.95–1.100.10–0.30

0.20–0.35—

——

—200

shapes for cold work,

T133

1.25–1.400.10–0.30

0.20–0.35—

——

—210

capable of being

T90V

230.85–0.95

0.10–0.300.20–0.35

——

0.15–0.30—

200hardened and tem

pered.

T118C

r451.10–1.25

0.10–0.300.20–0.35

0.30–0.60—

0.30 max

—200

These are used for the

T105C

r1Mn 60

0.90–1.200.10–0.35

0.40–0.801.00–1.60

——

—230

making tools and dyes

T140W

4Cr50

1.30–1.500.10–0.35

0.25–0.500.30–0.70

——

3.50–4.20250

for blanking, trimm

ing,

T55N

i2Cr65M

o300.50–0.60

0.10–0.350.50–0.80

0.50–0.800.25–0.35

——

255shaping and shearing.

T105W

2Cr 60V

250.90–1.20

0.10–0.350.25–0.50

0.40–0.800.25 m

ax0.20–0.30

1.25–1.75230

T110W

2Cr1

1.00–1.200.10–0.35

0.25–0.500.90–1.30

——

1.25–1.75230

T90M

n2W50C

r450.85–0.95

0.10–0.351.25–1.75

0.30–0.60—

0.25 max

0.40–0.60230

T215C

r122.00–2.30

0.10–0.350.25–0.50

11.0–13.00.80 m

ax0.80 m

ax—

260

T45C

r1Si 950.40–0.50

0.80–1.100.55–0.75

1.20–1.60—

——

230

T55C

r70V15

0.50–0.600.10–0.35

0.60–0.800.60–0.80

—0.10–0.20

—230

T55Si2M

n 90Mo33

0.50–0.601.50–2.00

0.80–1.00—

0.25–0.400.12–0.20

—230

T40W

2Cr1V

180.35–0.45

0.50–1.000.20–0.40

1.00–1.50—

0.10–0.251.75–2.25

230

T50W

2Cr1V

180.45–0.55

0.50–1.000.20–0.40

1.00–1.50—

0.10–0.251.75–2.25

230

Steels for dye blocks for drop forgings

Designation

C %

Si %M

n %N

i %C

r %M

o %B

rinellT

ypical applicationsof steel

hardness HB

Annealed

Hardened

max

andtem

pered

T60

0.55–0.650.15–0.35

0.50–0.80—

——

209212–269

Steel for dye blocks in

T60N

i10.55–0.65

0.15–0.350.50–0.80

1.0–1.4—

—209

212–269square, rectangular and

T55N

iCr 65

0.50–0.600.15–0.35

0.50–0.801.25–1.65

0.50–0.80—

230235–302

sections for drop

T50N

iCr35

0.48–0.530.15–0.35

0.45–0.650.80–1.00

0.80–1.000.30–0.40

255269–477

forgings.

Page 14: Westerman Table

Westerm

ann Tables

11

Resistance to wearResistance to wear Resistance to wearC

lassification of carbide tips according to their range of application(IS: 2428–1964)

Designation

Increasing direction ofR

ange of applicationthe characteristic of

IdentificationC

arbideC

uttingM

aterial to be machined

Machining conditions

colourtip

P01

Steel, steel castingPrecision turning and fine boringC

utting speed: high, Feed: low

P10

Steel, steel castingT

urning, threading and milling

Cutting speed: high. Feed: low

or medium

P20

Steel, steel casting, malleable cast

Turning, m

illing. Cutting speed and feed:

iron forming long chips

medium

. Planning: with low

feed rateP

30Steel, steel casting, m

alleable castT

urning, planning, milling. C

utting speed:iron form

ing long chipsm

edium to low

. Feed: medium

to high evenif operating conditions are unfavourable

P40

Steel, steel castings with sand

Turning, planning, shaping. C

utting speed:inclusions or shrinkage cavities

low. Feed: high. R

ake angle: high, form

achining under unfavourable conditionsand w

ork on automatic m

achines

P50

Steel, steel castings of medium

orT

urning, planning, shaping. Cutting speed:

low tensile strength w

ith sandlow

. Feed: high. Rake angle large for

inclusions or shrinkage cavitiesm

achining under unfavourable conditionsand w

ork on automatic m

achines

M10

Steel, steel castings, manganese

Turning. C

utting speed: medium

to high.steel, grey cast iron, alloyed

Feed: low to m

ediumcast iron.

M20

Steel, steel casting, austenitic steel,T

urning, milling. C

utting speed: medium

.m

anganese steel, grey cast iron,Feed: m

ediumspheroidised cast iron and m

alle-able cast iron

M30

Steel, steel casting, austenitic steel,T

urning, milling, planning. C

utting speed:grey cast iron, heat resisting alloys

medium

. Feed: medium

or highM

40Free cutting steel, low

tensileT

urning, profile turning, parting offstrength steel, brass and light alloy

especially in automatic m

achines

K01

Very hard grey cast iron, chilled

Turning, precision turning and boring,

castings of hardness up to 60 HR

C.

milling, scraping

Alum

inium alloys w

ith high siliconcontent, hardened steel, plastics ofabrasive type, hard board andceram

ics

K10

Grey cast iron of hardness m

oreT

urning, milling, boring, ream

ing,than 220 H

B, m

alleable cast ironbroaching, scraping

forming short chips, tem

peredsteel, alum

inium alloys containing

silicon, copper alloys plastics,glass, hard rubber, hard cardboard,porcelain, stone

K20

Grey cast iron of hardness up to

Turning, m

illing, planning, reaming,

220 HB

, non-ferrous metals, such

broachingas copper, brass, alum

inium,

laminated w

ood of abrasive type

K30

Soft grey cast iron, low tensile

Turning, planning, shaping, m

illing. Rake

strength steel, laminated w

oodangle: large even under unfavourableconditions

K40

Soft or hard natural wood,

Turning, m

illing, planning, shaping. Rake

nonferrous, metals

angle: large even under unfavourablem

achining conditions

Toughness

Cutting speed

Feed

Toughness

Cutting speed

Feed

Toughness

Cutting speed

Feed

Page 15: Westerman Table

12W

estermann T

ables

Nom

enclatureG

radeM

inimum

Physical properties

Typical applications

contents

Copper

IS: 191–1967

Electrolytic tough pitch copper

ET

P99.9%

Cu

SoftFor electrical parts

Fire refined high conductivityFR

HC

99.9% C

uH

igh conductivityFor conductors

copper

Fire refined tough pitch copperFR

TP–1

99.8% C

uE

asy to castFor castings

FR

TP

–299.5%

Cu

Tough pitch arsenical copper

AT

P99.2%

Cu

Good bearing property

For bearings

Oxygen free high conductivity

OF

99.95% C

uH

igh conductivityFor conductors

copper

Lead

IS: 27–1965

Pig leadPb 99.99

99.99% Pb

Soft, can be cast,Plates in storage batt

Pig leadPb 98.94

99.94% Pb

soldered and welded

For alloying

Zinc

IS: 4699–1968

Refined secondary zinc

SZn 99.5

99.5% Z

nC

an be cast, resistantFor alloying

Refined secondary zinc

SZn 98.5

98.5% Z

nto corrosion

For galvanizing

Tin

IS: 4280–1967

Refined secondary tin

Sn 9999%

SnSoft, can be cast, rolled

For plating, casting

Refined secondary tin

Sn 9696%

Snto foils

For alloying

Alum

iniumIS: 734–1967

Alum

iniumF

1A99.8%

Al

Tensile strength

May be cast, w

eldable5.5 kgf/m

m2

Alum

iniumF1B

99.5% A

lM

ore resistant toA

vailable in the form of sheets,

corrosionplates, tubes, w

ires, forgings.U

sed for cladding, on strongeralloys, food and chem

ical plants,electrical conductors andreflectors

Alum

iniumF1C

99.0% A

lV

ery ductile, resistant toA

vailable in the form of sheets,

corrosion, goodplates, tubes, w

ires, rods andconductor.

forgings. Used for panelling and

moulding, lightly stressed and

decorative assemblies, equipm

entfor food, chem

ical and brewing

industries, packing and cookingutensils

Alum

iniumA

O99%

Al

Excellent, electrical,

For induction motor, rotors,

(comm

ercial quality)conductivity, resistant

power transm

ission cableto corrosion.

accessories, vessels and fittingsfor food and chem

ical industries

Page 16: Westerman Table
Page 17: Westerman Table
Page 18: Westerman Table
Page 19: Westerman Table
Page 20: Westerman Table
Page 21: Westerman Table
Page 22: Westerman Table
Page 23: Westerman Table
Page 24: Westerman Table
Page 25: Westerman Table
Page 26: Westerman Table
Page 27: Westerman Table
Page 28: Westerman Table
Page 29: Westerman Table
Page 30: Westerman Table
Page 31: Westerman Table
Page 32: Westerman Table
Page 33: Westerman Table
Page 34: Westerman Table
Page 35: Westerman Table
Page 36: Westerman Table
Page 37: Westerman Table
Page 38: Westerman Table
Page 39: Westerman Table
Page 40: Westerman Table
Page 41: Westerman Table
Page 42: Westerman Table
Page 43: Westerman Table
Page 44: Westerman Table
Page 45: Westerman Table
Page 46: Westerman Table
Page 47: Westerman Table
Page 48: Westerman Table
Page 49: Westerman Table
Page 50: Westerman Table
Page 51: Westerman Table
Page 52: Westerman Table
Page 53: Westerman Table
Page 54: Westerman Table
Page 55: Westerman Table
Page 56: Westerman Table
Page 57: Westerman Table
Page 58: Westerman Table
Page 59: Westerman Table
Page 60: Westerman Table
Page 61: Westerman Table
Page 62: Westerman Table
Page 63: Westerman Table
Page 64: Westerman Table
Page 65: Westerman Table
Page 66: Westerman Table
Page 67: Westerman Table
Page 68: Westerman Table
Page 69: Westerman Table
Page 70: Westerman Table
Page 71: Westerman Table
Page 72: Westerman Table
Page 73: Westerman Table
Page 74: Westerman Table
Page 75: Westerman Table
Page 76: Westerman Table
Page 77: Westerman Table
Page 78: Westerman Table
Page 79: Westerman Table
Page 80: Westerman Table
Page 81: Westerman Table
Page 82: Westerman Table
Page 83: Westerman Table
Page 84: Westerman Table
Page 85: Westerman Table
Page 86: Westerman Table