Top Banner
7/21/2019 welltest Deconvolution http://slidepdf.com/reader/full/welltest-deconvolution 1/20 1 12/09/05 19:25 Symposium for Alain Gringarten 1 Deconvolution in Well Test Analysis Thomas von Schroeter 12/09/05 19:25 Symposium for Alain Gringarten 2 Alain’s early laurels Type curve analysis 1960’s Derivative analysis (1983); WTA software Simultaneous downhole measurements; PC’s 1980’s Green’s functions (1971) Electronic pressure gauges 1970’s Straight line analysis Mechanical pressure gauges 1950’s Methods of Analysis Technology Time
20

welltest Deconvolution

Feb 06, 2018

Download

Documents

UsmanHWU
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 1/20

1

12/09/05 19:25 Symposium for Alain Gringarten 1

Deconvolution in Well Test Analysis

Thomas von Schroeter

12/09/05 19:25 Symposium for Alain Gringarten 2

Alain’s early laurels

Type curve analysis1960’s

Derivative analysis (1983);WTA software

Simultaneous downholemeasurements; PC’s

1980’s

Green’s functions (1971)Electronic pressure gauges1970’s

Straight line analysisMechanical pressure gauges1950’s

Methods of AnalysisTechnologyTime

Page 2: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 2/20

2

12/09/05 19:25 Symposium for Alain Gringarten 3

12/09/05 19:25 Symposium for Alain Gringarten 4

Green’s functions (Alain’s PhD, 1971)

• Fields: ∆p pressure drop, source strength, n unit normal

• Constants: Porosity φ , compressibility c , diffusivity η = k  /(φµ c )

• Green’s function G (t – t’ ,x ,x’ ) ≡ pressure drop at (t,x ) due to aninstantaneous point source of unit strength going off at (t’,x’ )

• G can (but need not) be adapted to the shape of the reservoir

• Origin in the theory of heat conduction: Minnigerode (PhD thesis 1862)

termsBoundary

0

partfieldFree

0

dd 

d)()(d 

1)(

’ x 

’ n 

G p 

’ n 

p G ’ t 

’ x ’ x ,x ,’ t t G ’ x ,’ t ’ t c 

x ,t p 

∫ ∫ 

∫ ∫ 

∂∆−

∆∂−

−φ

=∆

Page 3: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 3/20

3

12/09/05 19:25 Symposium for Alain Gringarten 5

Uniform sources

’ t x ,’ t t S ’ t c x ,t p  d)()( 

1)(

t

0

−φ=∆ ∫ 

• Then the free field part of the pressure drop is the convolution in time ofthe source strength with the source function:

• Assumption: The source strength (t’,x’ ) is independent of x’ ∈ W 

’ x ’ x ,x ,t G t,x S 

d)()( ∫ =

• Define a source function 

12/09/05 19:25 Symposium for Alain Gringarten 6

Product rule for source functions

• Product rule: The source function for a Cartesian product W 1×W 2 is theproduct of source functions for W 1 and W 2.

= xW W 1 W 2

   

  

    −−

π=

’ x x 

’ x ,x ,t G 4

exp)(4

1)(

2

2 / 3  ( ) 2

22

12

21 x x x ,x    +=

• Reason: The simple form of the free field Green’s function,

• Leads to a catalogue of analytic solutions for simple source geometries

Page 4: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 4/20

4

12/09/05 19:25 Symposium for Alain Gringarten 7

Superposition in time

• Clear conceptual distinction between:

 – Effects of the production schedule (Q ) and

 – Reservoir behaviour (characterized by its impulse response g )

 – No such thing as “buildup/drawdown behaviour”! (An artefact ofcertain signal processing techniques.)

• Assumptions:

 – Uniform sources: (t’,x’ ) is independent of x’ ∈ W 

 – No reservoir boundaries, or:

 – Impermeable boundaries, and Green’s function adapted to theboundary such that ∂G/ ∂n x’ = 0 for x’ ∈ B (no loss of generality)

’ t x ,’ t t g ’ t Q x ,t p 

d)()()(

0

−=∆ ∫  W ’ x ’ x ,x ,t G 

c x ,t g 

 )(

1)( ∈φ

=

• Superposition principle (Duhamel 1833)

12/09/05 19:25 Symposium for Alain Gringarten 8

Derivative type curves

• Advantage: Radial flow regime shows up as horizontal stabilization.

• Convention: Classify reservoirs by their pressure response to constant

production of Q ≡ 1 rate unit.

p x ,t g ’ t x ,t’ g t p  U 

G U d

d )( d)()(

0

=⇒=

∫ 

• Normalized pressure drop at the gauge (x = x G ):

t x ,t g t t 

p G 

U   vs )( lnd

d=

• Diagnostic plot: Log-log plot of p U and its logarithmic time derivative

Page 5: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 5/20

5

12/09/05 19:25 Symposium for Alain Gringarten 9

Derivative analysis (1983)

Source: Bourdet, Ayoub & Pirard, SPEFE June 1989, p. 296

Derivative

Pressure drop

Estimate

12/09/05 19:25 Symposium for Alain Gringarten 10

Well test analysis

• Procedure:

1. Estimate p U (t ) and its derivative dp U  /d ln t from the data

2. Diagnostic plot: p U and dp U  /d ln t vs time

3. Compare with a catalogue of type curves

4. Match model parameters to data by regression• Steps 2–4 are well understood:

 – A large library of analytic models exists

 – Regression on model parameters is now routinely performed by

WTA software

• Step 1 has long been underestimated in its complexity!

Page 6: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 6/20

6

12/09/05 19:25 Symposium for Alain Gringarten 11

t 0

p U 

• Analysis of a 1st drawdown: – Differentiate pressure signal

numerically wrto log of time

 – Divide by rate

• Analytically correct, butnumerically inaccurate! – Loss of information by cancellation of

leading digits

 – Result: Amplification of measurementerrors

 – Subsequent smoothing may hide thetrue scale of uncertainty and causefurther artefacts

0 b 

Derivative analysis, taken (too) literally…

12/09/05 19:25 Symposium for Alain Gringarten 12

… and with a vengeance!

b 0 c 

p U 

p U 

• Analysis of subsequent flowperiods:

 – Differentiate wrto Horner time /

superposition function

 – Divide by last rate change

 – Log-log plot against the elapsed time

• Not even analytically correct!

 – The data sample more than just theelapsed time interval!

 – Hence the true radius of investigation

is underestimated

 – Model bias: Horner time and

superposition function are based on

the assumption of radial flow

 – Plus: all the disadvantages of

numerical differentiation…

Page 7: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 7/20

7

12/09/05 19:25 Symposium for Alain Gringarten 13

Estimating the derivative without taking it

• Integrate to find the rate-normalized pressure drop p U 

• Hence, essentially a deconvolution problem!

g Q    ∆p 

{ } ’ t ’ t t g ’ t Q t g Q t p t 

)d()()()(0

−≡∗=∆ ∫ • Means:

•   ∆p and Q known (up to measurement errors), g unknown

)( lnd

dt g t t 

p U  =

• The desired derivative:

12/09/05 19:25 Symposium for Alain Gringarten 14

Deconvolution

• Deconvolution problems occur in many areas of science:

 – Tomography

 – Seismics

• Yet each deconvolution problem is different:

 – Statistical signals with zero average (e.g. seismics)

 – Signals characterized by trend plus noise (e.g. tomography) – Physical constraints on the solution space

• In well test analysis:

 – Problem first formulated by Hutchinson & Sikora (1959)

 – Two main categories:• Time domain approaches

• Spectral approaches

 – About 20 publications to date (see survey in SPEJ 9, 375)

Page 8: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 8/20

8

12/09/05 19:25 Symposium for Alain Gringarten 15

{ } ’ t ’ t t g ’ t Q t g Q t p t 

)d()()()(0

−≡∗=∆ ∫ • Start from superposition principle (SP):

Ingredients (1): Physical constraints

• Discretizing the integral and solving for the impulse response g cannot guarantee g > 0 (Hutchinson & Sikora 1959, others 80’s)

• Optimization with explicit constraints can only ensure g  ≥ 0 [Coats& al. 1964, Kuchuk & al., 1990’s]

• Our approach (2001/4): Use the encoding from the diagnostic plotln {t g (t )} = Z (τ) where   τ = ln t 

τττ−≡∆ ∫ ∞−d))(exp())exp(( )(

ln

Z t Q t p t 

• However, this sacrifices the linearity of SP:

12/09/05 19:25 Symposium for Alain Gringarten 16

Ingredients (2): Error models

Least Squares• The error model behind the

standard optimization approach:

ming  || ∆p  – g ∗ Q ||

• Implicit assumption: Onlypressure affected bymeasurement errors

• In reality, much more uncertaintyin the rate data!

g Q    ∆p  g Q    ∆p 

δ 

Total Least Squares

• Common in signal processing:

min δ, g || ∆p – g ∗(Q +δ) ||2 + ν||δ||2

• Better adapted to relative size oferrors

• Enables joint estimate of ratecorrection and response (datapermitting)

Page 9: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 9/20

9

12/09/05 19:25 Symposium for Alain Gringarten 17

Ingredients (3): Regularization

• With field data, an estimate based on nonlinear encoding + TLSerror measure alone is usually uninterpretable

• Regularization: Constrain

 – the sign of p U and its derivatives (Coats & al. 1964, Kuchuk & al. 1990)

 – the mean squared slope between nodes and the autocorrelationfunction (Baygün & al. 1997)

 – or add a penalty based on the mean squared curvature of the solutiongraph (vS & al. 2002/4).

• Advantage of using curvature:

 – Slopes carry information and should be preserved!

• Advantage of penalties over constraints:

 – Constrained optimization is much harder numerically!

12/09/05 19:25 Symposium for Alain Gringarten 18

• Data: p , q (as vectors)

• Estimate: y : linear parameters (initial pressure & rates)

z : nonlinear parameters (coeffs of deriv. interpolation)• G ( ): a matrix-valued function reflecting sampling and interpolation

• Regularization: constant matrix D & vector k such that ||Dz –k ||2 is ameasure of the total curvature of the response graph

• Weights: ν, λ (default choices & user intervention)

• A “separable nonlinear Least Squares problem” (Björck 1996)

• Efficient implementation: Variable Projection algorithm (Golub &Pereyra 1973)

curvaturematchratematchpressure

)()( min22

22

22 k z D q y y z G p z ,y E 

z ,y −λ+− ν+−=

The NTLS approach (vS & al. 2002,4)

Page 10: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 10/20

10

12/09/05 19:25 Symposium for Alain Gringarten 19

Simulated example

1 2 3 4 5 60.01

0.1

1

10

log10 t 

p U (t ), t g (t )

radial flow

CD=100

Skin S = 5

Sealing fault

d = 300 r w

bestinterpolation

longest period test duration

invisible to

conv. analysis

12/09/05 19:25 Symposium for Alain Gringarten 20

Rate simulation

50000 100000 150000 200000 t

1

2

3

4

5

q(t) unperturbed

+ 1 % error (RMS)

+ 10 % error (RMS)

Page 11: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 11/20

11

12/09/05 19:25 Symposium for Alain Gringarten 21

Pressure simulation

50000 100000 150000 200000 t

10

20

30

40

50

60

p(t)unperturbed

0.5% in ∆p 

5% in ∆p 

12/09/05 19:25 Symposium for Alain Gringarten 22

Typical Results

1 2 3 4 5 6 log10t0.01

0.05

0.1

0.51

5

10

t g(t) homogeneousstart

fault

unperturbed

0.5% in ∆p 

+ 1% in rates

+ 10% in rates

+ 5% in ∆p 

Page 12: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 12/20

12

12/09/05 19:25 Symposium for Alain Gringarten 23

Error analysis

• Linearize TLS residue about true reservoir model

• Assumptions:

 – Errors in p and q normally distributed

 – Zero mean, variances σ p 2 and σ q 

•   ⇒ analytic expressions for

 – Bias if λ > 0 (“stiffness”)

 – Covariance matrix ⇒ confidence intervals

 –   λ controls trade-off: bias vs variance

12/09/05 19:25 Symposium for Alain Gringarten 24

Confidence intervals, λ = 10-2 λdef

10 100 1000 10000 100000 1060.01

0.05

0.1

0.51

5

10

t g(t)

t

Error levels p,q 

0.5%   —

0.5% 1%

0.5% 10%

5% 10%

Page 13: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 13/20

13

12/09/05 19:25 Symposium for Alain Gringarten 25

Confidence intervals, λ = λdef

10 100 1000 10000 100000 1060.01

0.050.1

0.5

1

5

10

t g(t)

t

Error levels p,q 

0.5%   —

0.5% 1%

0.5% 10%

5% 10%

12/09/05 19:25 Symposium for Alain Gringarten 26

Confidence intervals, λ = 102 λdef

10 100 1000 10000 100000 1060.01

0.05

0.1

0.51

5

10

t g(t)

t

Error levels p,q 

0.5% —

0.5% 1%

0.5% 10%

5% 10%

Page 14: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 14/20

14

12/09/05 19:25 Symposium for Alain Gringarten 27

Work flow

Data Initial guess (y 0, z 0)

Compute default weights: νdef , λdef

Minimize error measure

Optimum rate / response (y , z )

Data honoured & response interpretable ?

Done

Adapt λ

12/09/05 19:25 Symposium for Alain Gringarten 28

Well

HWellV

Seismic faults 0 500 1000

meters

Baffle

Proposed water injection wells

N

Field example [AG, SPE 93988]

Page 15: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 15/20

15

12/09/05 19:25 Symposium for Alain Gringarten 29

DST Extended Well test

Pressure

Rate

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

-1 0 1 2 3 4

   P  r  e  s  s  u  r  e   (  p  s   i  a   )

Elapsed time (yrs)

0

10000

20000

30000

40000

   O   i   l   R  a   t  e   (   S   T   B   /   D   )

Well shut-in

Well test data

12/09/05 19:25 Symposium for Alain Gringarten 30

Pressure

Rate

3000

4000

5000

6000

7000

8000

9000

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5

   P  r  e  s  s  u  r  e   (  p  s   i  a   )

Elapsed time (yrs)

0

10000

20000

30000

40000

   O   i   l   R

  a   t  e   (   S   T   B   /   D   )

FP 208

FP187

FP178

FP

112

FP124

FP118

Page 16: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 16/20

16

12/09/05 19:25 Symposium for Alain Gringarten 31

DST

DERIVATIVE 

PRESSURE 

10-2 10-1 1 10 102 103 104

Elapsed time (hrs)   R  a   t  e   N  o  r  m  a   l   i  s

  e   d   P  r  e  s  s  u  r  e   D  r  o  p  a  n   d   D  e  r   i  v  a   t   i  v  e   (  p

  s   i   )

104

103

102

10

1

FP 208FP 144

FP 178

FP 124

A

C

B

D FP 118

Main features

Unit slope

12/09/05 19:25 Symposium for Alain Gringarten 32Time from start of pressure measurements, hours

   F   l  o  w

  p  e  r   i  o   d   d  u  r  a   t   i  o  n ,

   h  o  u  r  s Minimum duration

for interpretation

FP 112

23.3 days

FP 187

3.2

months

FP 208

8.5 monthsFP 178

2.6 months

1 10 102 103 104

104

103

102

10

1

10-1

Page 17: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 17/20

17

12/09/05 19:25 Symposium for Alain Gringarten 33

   D  e  c  o

  n  v  o   l  v  e   d  n  o  r  m  a   l   i  z  e   d   d  e  r   i  v  a   t   i  v  e

FP 112 (3 weeks)

FP 118 (5 weeks)

FP 124 (7 weeks)FP 144 (8 weeks)

FP 178 (11 weeks)

FP 208 (37 weeks)

[112,144,178,187,208]

All production data

Elapsed time, hrs

FP 112 (3 weeks)

FP 208

FP 187FP 178

FP 144

FP 124

FP 118

FP 112

10-3 10-2 10-1 1 10 102 103 104 105 106

10

1

10-1

10-2

10-3

10-4

10-5

   D   E  C

  O   N   V  O

   L   V   E   D

    D   E   R

   I   V  A   T   I   V   E  S , 

    F   P   1  1   8   -

   2   0   8

Which FPs contain the unit slope?

?

12/09/05 19:25 Symposium for Alain Gringarten 34

   D  e  c  o  n  v  o   l  v

  e   d  n  o  r  m  a   l   i  z  e   d   d  e  r   i  v  a   t   i  v  e ALL PRODUCTION DATA

Elapsed time, hrs

FP 208FP 187FP 178FP 144FP 124FP 118FP 112

10-3 10-2 10-1 1 10 102 103 104 105 106

FINAL BUILD-UP

10

1

10-1

10-2

10-3

10-4

10-5

Comparison of estimates

Page 18: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 18/20

18

12/09/05 19:25 Symposium for Alain Gringarten 35

Where do we go from here?

12/09/05 19:25 Symposium for Alain Gringarten 36

Extension to multiple wells

δ 1

δ 2   ε 2

ε 1

g 11Q 1   ∆p 1

Q 2

g 12

g 21

g 22  ∆p 2

W 2

W 1

Page 19: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 19/20

19

12/09/05 19:25 Symposium for Alain Gringarten 37

Interference ?

W 2

W 1

?

ε 2

g 11Q 1   – p 1

δ 1

Q 2

g 12

g 21

g 22

δ 2

ε 1

 – p 2

– p 02

– p 01

12/09/05 19:25 Symposium for Alain Gringarten 38

Conclusions

• The need for deconvolution in WTA has long been recognized.

• But stable, efficient, and flexible algorithms have only recentlybeen developed.

• Similar ideas can be applied to a variety of long-standingchallenges in well test analysis, including the problem ofinterfering wells.

• The unifying aspect behind these ideas is the method of Green’sfunctions, which has proved immensely fruitful for well testanalysis.

• Alain and his PhD supervisor Henry Ramey had the vision tointroduce these methods into well test analysis!

Page 20: welltest Deconvolution

7/21/2019 welltest Deconvolution

http://slidepdf.com/reader/full/welltest-deconvolution 20/20

12/09/05 19:25 Symposium for Alain Gringarten 39

References

• Baygün, Kuchuk & Ar kan (1997), SPEJ Sept. 1997, 246.

• Bourdet & al. (1983), World Oil 196, 97.

• Bourdet & al. (1989), SPEFE June 1989, 293.

• Björck (1996), Numerical Methods for Least Squares Problems . SIAM.

• Coats & al. (1964), Trans. AIME 231, 1417.

• Golub & Pereyra (1973), SIAM J. Num. Anal . 10, 413.

• Gringarten & Ramey (1973), SPEJ Oct. 1973, 285. Paper SPE 3818.

• Gringarten (2005), EAGE Madrid, Paper SPE 93988.

• Hutchinson & Sikora (1959), Trans. AIME 216, 169.

• Kuchuk & al. (1990), SPEFE December 1990, 375.

• von Schroeter, Hollaender & Gringarten:

 – (2001) SPE 71574.

 – (2002) SPE 77688.

 – (2004) SPEJ 9 (December 2004), 375.