Top Banner
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with Chemically Reactive Boundary Sreekanth Pannala Srdjan Simunovic Stuart Daw Phani Nukala Oak Ridge National Laboratory Rodney Fox Zhaoseng Gao George Frantziskonis Sudib Mishra Pierre Deymier Aditi Mallik Krishna Muralidharan Thomas O’Brien Dominic Alfonso Madhava Syamlal Ames Laboratory Iowa State University University of Arizona National Energy Technology Laboratory
28

Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

Jun 23, 2018

Download

Documents

phamphuc
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with Chemically Reactive Boundary

Sreekanth Pannala

Srdjan Simunovic

StuartDaw

PhaniNukala

Oak RidgeNational

Laboratory

Rodney Fox

ZhaosengGao

George Frantziskonis

SudibMishra

PierreDeymier

Aditi Mallik

Krishna Muralidharan

Thomas O’Brien

DominicAlfonso

MadhavaSyamlal

Ames LaboratoryIowa State University

Universityof Arizona

National Energy Technology Laboratory

Page 2: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Spouted bed coater (device scale)

Coated fuel particle(small scale)

• 0.5- to 1-mm particles • Coating encapsulates

fission products• Failure rate < 1 in 105

• Quality depends on surface processes at nm length scale and ns time scales

Links multiscale

mathematicswith petascale

computingand NE

Links multiscale

mathematicswith petascale

computingand NE

• Design challenge:Maintain optimal temperatures, species, residence times in each zone to attain right microstructureof coating layersat nm scale

• Truly multiscaleproblem: ~O(13) time scales,~O(8) length scales

• Coating at high temperature (1300–1500°C) in batch spouted bed reactor for ~104 s

• Particles cycle thru deposition and annealing zones where complex chemistry occurs

~10-3 m

~10-1 m

UO2

~10-3 m

Pickup zone (~10-6-10-2s)Pickup zone (~10-6-10-2s)

Si-CSi-C

Inner Pyrolitic C

Inner Pyrolitic C

Amorphous CAmorphous C

KernelKernel

Background 1: Nuclear fuel coating process – a specific example of gas-solid contacting device

Ballistic zone

Pickup zone (~10-6-10-2s)Pickup zone (~10-6-10-2s)

Transportreaction zone (~10-6-10-2s)

Transportreaction zone (~10-6-10-2s)

Hopperflow

zone (~s)

Hopperflow

zone (~s) Inlet gas

Page 3: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Background 2: Multiphysics heterogeneous chemically reacting flows for energy systemsGoal: Building a suite of models for unprecedented capability to simulate multiphase flow reactors

• Through support from various DOE offices (FE, EERE, and NE) we have developed suite of models for unprecedented capability to simulate heterogeneous chemically reacting flows

• Hybrid methods to couple two physical models (e.g. MFIX DEM)

• Uncertainty quantification to probe only quantities of interest at smaller scales

Page 4: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Background 3: Micro-mesoscopic modeling of heterogeneous chemically reacting flows over catalytic/solid surfacesGoal: Develop a multiscale framework for accurate modeling of heterogeneous reacting flows over catalytic surfaces

Y

X

x

x

Fractalprojection

Actualsurface

KMC

LBM

t viqi

T viqi

KMC contribution

LBM contributionCWM

x-yy

x

Procedure: Perform upscalingand downscaling using CWM

Compound Wavelet Matrix (CWM)

Lattice Boltzmann(LBM)

QM: ~1 nm KMC: ~1 μmLBM: ~1 mm

Coupling LBM/KMCKinetic Monte Carlo

(KMC)Density Functional Theory

(DFT)CloselycoupledCloselycoupled

Reactionbarriers

Reactionbarriers

Page 5: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Compound Wavelet Matrix (CWM) for Multiscaling

• CWM is a wavelet based spatio-temporal operator which has different functions depending on the context− Compounding operation (combine information

from multiple scales)− Projection or transfer operations

• Up-scaling fine scale information to coarse scale fields

• Down-scaling coarse information to reconstruct fine scale fields

• Fits within the general HMM framework

Page 6: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Simple illustration of the compounding process – Coarse and Fine Signal

2000 4000 6000 8000

-2

-1

1

2

100 200 300 400 500

-1

-0.5

0.5

1Coarse (8192 s)

Resolves the slow and intermediate frequency over a long duration

Resolves the intermediate and fast frequency over a short duration

Fine (512 s)

Page 7: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Simple illustration of the compounding process – Decomposition

4 6 8 1 0 1 2 1 4 1 6

- 2 0

- 1 0

1 0

2 0

4 6 8 1 0 1 2 1 4 1 6

0 . 8 4 4

0 . 8 4 5

0 . 8 4 6

5 1 0 1 5 2 0 2 5 3 0

- 6

- 4

- 2

2

4

6

1 0 2 0 3 0 4 0 5 0 6 0

- 0 . 2

- 0 . 1

0 . 1

0 . 2

2 0 4 0 6 0 8 0 1 0 0 1 2 0

- 0 . 0 1

- 0 . 0 0 5

0 . 0 0 5

0 . 0 1

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

- 0 . 0 0 0 0 2

- 0 . 0 0 0 0 1

0 . 0 0 0 0 1

0 . 0 0 0 0 2

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

- 1 ´ 1 0 - 6

- 5 ´ 1 0 - 7

5 ´ 1 0 - 7

1 ´ 1 0 - 6

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

- 4 ´ 1 0 - 8

- 2 ´ 1 0- 8

2 ´ 1 0- 8

4 ´ 1 0 - 8

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0

- 2 ´ 1 0 - 9

- 1 ´ 1 0 - 9

1 ´ 1 0 - 9

2 ´ 1 0 - 9

4 6 8 1 0 1 2 1 4 1 6

- 6

- 4

- 2

2

4

6

4 6 8 1 0 1 2 1 4 1 6

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

5 1 0 1 5 2 0 2 5 3 0

0 . 9 0 7 2 4

0 . 9 0 7 2 5

0 . 9 0 7 2 6

0 . 9 0 7 2 7

1 0 2 0 3 0 4 0 5 0 6 0

- 0 . 2

- 0 . 1

0 . 1

0 . 2

2 0 4 0 6 0 8 0 1 0 0 1 2 0

- 0 . 0 0 7 5

- 0 . 0 0 5

- 0 . 0 0 2 5

0 . 0 0 2 5

0 . 0 0 5

0 . 0 0 7 5

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

10-5

Coarse (8192 s)

Fine (512 s)

10-6

10-8

10-9

1

10-1

10-2

10-440962048

512

256128

64

,( , ) ( ) ( )f a bW a b f x x dxψ∞

−∞

= ∫

Page 8: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Simple illustration of the compounding process – Clipping

4 6 8 1 0 1 2 1 4 1 6

- 2 0

- 1 0

1 0

2 0

4 6 8 1 0 1 2 1 4 1 6

0 . 8 4 4

0 . 8 4 5

0 . 8 4 6

5 1 0 1 5 2 0 2 5 3 0

- 6

- 4

- 2

2

4

6

1 0 2 0 3 0 4 0 5 0 6 0

- 0 . 2

- 0 . 1

0 . 1

0 . 2

2 0 4 0 6 0 8 0 1 0 0 1 2 0

- 0 . 0 1

- 0 . 0 0 5

0 . 0 0 5

0 . 0 1

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

- 0 . 0 0 0 0 2

- 0 . 0 0 0 0 1

0 . 0 0 0 0 1

0 . 0 0 0 0 2

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

- 1 ´ 1 0 - 6

- 5 ´ 1 0 - 7

5 ´ 1 0 - 7

1 ´ 1 0 - 6

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

- 4 ´ 1 0 - 8

- 2 ´ 1 0- 8

2 ´ 1 0- 8

4 ´ 1 0 - 8

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0

- 2 ´ 1 0 - 9

- 1 ´ 1 0 - 9

1 ´ 1 0 - 9

2 ´ 1 0 - 9

4 6 8 1 0 1 2 1 4 1 6

- 6

- 4

- 2

2

4

6

4 6 8 1 0 1 2 1 4 1 6

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

5 1 0 1 5 2 0 2 5 3 0

0 . 9 0 7 2 4

0 . 9 0 7 2 5

0 . 9 0 7 2 6

0 . 9 0 7 2 7

1 0 2 0 3 0 4 0 5 0 6 0

- 0 . 2

- 0 . 1

0 . 1

0 . 2

2 0 4 0 6 0 8 0 1 0 0 1 2 0

- 0 . 0 0 7 5

- 0 . 0 0 5

- 0 . 0 0 2 5

0 . 0 0 2 5

0 . 0 0 5

0 . 0 0 7 5

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

10-5

Coarse (8192 s)

Fine (512 s)

10-6

10-8

10-9

1

10-1

10-2

10-440962048

512

256128

64Clipping

Clipping

2

1 2

1

, 2

1( ) ( , ) ( )s

s s f a bs

daf x W a b x dbc aψ

ψ∞

−∞

= ∫ ∫

Page 9: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Simple illustration of the compounding process – Prolongation

4 6 8 1 0 1 2 1 4 1 6

- 6

- 4

- 2

2

4

6

4 6 8 1 0 1 2 1 4 1 6

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

5 1 0 1 5 2 0 2 5 3 0

0 . 9 0 7 2 4

0 . 9 0 7 2 5

0 . 9 0 7 2 6

0 . 9 0 7 2 7

1 0 2 0 3 0 4 0 5 0 6 0

- 0 . 2

- 0 . 1

0 . 1

0 . 2

2 0 4 0 6 0 8 0 1 0 0 1 2 0

- 0 . 0 0 7 5

- 0 . 0 0 5

- 0 . 0 0 2 5

0 . 0 0 2 5

0 . 0 0 5

0 . 0 0 7 5

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

Fine (8192 s)

1

10-1

10-2

10-4 40962048

1024

4 6 8 1 0 1 2 1 4 1 6

- 6

- 4

- 2

2

4

6

4 6 8 1 0 1 2 1 4 1 6

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

5 1 0 1 5 2 0 2 5 3 0

0 . 9 0 7 2 4

0 . 9 0 7 2 5

0 . 9 0 7 2 6

0 . 9 0 7 2 7

1 0 2 0 3 0 4 0 5 0 6 0

- 0 . 2

- 0 . 1

0 . 1

0 . 2

2 0 4 0 6 0 8 0 1 0 0 1 2 0

- 0 . 0 0 7 5

- 0 . 0 0 5

- 0 . 0 0 2 5

0 . 0 0 2 5

0 . 0 0 5

0 . 0 0 7 5

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

Fine (512 s)

1

10-1

10-2

10-4 256128

64

Replicate

16 times

Page 10: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Simple illustration of the compounding process – Compounding

4 6 8 1 0 1 2 1 4 1 6

- 2 0

- 1 0

1 0

2 0

4 6 8 1 0 1 2 1 4 1 6

0 . 8 4 4

0 . 8 4 5

0 . 8 4 6

5 1 0 1 5 2 0 2 5 3 0

- 6

- 4

- 2

2

4

6

1 0 2 0 3 0 4 0 5 0 6 0

- 0 . 2

- 0 . 1

0 . 1

0 . 2

2 0 4 0 6 0 8 0 1 0 0 1 2 0

- 0 . 0 1

- 0 . 0 0 5

0 . 0 0 5

0 . 0 1

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

Coarse (8192 s)

5 1 0 1 5 2 0 2 5 3 0

0 . 9 0 7 2 4

0 . 9 0 7 2 5

0 . 9 0 7 2 6

0 . 9 0 7 2 7

1 0 2 0 3 0 4 0 5 0 6 0

- 0 . 2

- 0 . 1

0 . 1

0 . 2

2 0 4 0 6 0 8 0 1 0 0 1 2 0

- 0 . 0 0 7 5

- 0 . 0 0 5

- 0 . 0 0 2 5

0 . 0 0 2 5

0 . 0 0 5

0 . 0 0 7 5

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

Fine (8192 s)

40962048

512

4 6 8 1 0 1 2 1 4 1 6

- 2 0

- 1 0

1 0

2 0

4 6 8 1 0 1 2 1 4 1 6

0 . 8 4 4

0 . 8 4 5

0 . 8 4 6

5 1 0 1 5 2 0 2 5 3 0

- 6

- 4

- 2

2

4

6

1 0 2 0 3 0 4 0 5 0 6 0

- 0 . 2

- 0 . 1

0 . 1

0 . 2

2 0 4 0 6 0 8 0 1 0 0 1 2 0

- 0 . 0 1

- 0 . 0 0 5

0 . 0 0 5

0 . 0 1

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

5 1 0 1 5 2 0 2 5 3 0

0 . 9 0 7 2 4

0 . 9 0 7 2 5

0 . 9 0 7 2 6

0 . 9 0 7 2 7

1 0 2 0 3 0 4 0 5 0 6 0

- 0 . 2

- 0 . 1

0 . 1

0 . 2

2 0 4 0 6 0 8 0 1 0 0 1 2 0

- 0 . 0 0 7 5

- 0 . 0 0 5

- 0 . 0 0 2 5

0 . 0 0 2 5

0 . 0 0 5

0 . 0 0 7 5

5 0 1 0 0 1 5 0 2 0 0 2 5 0

- 0 . 0 0 0 4

- 0 . 0 0 0 2

0 . 0 0 0 2

0 . 0 0 0 4

CWM (8192 s)

Page 11: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Simple illustration of the compounding process – Reconstruction

2000 4000 6000 8000

-2

-1

1

2

1

1 2

1

0, , ,2 20

1 1( , ) ( ) ( , ) ( )s

P Pf a b f a b

s

da daf W a b x db W a b x dbc a c aψ ψ

ψ ψ∞ ∞ ∞

∞−∞ −∞

= +∫ ∫ ∫ ∫

Page 12: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Prototype Problem: Building Block for Heterogeneous Surface Reactions

Schematic of a simple A B heterogeneous chemical reaction with various elementary steps modeled using Kinetic Monte Carlo (KMC) and Lattice Boltzmann Method (LBM).

1. Transport (LBM)2. Diffusion on surface (KMC)3. Absorption (KMC)4. Production of B (KMC)5. Desorption of B (KMC)6. Transport (LBM)

Ni system for Chemical Looping

2Ni + O2 => 2 O-(Ni), FastO-(Ni) => (NiO), Slow

Page 13: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Example 1: 1D diffusion with reacting boundary point

Fine scales results are obtained from the fine solution method while coarse ones are obtained from the coarse method.

Space (x)

Time (t)T1 T2

X1

X2

Δt1

Δx1

Δt2

Δx2

Fine scale Coarse scale Overlap

Diffusion

Reactions

KMC

Deterministic

Page 14: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

100 200 300 40001020304050

*Frantziskonis, Mishra, Pannala, Simunovic, Daw, Nukala, Fox, Deymier (IJMCE, 2006).

Results for Example 1*

• Successfully applied CWM strategyfor coupling reaction/diffusion system

• An unique way to bridge temporal and spatial scales for multiphysics/multiscale simulations

Transferring mean field

Transferring fine-scale statistics

Spec

ies

conc

entr

atio

n A

(0,t)

20 40 60 80 100 1200

20

40

60

80

100

Time, t

Coarse

Fine

Time, t

A(0

,t)

100 200 300 40001020304050

Transferring mean field

01020304050

A(0

,t)

Time, t

CWMreconstruction

100 200 300 400100 200 300 400

Page 15: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

2D diffusion with reacting boundary plane

Evolution of reactants A and B

Coarse Coarse

FineFine

Page 16: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

2D diffusion with reacting boundary plane

Reconstructed species profile (effect of overlap and thresholding)

T = 1O = 5

T = 2O = 2

T = 3O = 5

Page 17: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

2D diffusion with reacting boundary plane

Rel

ativ

e Er

ror, ε(

n)

Number of Overlap Scales, n

Rel

ativ

e Er

ror, ε(

n)Number of Overlap Scales, n

CWM Error Diffusion Error

The error is dominated by the discretization errorsin solving the diffusion equation

Page 18: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

2D diffusion with reacting boundary plane

A gain of six times

This is without any coarsening in space

Comparison of computational expense

Page 19: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Dynamic CWM (dCWM): Dynamic coupling of coarse and fine methods

• Coupling of the dynamics of both coarse and fine methods for non-stationary problems (similar to gap-tooth method)

• Better exploration of phase-space due to inclusion of stochasticity from fast scales

• Long term behavior feedback to fast scales from coarse representation

coarse Nc

fine Nf

1≤ n ≤ N

Cn CWM

Page 20: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Example 3: 1D diffusion with reacting boundary plane with dCWM

Nc = 16384; Nf = 2048; N = 8C

A

Time

Page 21: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Example 3: 1D diffusion with reacting boundary plane with dCWM

Nc = 16384; Nf = 2048; N = 8

dCWM is able to capture the later-time fluctuations in the mean trajectory when there is competition between diffusion and reaction processes.

Mean Trajectory

Page 22: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Work in Progress: Reactive Boundary with LBM

• Chemical reactions in the flow are represented by mass source on RHS

• Implementation of boundary conditions for reactive boundary− Transport from bulk fluid to boundary

(flux/Neumann)− Reaction (concentration/Dirichlet)− Transport from boundary to bulk fluid

(flux/Neumann)− Reactive term must reproduce correct

density change rates for reactants, and total heat/release absorption per surface area

• Development of new combined flow-species transport with non-reflecting boundary conditions (absorbing layer, extrapolation method)

Page 23: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Work in Progress and Future Work• Generalize the process of constructing the CWM in the

overlapping scales− Energy matching− Smooth variation of cross-correlation across the bridging

scales− Invoke conservation laws?

• Thermal LBM with chemistry• LBM coupled with KMC and CWM• Coarsening of KMC in space• MTS comparison to dCWM for time coupling• Application to NiO system and other realistic systems• Parallel framework to couple multiphysics code

− to be released as open source− solicit contributions from other applied math and

computational science groups

Page 24: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Thank you and any questions?

Page 25: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Backup Slides

Page 26: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Background 1: Fluidized beds are widely used for gas-particle contacting (one special case of multiphase flow reactors

• Nonlinear gas-solid drag promotes turbulent mixing

• Good mixing produces high conversion, product quality

• Nonlinearities also cause density waves (e.g., bubbles) that interfere with good mixing, promote attrition

Challenge:• Direct measurements are very

difficult• Need simulations to improve

design and operating strategies• Several orders of magnitude in both

temporal and spatial scales− from the surface particle processes

scales to the large scale mixing scales

Reactant Gas

Exhaust Gas

Particle Bed

Page 27: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

Background 5: Challenges in having predictive simulations for HCR Flows• How do we rewrite the equations or the solution methods so

that only relevant information is propagated upward from fine-to coarse-scales (upscaling) and coarse- to fine-scales (downscaling) in a tightly coupled fashion?− Possible when clear separation of scales between the

multiphysics modules− New mathematics, theory and analysis − Unification of governing equations across several scales

• Lattice based methods across all scales?• If that is not possible, can we take the information from

different methods and perform this in an online/offline fashion with various degrees of coupling?− Widely practiced− Can this be generalized?

Page 28: Wavelet-based Spatiotemporal Multiscaling in Diffusion .../media/ascr/pdf/workshops-conferences/... · Wavelet-based Spatiotemporal Multiscaling in Diffusion Problems with ... Frantziskonis

OAK RIDGE NATIONAL LABORATORYU. S. DEPARTMENT OF ENERGY

CWM limitations

• Wavelets are linear operators− Compounding only buys linear superposition across

scales− Not an issue with well-separated scales− For non-separated scales, this would imply that the

CWM process has to be performed frequently to ensure local quasi-linear correlation across bridging scales

• The process developed in this project is general and down the line wavelets can be replaced with any other suitable nonlinear transforms