Top Banner
Numeric Comparisons to the 2- Dimensional Wave Equation Rob Morien Advanced Dynamics Fall 2005
23

wave_equation

Apr 16, 2017

Download

Documents

Rob Morien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: wave_equation

Numeric Comparisons to the 2-Dimensional Wave Equation

Rob Morien

Advanced Dynamics

Fall 2005

Page 2: wave_equation

2

Introduction

In many physical situations it is desired to determine how a disturbance propagates through a particular medium, such as water, thin membranes and even extended bodies. It is the purpose of this paper to investigate the evolution of a disturbance through a thin membrane such as a square drumhead.

Given an initial deflection above the undisturbed membrane plane it is possible to determine the elevation above or below the undisturbed plane at any time t through use of the two-dimensional wave equation. Before making these calculations, the wave equation is derived using the Lagrangian and Hamilton’s principle.

After the wave equation has been derived it is possible to choose various initial

deflections and prescribe various boundary and initial conditions to determine the different eigenvalues (frequencies) of each particular situation. This is done both analytically and numerically through the use of the central difference method.

Comparisons of these two methods will be shown for a prescribed time step with

the analytic solutions provided by Maple and central difference calculations provided by hand.

Page 3: wave_equation

3

Analytic Method

Given a stretched rectangular membrane, it is desired to determine the elevation of some point ( )tyxU ,, at any time t above the membrane plane given an initial disturbance.

The Lagrangian is defined as VT −=L , where T is the kinetic energy, and V is the potential energy. Thus it is required to derive T and V.

( )2

2 ,21

21

==

•yxUmmT r&

where ),( yxU•

is velocity and ),( yxU is displacement above or below the undisturbed membrane plane.

( ) ( )∫∫∫∫

=⇒=D

D

dydxyxmdydx

myx ,, ρρ

So, ( )∫∫

∂∂

=D

dydxt

UyxT

2

,21

ρ

In this case, ( )yx,ρ is the membrane density per unit area and is assumed constant. To get the potential energy, V, recall that VW ∆=→21 .

∫∫∫ +=⋅=→ dyFdxFdW yx

2

1

21

r

r

rF

Let τ=F , where τ is the membrane’s tension per unit length and is assumed constant and uniform throughout the membrane. Referring to figure 2,

( )0,0 ( )0,a

( )ba,( )b,0

b

a da

db

Figure 1 Figure 2

Page 4: wave_equation

4

( ) ( ) ( ) ( )areadabddbadabdW ττττ ==+= , where in this case the area refers to the surface

area. It is found from the equation dydxyU

xU

dA22

1

∂∂

+

∂∂

+=

( ) ( )

∫∫

∫∫

∂∂

∂∂ +

+≈

∂∂

+

∂∂

+=

D

yU

xU

D

dydx

dydxyU

xU

dW

21

1

22

22

τ

τ

( ) ( ) ( ) ( )

++−

++= ∫∫∫∫∫ ∂

∂∂

∂∂

∂∂

D

yU

xU

D

yU

xUU

U

dydxdydxWdU2

12

12222

00111

0

τ

Taking 00 =U (the undisturbed membrane plane) as the zero reference potential:

( ) ( )

( ) ( )

++=

++=

∫∫∫∫∫∫

∫∫∫∫∫

∂∂

∂∂

∂∂

∂∂

DD

yU

xU

D

DD

yU

xUU

U

dydxdydxdydx

dydxdydxWdU

2

12

1

22

22

11

111

0

τ

τ

( ) ( )∫∫ ∂∂

∂∂ +=

D yU

xU dydxV

2211

This is the potential energy of the membrane. Therefore, VT −=L becomes

( ) ( ) ( ) ( )∫∫∫∫ ∂∂

∂∂

∂∂ +−=

D yU

xU

D tU dydxdydxyx

222 11

2,

21 τ

ρL

or ( ) ( ) ( ) ( )( )∫∫∫∫ ∂∂

∂∂

∂∂ +−

D yU

xU

D tU dydxdydxyx

222 11,21

τρ

Hamilton’s principle states that the actual motion connecting two known states of a system is the one that minimizes the integral:

( )

( )[ ] minimum21

minimum

2

1

2

1

2

1

222 =+−=

==−=

∫ ∫∫

∫∫t

t Dyxt

t

t

t

t

dtdydxUUU

dtdtVTI

τρ

L

Therefore, the equation of motion becomes:

Page 5: wave_equation

5

( ) ( )0, =+− yyxxtt UUUyx τρ or

( )⇒+= yyxxtt UUU τρ 2

2

2

2

2

2

tU

yU

xU

∂∂

=∂∂

+∂∂

τρ

Looking at the coefficient in front of the second derivative of the temporal coordinate

τρ

, and inspecting its units:

( ) [ ][ ]

[ ][ ][ ] [ ]

[ ][ ]2

2

LTLm

Lm

TL,

2

2

==τ

ρ yx. These units are consistent with velocity units squared. This

is analogous to the equation for velocity, where velocity = distance/time.

It can be asserted that the constant τρ

is none other than the phase velocity of the wave

squared. Therefore, this is the speed of the transverse waves traveling across the membrane.

For convenience, let ρτ

=2c .

Then 2

2

22

2

2

2 1tU

cyU

xU

∂∂

=∂∂

+∂∂

This is the 2-dimensional wave equation to be solved to determine the evolution of the wave.

Since this equation is a second order partial differential equation of the form UtU 22

2

∇−∂∂

0=+++++ FEDcBA yxyyxyxx σσσσσ

with ACBCBBA

−<−=

=

2110

01detdet , the wave equation is a hyperbolic partial

differential equation. It can be solved through the use of separation of variables, but before attacking this problem, it is best to first prescribe the initial and boundary conditions. For the boundary condition:

Let 0=U on the boundary of the membrane for all 0≥t . Since this is a second order PDE, 2 initial conditions are required:

Let ( ) ( )yxfyxU ,0,, = (given initial displacement ( )yxf , )

and ( )yxgtU

t

,0

=∂∂

=

(given initial velocity ( )yxg , )

Page 6: wave_equation

6

The wave equation will have a solution of the form ( ) ( ) ( ) ( )tyxtyxU φψχ=,,

χψφ

χφψ

ψφχ

xxxxU

∂∂

+∂∂

+∂∂

=∂∂

ψφχ2

2

2

2

xxU

∂∂

=∂∂

χψφ

χφψ

ψφχ

yyyyU

∂∂

+∂∂

+∂∂

=∂∂

χφψ

2

2

2

2

yyU

∂∂

=∂∂

χψφ

χφψ

ψφχ

ttttU

∂∂

+∂

∂+

∂∂

=∂

χψφ2

2

2

2

ttU

∂∂

=∂∂

Substituting these values into the wave equation:

χψφ

χφψ

ψφχ

2

2

22

2

2

2 1tcyx ∂

∂=

∂∂

+∂∂

and dividing through the φψχ ,, terms:

φφ

ψψ

χχ 1111

2

2

22

2

2

2

tcyx ∂∂

=∂∂

+∂∂

Now, it is necessary that both sides of this equation be equal to the same constant or else one side would be allowed to vary while the other side remain unchanged.

22

2

2

2

22

2

2

11

11

kyx

ktc

−=∂∂

+∂∂

−=∂∂

ψψ

χχ

φφ

The separation process can be continued further to show that both spatial deriva tives are also both equal to constants.

Page 7: wave_equation

7

kxBkxAkx

cossin02

2

+⇒=+∂∂ 2χ

χ

pyDpyCpy

cossin022

2

+⇒=+∂∂

ψψ

Recalling the boundary conditions, ( ) ( ) ( ) ,00,0,00 === ψχχ a and ( ) 0=aψ ,

000cos0sin

000cos0sinm

m

=⇒=+

=⇒=+

DDC

BBA

( ) ⇒== 0sin kaAaχ this is true only if a

mk

π= and m any integer

( ) ⇒== 0sin pbCaψ this is true only if b

np

π= and n any integer

Then ( )tyxU ,, becomes ( )tb

yna

xmφ

ππsinsin .

The solution to ( )tφ leads to what is known as the “t ime function.”

( ) 02222

2

=++∂∂

φφ

pkct

. Let νλ c= and 22 pk +=ν

⇒=+∂∂

022

2

φλφ

t( )tBtB mnmnmnmn λλ cossin* +

22

2

2

2

2

22

bn

am

cb

na

mcmn

22

+=+= πππ

λ

( ) ( )tBtBb

xna

xmtyxU mnmnmnmn λλ

ππcossinsinsin,, * +=

From the superposition theorem, the sum of finitely many solutions ( )tyxU ,, is also a solution. ( )tyxU ,, then becomes a double sum.

( )∑∑∞

=

=

+1 1

* sinsincossinm n

mnmnmnmn byn

axm

tBtBππ

λλ

From the initial condition ( ) ( )yxftyxU ,,, = , ( )0=t

( ) ( )yxftb

yna

xmByxU

m nmnmn ,cossinsin0,,

1 1

== ∑∑∞

=

=

λππ

, which is known as a double

Fourier series. Recall from a Fourier series, the constant nB can be determined by

Page 8: wave_equation

8

( )∫L

dxL

xnxf

L 0

sin2 π

. It follows that mnB can also by determined by

( )∫ ∫b a

dydxb

yna

xmyxf

ab 0 0

sinsin,4 ππ

.

( ) ( )∑∑ ∫ ∫∞

=

=

=

1 1 0 0

cossinsinsin,4

0,,m n

b a

mntbyn

axm

dydxb

ynins

axm

yxfab

yxU λππππ

which is a solution to the wave equation whenever the initial velocity of some initial deflection is zero. It is also common to determine the position of any point given an initial velocity not equal to zero. Therefore, *

mnB must be determined. This is done by taking the time derivative of ( )tyxU ,, at t = 0.

( )

( )∑∑

∑∑∞

=

=

=

=

=

−=

+

∂∂

1 1

*

01 1

*

sinsin0sin0cos

sinsincossin

m nmnmnmnmnmnmn

tm nmnmnmnmn

byn

axm

BB

byn

axm

tBtBt

ππλλλλ

ππλλ

( )yxgb

yna

xmB

m nmnmn ,sinsin

1 1

* == ∑∑∞

=

=

ππλ where ( )yxg , is some initial velocity. *

mnB can

be determined through the use of “Fourier’s trick”:

( )∫ ∫=b a

mnmn dydx

byn

axm

yxgab

B0 0

* sinsin,4 ππλ

Then given an initial displacement, ( )yxf , , and some initial velocity, ( )yxg , , the solution to the two-dimensional wave equation will be of the form:

( ) ( ) ( ) tb

yna

xmdydx

byn

axm

yxfyxgab

tyxU mnm n

b a

mn

λππππ

λcossinsinsinsin,,

14,,

1 1 0 0∑∑ ∫ ∫

=

=

+=

For the examples in this paper, all functions will be assumed to start with initial velocity,

( ) 0, =yxg . As an example, choose c = 1, ( ) yxyxyxfba 2sinsinsin2sin,,2, −=== ππ

( ) ∑∑∞

=

=

=1 1

cossinsin,,m n

mnmn tb

yna

xmBtyxU λ

ππ

2

2

2

2

bn

am

cmn += πλ

Page 9: wave_equation

9

( )∫ ∫=b a

mn dydxb

yna

xmyxf

abB

0 0

sinsin,4 ππ

( )( )

∫∫∫∫

∫ ∫∫ ∫

∫ ∫

−=

−=

ππππ

πππ π

π π

ππ

ππ

ππππ

0

2

02

0

2

02

2

0 02

2

0 02

2

0 0

sinsin2

sin2sin2

sin2sin2

sinsin2

2sinsin2sinsin

22

sinsinsin2sin2

sinsin2sinsinsin2sin24

dxmxxdyny

ydxmxxdyny

y

dydxny

mxyxdydxny

mxyx

dydxb

yna

xmyxyx

nmB , = 2

( )I I I I1 2 3 4−

40

20

1,2

1,0sinsin

2,2

2,0sin2sin

Im

mdxmxx

Im

mdxmxx

=

=

≠=

=

=

≠=

π

π

π

π

12

2

2

0

2

0

2

0

2,2,0

2,2,0

2sin

22

sin

222

sin22

sin2

sinsin

Inn

nn

dynyy

dynyy

dyny

y

=

=≠

=

=≠

==

/⋅/

=

∫∫

πππ

ππ

ππ

ππ

π

π

ππ

32

2

2

0

2

0

2

0

4,4,0

4,4,0

2sin

24

sin

222

sin2

22sin

2sin2sin

Inn

nn

dynyy

dynyy

dyny

y

=

=≠

=

=≠

==

/⋅/

=

∫∫

πππ

ππ

ππ

ππ

π

π

ππ

nmB , = 2

( )I I I I1 2 3 4− =

====

≠≠

2 m & 4n1-2m & 21

4,2or2,10

n

nm

4,2or 2,1,0

1,1 4,22,2

≠≠=

−==

nmB

BB

mn

Page 10: wave_equation

10

( )5

514

444

222

2,2

2222

2

2

2

2,2

=

=+

=+=+=

λ

ππ

ππ

πππ

πππλ c

( )8

444164

242

4,2

222

2

2

2

4,2

=

+=+=+=

λ

ππ

πππ

πππλ c

( ) tyx

Btyx

BtyxU 4,24,22,22,2 cos24

sin2

sincos22

sin2

sin,, λππ

ππ

λππ

ππ

+=

( ) tyxtyxtyxU 8cos2sin2sin5cossinsin,, −= Substituting any value for x, y, and t (anywhere within the membrane), this equation will tell you the height of the membrane at any time t.

Page 11: wave_equation

11

Numerical Method

Solutions to the wave equation can be approximated using numerical methods. The central difference approximation scheme provides nearly accurate solutions with minimum residual error.

∂∂

+∂∂

=∂∂

2

2

2

22

2

2

yU

xU

ctU

Substituting these approximations back into the wave equation:

( ) ( ) ( )

+−+

+−=

+− −+−+−+

21,,1,

2,1,,12

2

1,,

1, 222

y

UUU

x

UUUc

t

UUU kji

kji

kji

kji

kji

kji

kji

kji

kji

( )( ) ( ) ( ) ( )

( ) ( )

∆∆

+−∆++−∆=

+− −+−+−+

221,,1,

2,1,,1

22

2

1,,

1, 222

yx

UUUxUUUyc

t

UUU kji

kji

kji

kji

kji

kji

kji

kji

kji

Let yxh ∆=∆=

i

j

h

h

1=j1=i 1ii =

1jj =

1, +ji

ji ,1+ji,

1, −ji

ji ,1−

( )

( )

( )21,,1,

2

2

2,1,,1

2

2

2

1,,

1,

2

2

2

2

2

y

UUU

yU

x

UUU

xU

t

UUU

tU

kji

kji

kji

kji

kji

kji

kji

kji

kji

+−=

∂∂

+−=

∂∂

+−=

∂∂

−+

−+

−+

These values are the central difference approximation for each derivative. The superscripts represent the time iteration number.

Page 12: wave_equation

12

( )( ) ( )

+−++−=

+− −+−+−+

41,,1,

2,1,,1

22

2

1,,

1, 222

hUUUhUUUh

ct

UUU kji

kji

kji

kji

kji

kji

kji

kji

kji

( ) 2,1,1,,1,12

2

1,,

1, 42

h

UUUUUc

t

UUU kji

kji

kji

kji

kji

kji

kji

kji −+++

=∆

+− −+−+−+

Solving for the displacement at time 1+kt :

( ) ( ) ( )

( ) ( ) kji

kji

kji

kji

kji

kji

kji

kji

kji

kji

kji

Uh

tcUU

htc

UUUh

tcUUUU

htc

U

,2

221

,,2

22

1,,,2

22

1,1,,1,12

221

,

42010101010

24

∆−+−

=

−+∆

−+++∆

=

−−+−+

+

Letting ( )

21

2

22

=∆

htc

, the last term will drop out. 2c

ht =∆

U U U U U Ui jk

i jk

i jk

i jk

i jk

i jk

, , , , , ,( )+− + + −

−= + + + −11 1 1 1

112

Or, 1,,

1,

010101

010

21 −+ −

= k

jik

jik

ji UUU

To get the first time step, take 0=∂

ttU

.

Then

1,

0,

1,

1

010101

010

41

jijiji U

UU −

= . ( )jiji yxVtU ,1

, ∆= , so

( )jijiji yxVtUU ,010101

010

41 0

,1, ∆+

=

Assume the membrane is raised at the center with an initial displacement

( ) ( )( )( )( )2222,0 −+−+= yyxxyxU and bound at the edges.

Page 13: wave_equation

13

This would look like:

Assume the initial velocity is zero, that a = 2, b = 2, and c = 1. It is desired to find how

the displacement varies with time. Allow 21

=∆=∆= yxh to obtain 9 interior nodes.

The time increments are found from 354.022/1

2===∆

ch

t

( )jijiji yxgtUU ,010101

010

41 0

,1, ∆+

= since ( )yxg , is zero everywhere.

The values in the charts below show the elevation at each node. The values in the second chart are analytical values obtained by Maple from the double infinite series (from 1 to 10):

Page 14: wave_equation

14

( ) ∑∑∞

=

=

=1 1

cossinsin,,m n

mnmn tb

yna

xmBtyxU λ

ππ

( )

( )( ) ( )( )( )( )∫ ∫

∫ ∫

−+−+=

=

2

0

2

0

0 0

sinsin222222

4

sinsin,4

dydxb

yna

xmyyxx

dydxb

yna

xmyxf

abB

b a

mn

ππ

ππ

( )( ) ( )( )

∫ ∫

∫ ∫

−=

−+−+=

2

0

2

0

22

2

0

2

0

2sin4

2sin

2sin4

2sin

sin22sin22

dyynyn

ydxxmxm

x

dyb

xnyydx

axm

xx

ππππ

ππ

= − −( )( )I I I I1 2 3 4

I 2 = ∫2

0 2sin4 dx

xmπ

=8 1(cos( ) )m

mππ

− =

πm16

( )m odd=

I xm x

dx12

0

2

2= ∫ sin( )

π

=− − − −8 2 2 12 2

3 3

(( )cos( ) ( sin( ) ))m m m mm

π π π ππ

=

−=

− =

8 4

8

2 2

3 3

( )( )

( )

mm

m odd

mm even

ππ

π

I 4 = ∫2

0 2sin4 dy

ynπ

=8 1(cos( ) )n

nππ

− =

πn16

( )n odd=

Page 15: wave_equation

15

I yn y

dy32

0

2

2= ∫ sin( )

π

=− − − −8 2 2 12 2

3 3

(( ) cos( ) ( sin( ) ))n n n nn

π π π ππ

=

−=

− =

8 4

8

2 2

3 3

( )( )

( )

nn

n odd

nn even

ππ

π

Bm m m m

mmm

n n n nn

nn

mn =− − − −

− ×

− − − − −

8 2 2 1 8 1

8 2 2 1 8 1

2 2

3 3

2 2

3 3

(( ) cos( ) ( sin( ) )) (cos( ) )

(( )cos( ) ( sin( ) )) (cos( ) )

π π π ππ

ππ

π π π ππ

ππ

Maple Gives the displacements easily: B[m,n]:=Int(Int((x+2)*(x-2)*(y+2)*(y-2)*sin(m*Pi*x/2)*sin(n*Pi*y/2),x=0..2),y=0..2);

:= B,m n

d⌠

0

2

d⌠

0

2

( ) + x 2 ( ) − x 2 ( ) + y 2 ( ) − y 2

sin

m π x2

sin

n π y2

x y

u(x,y,t):=Sum(Sum(B[m,n]*sin(m*Pi*x/2)*sin(n*Pi*y/2)*cos(t*Pi*sqrt(m^2/4+n^2/4)),m=1..infinity),n=1..infinity);

( )u , ,x y t ∑ = n 1

∑ = m 1

d⌠

0

2

d⌠

0

2

( ) + x 2 ( ) − x 2 ( ) + y 2 ( ) − y 2

sin

m π x2

sin

n π y2

x y

:=

sin

m π x2

sin

n π y2

cos

t π + m 2 n2

2

At Time t = 0, u(x,y,0); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*Pi*(1/2)/2),m=1..20),n=1..20));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n*Pi*.5/2),m=1..10),n=1..10));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*.

Page 16: wave_equation

16

5/2),m=1..10),n=1..10));u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1/2),m=1..10),n=1..10));u(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2),m=1..10),n=1..10));u(1.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2),m=1..10),n=1..10));u(0.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2),m=1..10),n=1..10));u(1.0,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2),m=1..10),n=1..10));u(1.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2),m=1..10),n=1..10));

:= ( )u , ,0.5 0.5 0 15.22971493

:= ( )u , ,1.0 0.5 0 11.99631509

:= ( )u , ,1.5 0.5 0 6.253747587

:= ( )u , ,0.5 1.0 0 11.99631508

:= ( )u , ,1.0 1.0 0 9.775603853

:= ( )u , ,1.5 1.0 0 5.096078137

:= ( )u , ,0.5 1.5 0 6.253747591

:= ( )u , ,1.0 1.5 0 5.096078137

:= ( )u , ,1.5 1.5 0 2.656614646

At Time t = .354, u(x,y,.354); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*Pi*(1/2)/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n*Pi*.5/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*.5/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*.354*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));

:= ( )u , ,0.5 0.5 0 13.73168329

Page 17: wave_equation

17

:= ( )u , ,1.0 0.5 0 11.48679972

:= ( )u , ,1.5 0.5 0 5.850152116

:= ( )u , ,0.5 1.0 0 11.48679970

:= ( )u , ,1.0 1.0 0 8.957095820

:= ( )u , ,1.5 1.0 0 4.516788103

:= ( )u , ,0.5 1.5 0 5.850152118

:= ( )u , ,1.0 1.5 0 4.516788106

:= ( )u , ,1.5 1.5 0 2.207949353

At Time t = .708, u(x,y,.708); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*Pi*(1/2)/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n*Pi*.5/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*.5/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*.708*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));

:= ( )u , ,0.5 0.5 0 -14.79433063

:= ( )u , ,1.0 0.5 0 -4.233097635

:= ( )u , ,1.5 0.5 0 -3.371121281

:= ( )u , ,0.5 1.0 0 -4.233097637

:= ( )u , ,1.0 1.0 0 6.555284339

:= ( )u , ,1.5 1.0 0 2.912539267

:= ( )u , ,0.5 1.5 0 -3.371121279

:= ( )u , ,1.0 1.5 0 2.912539273

Page 18: wave_equation

18

:= ( )u , ,1.5 1.5 0 1.127100152

At Time t = 1.062, u(x,y,1.062); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*Pi*(1/2)/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n*Pi*.5/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*.5/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*1.062*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));

:= ( )u , ,0.5 0.5 0 -4.761423251

:= ( )u , ,1.0 0.5 0 -16.21698752

:= ( )u , ,1.5 0.5 0 -3.595003391

:= ( )u , ,0.5 1.0 0 -16.21698752

:= ( )u , ,1.0 1.0 0 -15.82088364

:= ( )u , ,1.5 1.0 0 -4.459870815

:= ( )u , ,0.5 1.5 0 -3.595003394

:= ( )u , ,1.0 1.5 0 -4.459870825

:= ( )u , ,1.5 1.5 0 0.1312790189

At Time t = 1.416, u(x,y,1.416); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*Pi*(1/2)/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(

Page 19: wave_equation

19

n*Pi*.5/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*.5/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*1.416*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));

:= ( )u , ,0.5 0.5 0 -2.994597905

:= ( )u , ,1.0 0.5 0 -5.290612631

:= ( )u , ,1.5 0.5 0 -5.195011744

:= ( )u , ,0.5 1.0 0 -5.290612625

:= ( )u , ,1.0 1.0 0 -15.77018009

:= ( )u , ,1.5 1.0 0 -6.221225508

:= ( )u , ,0.5 1.5 0 -5.195011752

:= ( )u , ,1.0 1.5 0 -6.221225517

:= ( )u , ,1.5 1.5 0 -1.729165708

At Time t = 1.77, u(x,y,1.77); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*Pi*(1/2)/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n*Pi*.5/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*.5/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=e

Page 20: wave_equation

20

valf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*1.77*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));

:= ( )u , ,0.5 0.5 0 -1.187083434

:= ( )u , ,1.0 0.5 0 -1.528967272

:= ( )u , ,1.5 0.5 0 -4.670921694

:= ( )u , ,0.5 1.0 0 -1.528967268

:= ( )u , ,1.0 1.0 0 -3.629418086

:= ( )u , ,1.5 1.0 0 -13.59326888

:= ( )u , ,0.5 1.5 0 -4.670921687

:= ( )u , ,1.0 1.5 0 -13.59326889

:= ( )u , ,1.5 1.5 0 -11.68786223

At t = 2.124, u(x,y,2.124); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*Pi*(1/2)/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n*Pi*.5/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*.5/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*2.124*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));

:= ( )u , ,0.5 0.5 0 0.9685162845

:= ( )u , ,1.0 0.5 0 1.547781108

:= ( )u , ,1.5 0.5 0 0.7297354742

:= ( )u , ,0.5 1.0 0 1.547781103

Page 21: wave_equation

21

:= ( )u , ,1.0 1.0 0 1.719660241

:= ( )u , ,1.5 1.0 0 0.279360720

:= ( )u , ,0.5 1.5 0 0.7297354758

:= ( )u , ,1.0 1.5 0 0.2793607222

:= ( )u , ,1.5 1.5 0 -5.769634646

At t = 2.478, u(x,y,2.478); u(0.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1/2)/2)*sin(n*Pi*(1/2)/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..20),n=1..20));u(1.0,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*(1)/2)*sin(n*Pi*.5/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,0.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*.5/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.0,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(0.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*.5/2)*sin(n*Pi*1.5/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.0,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1/2)*sin(n*Pi*1.5/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));u(1.5,1.5,0):=evalf(sum(sum(B[m,n]*sin(m*Pi*1.5/2)*sin(n*Pi*1.5/2)*cos(Pi*2.478*sqrt(m^2/4+n^2/4)),m=1..10),n=1..10));

:= ( )u , ,0.5 0.5 0 2.487143177

:= ( )u , ,1.0 0.5 0 3.642616396

:= ( )u , ,1.5 0.5 0 8.242865097

:= ( )u , ,0.5 1.0 0 3.642616399

:= ( )u , ,1.0 1.0 0 4.730398447

:= ( )u , ,1.5 1.0 0 9.747117351

:= ( )u , ,0.5 1.5 0 8.242865090

:= ( )u , ,1.0 1.5 0 9.747117338

:= ( )u , ,1.5 1.5 0 10.05139973

Page 22: wave_equation

22

?t (0.5,0.5) (1.0,0.5) (1.5,0.5) (0.5,1.0) (1.0,1.0) (1.5,1.0) (0.5,1.5) (1.0,1.5) (1.5,1.5) 0 14.0625 11.25 6.5625 11.25 9 5.25 6.5625 5.25 3.0625

0.354 12.375 18.4063 5.875 10.4063 8.25 4.65625 5.875 4.65625 2.625 0.708 1.062 1.416 1.77

2.124 2.478 ? t (0.5,0.5) (1.0,0.5) (1.5,0.5) (0.5,1.0) (1.0,1.0) (1.5,1.0) (0.5,1.5) (1.0,1.5) (1.5,1.5)

0 15.230 11.996 6.254 11.996 9.776 5.096 6.254 5.096 2.657 0.354 13.732 11.487 5.850 11.487 8.957 4.517 5.850 4.517 2.208 0.708 -14.794 -4.233 -3.371 -4.233 6.555 2.913 -3.371 2.913 1.127 1.062 -4.761 -16.217 -3.595 -16.217 -15.821 -4.460 -3.595 -4.460 .131 1.416 -2.995 -5.291 -5.195 -5.291 -15.770 -6.221 -5.195 -6.221 -1.729 1.77 -1.187 -1.529 -4.671 -1.529 -3.629 -13.593 -4.671 -13.593 -11.688

2.124 .969 1.548 .730 1.548 1.720 .279 .730 .279 -5.770 2.478 2.487 3.643 8.242 3.643 4.730 9.747 8.242 9.747 10.051

To attain the values for each succeeding time step, 1,,

1,

010101

010

21 −+ −

= k

jik

jik

ji UUU was

used. Discrepancies in the values of the two charts could be due to using a 7-digit mantissa instead of a 14-digit mantissa in Maple leading to significant round off errors. Another possibility of obtaining different values between the two charts might arise from not using enough terms in the limits of the double sum. Future research will be done to investigate this phenomena as well as comparisons to the round and triangular drumheads answering the ultimate question, “Can You Hear the Shape of a Drum?”

Page 23: wave_equation

23

Works Cited

l Erwin Kreyszig, Advanced Engineering Mathematics, 8th edition l David J. Griffiths, Quantum Mechanics, 2nd edition l Gerald-Wheatley, Applied Numerical Analysis, 7th edition l Michael D. Greenberg, Foundations of Applied Mathematics l Discussions with Prof. Chris Papadopolous and Prof. Paul Lyman l http://mathnt.mat.jhu.edu/zelditch/Teaching/F2005110.302/PDF%20Lectures/Dru

mundBessel.pdf l http://www.falstad.com/mathphysics.html l http://www.kettering.edu/%7Edrussell/demos.html