Top Banner
Washington University in St. Louis Physical Optics Lab Introductory Physics Lab Summer 2018 1 Physical Optics Pre-Lab: An Introduction to Light A Bit of History In 1704, Sir Isaac Newton postulated in Opticks that light was made up of tiny particles that behaved just like any other massive object, from planets to protons. He hypothesized that light is observed to travel in a straight line because it moves at such a high speed, just like a Nolan Ryan fastball appears to travel in a straight line instead of a parabola. The particle model of light also explained many other aspects of light’s behavior, such as reflection and refraction (both of which describe the ways in which light bends when in contact with a surface). Newton was the number one name in physics for more than two centuries, so when he espoused a theory, people believed it. It also didn’t hurt that the particle model readily explained commonly observed phenomena. Because of this, the particle model of light dominated until Thomas Young, who also helped decipher the Rosetta Stone (boy, was he an overachiever!), performed his double slit experiment in 1801. This experiment conclusively demonstrated the diffraction and interference of light, which are properties that can only be explained by a wave model of light. Particle or Wave? Modern quantum theory holds that light has both wave-like and particle-like properties. The act of making an observation forces the light to display its particle or its wave properties (in quantum mechanics, this is called collapsing the wave function). Whether light will display its wave-like or particle-like properties depends on the experimental design, the wavelength of the light, and on the length-scale of the object used to observe the light (e.g., the slit separation in Young’s double slit experiment). When the wavelength of light is large, the slit separation tends to be smaller than or comparable to the wavelength of light and its wave nature dominates. As the wavelength of light decreases, the particle nature of light begins to dominate. In the experiment today, all of the slits through which you will observe light are small enough that you can treat light purely as a wave. Physical phenomena that can be described by only the wave nature of light are commonly referred to as physical optics. It is more physically realistic than describing light as a ray, as is done in geometric optics. Refer to your textbook and Appendices B and D for additional information on waves, diffraction, interference, and polarization. The Structure of This Lab This lab will deal with two major topics of physical optics: polarization and interference. The Pre-Lab will focus on polarization while the time in the laboratory will be spent investigating interference.
17

Washington University in St. Louis Physical Optics Lab ...

Nov 09, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

1

PhysicalOpticsPre-Lab:AnIntroductiontoLight

ABitofHistory

In1704,SirIsaacNewtonpostulatedinOpticksthatlightwasmadeupoftinyparticlesthatbehavedjustlikeanyothermassiveobject,fromplanetstoprotons.Hehypothesizedthatlightisobservedtotravelinastraightlinebecauseitmovesatsuchahighspeed,justlikeaNolanRyanfastballappearstotravelinastraightlineinsteadofaparabola.Theparticlemodeloflightalsoexplainedmanyotheraspectsoflight’sbehavior,suchasreflectionandrefraction(bothofwhichdescribethewaysinwhichlightbendswhenincontactwithasurface).Newtonwasthenumberonenameinphysicsformorethantwocenturies,sowhenheespousedatheory,peoplebelievedit.Italsodidn’thurtthattheparticlemodelreadilyexplainedcommonlyobservedphenomena.Becauseofthis,theparticlemodeloflightdominateduntilThomasYoung,whoalsohelpeddeciphertheRosettaStone(boy,washeanoverachiever!),performedhisdoubleslitexperimentin1801.Thisexperimentconclusivelydemonstratedthediffractionandinterferenceoflight,whicharepropertiesthatcanonlybeexplainedbyawavemodeloflight.

ParticleorWave?

Modernquantumtheoryholdsthatlighthasbothwave-likeandparticle-likeproperties.Theactofmakinganobservationforcesthelighttodisplayitsparticleoritswaveproperties(inquantummechanics,thisiscalledcollapsingthewavefunction).Whetherlightwilldisplayitswave-likeorparticle-likepropertiesdependsontheexperimentaldesign,thewavelengthofthelight,andonthelength-scaleoftheobjectusedtoobservethelight(e.g.,theslitseparationinYoung’sdoubleslitexperiment).Whenthewavelengthoflightislarge,theslitseparationtendstobesmallerthanorcomparabletothewavelengthoflightanditswavenaturedominates.Asthewavelengthoflightdecreases,theparticlenatureoflightbeginstodominate.Intheexperimenttoday,alloftheslitsthroughwhichyouwillobservelightaresmallenoughthatyoucantreatlightpurelyasawave.Physicalphenomenathatcanbedescribedbyonlythewavenatureoflightarecommonlyreferredtoasphysicaloptics.Itismorephysicallyrealisticthandescribinglightasaray,asisdoneingeometricoptics.RefertoyourtextbookandAppendicesBandDforadditionalinformationonwaves,diffraction,interference,andpolarization.

TheStructureofThisLab

Thislabwilldealwithtwomajortopicsofphysicaloptics:polarizationandinterference.ThePre-Labwillfocusonpolarizationwhilethetimeinthelaboratorywillbespentinvestigatinginterference.

Page 2: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

2

AnIntroductiontoPolarization

ThisseriesofPre-Labexerciseswillintroduceyoutopolarizationwiththeultimategoalofgainingabasicunderstandingofpolarizingsunglassesand3Dmovies.AppendixDgivesanintroductiontosomeofthehistoryandessentialmathofpolarization.Checkitout!

Youcanusethepolarizeryoureceivedinlablasttimetohelpyouanswersomeofthequestions.Ifyoudidnotreceiveapolarizer,youcanstopbythelabmanager’soffice(Crow307)andpickoneup.

Equipment

• Polarizer(seetheparagraphabove)• Sunglasses

TheStory

Onedayyoudecidetogiveyourlittlebrotheracalltocatchupandtotellhimhowmuchyou’relearninginyourintroductoryphysicsclass.Butallhewantstotalkaboutishiscurrentfavoritemovie,MutantZombiePiranhasfromOuterSpacein3D,whichheavowsisinfinitelymorethrillingthansciencecouldpossiblybe.Youbegtodiffer,andseeingawaytoreelhimin,youmentionthatmodern3Dmoviesareonlypossiblebecauseofscience–namely,polarization.Justasyouhadhoped,hetakesthebaitandasksyoutoexplainthis.Pleasedtohavecaughthisinterestandinthenumberoffish-relatedpunsyouwereabletoutilize,youtellyourbrotherthathe’llneedtostartwiththebasicsifhewantstounderstandhowmovieswork.

DoThis:Takethepolarizeryoureceivedinlablasttime(polarizersarealsoavailableinthehallwaybyCrow307orcontactyourLAI)andlookatavarietyofobjects,bothindoorsandoutdoors,asyourotatethepolarizer(clockwiseorcounterclockwise).That’swhenthemagicofthepolarizerhappens!Examplesofobjectsyoumightlookatinclude,butarenotlimitedto,yourcomputerscreen,yourphonescreen,alightbulb,thetable,yourlunch,thesun(indirectly,ofcourse!),thesky,etc.Becreative!

PL1.Listatleastthreeobjectsthatappeardifferentwhenyoulookatthemthroughapolarizerandthreethatdon’tseemtosignificantlychange.Makesureit’sclearinyourresponsewhichiswhich.Describetheeffectsapolarizerhasontheobjectsthatappeartochange.

PL2.Manysunglassesarepolarized.Basedonwhatyou’vealreadydiscoveredabouthowpolarizerschangethewaycertaintypesofobjectslook,determinewhetherornotyoursunglassesarepolarized.(Orifyoudon’thavesunglasses,findafriendwhodoes.)Clearlyexplainyourprocedure,observations,andanalysis.

DoThis:UsethePre-Lablinkonthelabwebsitetowatchanintroductiontothescienceofpolarizationinthecontextof3Dmovies.Youwillanswerseveralquestionsrelatedtothevideo.

Page 3: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

3

PL3.Howdopolarizedglassesmakesureeacheyeonlyseestheimageintendedforit,effectivelydoingthesamethingasclosingoneeye,withoutallthesquinting?

ReadThis:Modern3Dmoviesareprojectedusingcircularlypolarizedlight.However,thereisnofundamentalreasonwhy3Dmoviescouldn’tuselinearpolarization–theprojectorswouldjustneedtoproduceverticallyandhorizontallypolarizedlightandyouwouldwearthecorrespondingglasses.However,thereisonemajorpracticalissue.

PL4.Considera3Dmovieprojectedusinglinearlypolarizedlight.Whatwouldhappentothemovieifyouweretotiltyourheadwhilewearinglinearlypolarizedglasses?Explaintheproblemandwhycircularlypolarizedlightisasolution.

ReadThis:Nowyourbrotherishooked(anotherfishpun!)andwantstoknowmoreaboutwherepolarizationisused.Sunglassesand3Dmoviesaretwoofthemostcommonmodernusesofpolarization,buttherearemanymoreoutthere.Polarizationcanbeausefultool,evenwithoutunderstandingthescienceofwhat’shappening.Thisistrueforpeople(polarizationwasn’tdiscovereduntil1809–seeAppendixDfortheinterestingtale),plants,andanimals.

PL5.Doabitofindependentresearchtofindanexampleofhowpolarizationisused(notsimplywhereitexists:whereitisused),eitherinnatureorbypeoplepre-1809.Describethephenomenoninafewsentences,justlikeyouwouldtoalittlebrother.

ReadThis:InthefamousDoubleSlitExperiment,whichdemonstratesthedualnatureoflight,aslidethathastwoslitswithparticulardimensionshasbeenused.Theslidethatyouwilluseinthelabissimilartothat.Itcontainsfourdoubleslitconfigurationsofdifferentseparations.Youhavetopickoneofthem.But,whichoneisthebestfortheexperiment?

DoThis:OpentheDoubleSlitSimulationinIn-LabLinks.Therearethreeslidersbelowthesimulation.Thefirstoneiscalled“SlitWidth,”thesecond“Distancebetweenslits,”andthethirdone“Distancetothescreen.”Therearealsotabsfordifferentcolorsoflightandtypeofopenings.Spendsometimetoplaywithsimulationandfamiliarizeyourselfwiththediffractionpatterncreatedonthescreenandeachoftheslidersandtabs.

DoThis:ClickonSingleSlitandselecttheslitwidthtobe10micrometers.Then,changethedistancetothescreenbymovingthesliderleftandright.Observewhatwillhappenwiththediffractionpattern,particularlywiththewidthofthemaximumspot(thespotwherethelightintensityismaximum.)

PL6:Whathappenstothewidthofthemaximumwhenthedistancetothescreenchanges,butthewidthoftheslitiskeptconstant?

DoThis:ContinueusingtheSingleSlit,butatthistimekeepthedistancetothescreenconstantat1.5mandchangetheslitwidth.

Page 4: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

4

PL7:Whathappenstothewidthofthemaximumwhentheslitwidthchanges,butthedistancetothescreeniskeptconstant?

DoThis:Nowclickon“DoubleSlit”tab.Thesingleslitpatternbecomesanenvelopethatdefinestheintensitydistributionforthedoubleslit.Playwiththesliderswhileobservingthechangesofthemaximaonthescreen.

DoThis:Keeptheslitwidthconstantat12micrometersandthedistancetothescreenatthemaximumvalue,2meters.Changethedistancebetweentheslits.

PL8:Whathappenedtotheamountofthemaximainsidethe“envelope”?

DoNow:SynthesisQuestion1includesananalysisofthewavelengthuncertainty.ReadcarefullyCheckpoints1.4-1.7.AfteryoueliminatethesmallvaluesoffractionaluncertaintiesofdifferentvariablesinEq.1,youareleftwithonetermthatisthelargest.Sinceitisafractionalterm,thenominatorandthedenominatorofthefractionplaydifferentrolesinthevalueofthefraction.Playnowwiththesimulation.UsetheDoubleSlittabandhavethedistancetothescreenconstant.Changethedistancebetweentwoslits.

PL9:Inwhatscenarioistheuncertaintyofthewavelengthsmaller?

ReadThis:Justlikevisiblelight,x-rayscanbepolarized.ProfessorsKrawczynskiandBeilickearecollaboratorsinX-Caliber,anexperimentlookingatthepolarizationofx-raysemittedfromvariousexoticsources.Checkoutthelabwebsiteforlinkstodetails.

EndofPre-Lab

Current

Research

Page 5: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

5

PartI:TheDigitalRevolution

TheStory

YouarehomeforSpringBreakandyourtechnologically-challengedgrandparentsaretryingtoputoneofthosenew-fangledDVDsintotheiroldCDplayer.AfteryouintroducethemtotheDVDplayer,theyaskyouwhythehecktherehavetobesomanytypesofdiscsoutthere?!Whatistheadvantageofoneoveranother?YourgrandparentsmaynotknowaboutTwitterandiPods,buttheydoremembertheircollegephysics.YoudecidetobegintheirenlightenmentonthemyriadofadvantagesBlu-rayandDVDdiscshaveoverCDsbyexaminingtheamountofdataeachdisccanhold.Fortuitouslylyingaroundtheirhouseistheequipmenttobuildaninterferenceexperiment(theyreallyenjoyedcollegephysicslabs!).

Equipment

• Laserapparatuswithtwotestleads• Powersupply• Screen(rulermountedonringstand)• Slideofdoubleslitsinholder

• CD(labelremoved,cleardisc)• DVD(labelremoved,purplishtint)• Transparentvinylrecord• MeasuringTape

TheBasics

Thefirstthingyoudoisexplainthebasicsaboutcompactdiscs(CDs),digitalversatilediscs(alsocalleddigitalvideodiscs,orDVDs),andBlu-raydiscs.Allthreediscsaremadethroughsimilarprocesses.Thediscsaremadeofpolycarbonate(atypeofplastic),whicharethencoatedinaluminumandasmoothlayerofacrylic,andfinallycoveredbyalabel.Dataareetchedontothebottomsurfaceofthepolycarbonatebyalaserthatcreatesaseriesofbumpsofequalheight,butvaryinglength(Figure1).ThelaserinyourhomeCD/DVD/Blu-rayplayerreflectsoffthebumpsonthediscasitspinsandtheelectronicsinyourCD/DVD/Blu-rayplayerthenreadthisreflectedlightandtranslateitintoamovieorasong.Thedetailsofexactlyhowthishappensarecomplicatedandwellbeyondthescopeofyourexplanation.Fromthetopofthedisc(thelabelside),thesebumpsappeartobepits,whichiswhatpeoplecommonlycallthem.ForaCD,thepitsare500nmwide,125nmhigh,andaminimumof830nmlong.ThepitsonaDVDare320nmwide,120nmhigh,andaminimumof400nmlong.ThepitsonBlu-raydiscsareevensmaller.DVDsandBlu-raydiscscanhaveasecondpolycarbonatelayerthatalsostoresdata;thisishowdual-layerDVDsandBlu-raysarecreated.

Figure1:LayersofaDVD(drawingisnottoscale)

Page 6: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

6

Thepitsarelaidoutonthediscinaspiralpatternthatstartsatthecenterofthediscandcurvesoutwardtowardtheedge.Thespiralisetchedastightlyaspossible,andthedistancebetweenadjacentrings,knownasthe“trackpitch”(seeFigure2),dependsuponanumberofvariablesandisdifferentforeachtypeofdisc.

AninterestingbutnotterriblygermanepointinthisdiscussionofpitsanddiscsisthatscientistsatNorthwesternUniversityrecentlyusedthepitpatternsfromBlu-raymoviestoimprintsolarcells.Itturnsoutthatthepitshelpsolarcellsabsorbandstoremorelight,justlikepitshelpdiscsstoredata.Asithappens,anymoviewilldo,soMutantZombiePiranhasfromOuterSpacein3DworksjustaswellasCitizenKane.Formoreinformation,checkouttheIn-LabLinks.

TheadjacentringsinthetightspiralcanfunctionliketheslitsinYoung’sexperiment.Anyarrangementwithaverylargenumberofslitsisreferredtoasadiffractiongrating.Adiffractiongratingcanseparatewhitelightintoindividualwavelengths.Thisiswhydiffractiongratings,CDs,DVDs,andBlu-raydiscsallappeartohavearainbowofcolorontheirsurface.Withthisknowledgeinhand,youarereadytoprovetoyourgrandparentsthattheycanditchallthosebulkyCDsandputBarryManilow’sentirerepertoireononeconvenientdisc.

1.PreliminaryMeasurements-DeterminingtheWavelengthofaLaser

Yourealizethatwhileyourgrandparentsconvenientlyhavealasersetuponthediningroomtable,theydon’tknowitswavelength.“Butthelaserisred!”yourgrandparentsprotest,eagertogettothedatastorageexperimentalpunchline.Youpolitelyremindthemthat“red”isnotawavelength;“red”lightincludestherangeofwavelengthsfromabout620–700nm.YourealizethatbeforeyoucanlearnanythingaboutthetrackpitchofaCDorDVD,youwillneedtofindthewavelengthusingaslitofknownspacing.Beingsafetyconscious,youissuethefollowingwarningtoanyonewithineyeshotofalaser.

NWarning:Thelow-powerlaserbeamusedintheseexperimentswillnotcausepermanentdamagetoyourretina,butitcanproduceannoyingafter-imagesthatmaypersistforseveralminutesorlonger.DONOTallowthebeamtoshine(eitherdirectlyorbybouncingoffashinysurface)intoanyone’seyes.

Figure2:DataareetchedbyalaserinaspiralpatternontheCD,DVD,orBlu-raydisc.Thespacingbetweenadjacentringsinthespiralcorrespondstotheslitseparation(𝒅)inFigure5inAppendixB.Thisspacing,calledthetrackpitch,isaconstantforeachdisctype(drawingisnottoscale).

STOP

Page 7: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

7

DoThis:RemovetheCDandDVDfromthelaserapparatus.Youwon’tuseeitherofthemuntilSection2,buttheywilldisruptthefirstexperimentifyouleavethemon.(Figure3)

DoThis:Here’showtooperatethelaser.First,makesurethatthelaserisNOTconnectedtothepowersupply.Thenturnonthepowersupply.Setthevoltageto3.0V.Thelasercanbedamagedbygreatervoltages.Thelasercanalsobedamagedifyouconnectittothepowersupplybackwards.Keepingthatinmind,connectthelasertothepowersupplysuchthattheredterminalofthelaserisconnectedtotheredterminalofthepowersupply.Thatleavestheblackterminalofthelasertobeconnectedtotheblack(blue)terminalofthepowersupply.AlertyourLAIifthelaserdoesn’twork.

Checkpoint1.1:Takealookattheslide.Itcontainsfourdoubleslitconfigurationsofdifferentseparations.RefertoAppendixAforthedimensionsoftheconfigurations.Someoftheactuallabelsontheslidemighthavefallenorplacedinthewrongspotfromtheprevioususers.Whichconfigurationwillbemostusefultofindthewavelengthofthelaser?Recallthesimulationyouusedinthepre-lab.

DoThis:UsetheslitconfigurationyoudecidedoninCheckpoint1.1toproduceaninterferencepattern.YoucanreadmoreaboutitinAppendixB.Useanotebookoralooseleafpapertoseethepatern.Placethenotebookclosetotheslide.Whatdoyousee?Startslidingthenotebookawayfromtheslideandobservewhathappenstotheinterferencepattern.Atwhatpositiondoyouseethepatternmostclearly,closetotheslideorfarfromit?Usetherulermountedonastandorthepapermeasuringtape(youcantapeitonthewall)tomakethenecessarymeasurements.Pleasedonotmakeanymarksontheruleroronthewall.

Checkpoint1.2:Recordthedistancebetweentheslideandthescreen(𝐷)andthelocation(𝑦)ofthefirstordermaximum(𝑛 = 1).AdiagramoftheexperimentalsetupthathelpsdefinethevariablesisincludedinAppendixB.Thenuseyourmeasurementstocalculatethewavelengthofthelaser.

Checkpoint1.3:Nowrecordthelocation(𝑦)ofthemaximumwiththehighestorder(𝑛)thatyoucanclearlyidentify.(By“clearlyidentify”wemeanyouhaveabsolutelynodoubtaboutthevalueof𝑛towhichthemaximumcorresponds.)Don’tforgettorecordthevaluefor𝑛, aswell.Thenuseyourmeasurementstocalculatethewavelengthofthelaser.

Checkpoint1.4:EstimatetheuncertaintyinthedistancesthatyourecordedinCheckpoint1.2andCheckpoint1.3.Behonestwithyourselfhere!Evenifyouhadaninfinitelypreciseruler,

RemovetheCDandDVD

Figure3:RemovetheCDandtheDVDbeforedoingtheexperiment.

Page 8: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

8

thereisstilluncertaintyassociatedwithidentifyingthecenterofamaximum.Itisnotnearlyaswell-definedassomethingliketheedgeofatable.Sohowconfidentareyoureally?

ReadThis:Knowingtheuncertaintyinthosedistancesisnice,butwhatwe’dreallyliketoknowistheuncertaintyinthewavelengththatyoucalculated.Sincethewavelengthiscalculatedusingthevalues𝑛,𝑑,𝑦,and𝐷,theuncertaintyinthewavelengthwillbeafunctionofthosevaluesandtheiruncertainties.Itcanbeshown(AppendixE)thatforsmallanglesliketheonesyouaredealingwith,theuncertaintyinthewavelength,∆𝜆,isapproximatelygivenby

∆𝜆 = 𝜆 !!!

!+ !!

!

!+ !!

!

!+ !!

!

!

where𝜆isthebestguessvaluethatyouhavecalculated.InthenextfewCheckpointsyouwillsimplifythisequationandthenuseittoassessyourexperimentalwavelengthvalues.

Checkpoint1.5:Whatistheuncertaintyin𝑛?(Keepinmindthephrase“absolutelynodoubt”fromCheckpoint1.3.)RewriteEq.1takingthisintoaccount.

Checkpoint1.6:Theslideisaprecisionpieceoflabequipment,especiallywhencomparedtoameterstick.Theuncertaintyintheslitseparation(∆𝑑)issmallenoughforustoignore.SimplifytheequationyoucameupwithinCheckpoint1.5byignoringanyuncertaintycontributedbytheslide.

Checkpoint1.7:TheequationthatyouwrotedowninCheckpoint1.6isstillunnecessarilycomplicated.Asoftenhappens,oneofthesourcesofuncertainty(thatis,oneofthetermsundertheradical)ismuchlargerthantheotherterms.Discusswhichtermis,byfar,thelargest.Thenignorethesmallertermandsimplifytheexpressionfortheuncertaintyinthewavelength.

Checkpoint1.8:UsingtheequationyoufoundinCheckpoint1.7,writethewavelengththatyoufoundinCheckpoint1.2usingtheform𝜆 ± ∆𝜆.

Checkpoint1.9:UsingtheequationyoufoundinCheckpoint1.7,writethewavelengththatyoufoundinCheckpoint1.3usingtheform𝜆 ± ∆𝜆.

Checkpoint1.10:Discussyourtwovaluesforthewavelengthofthelaser.Addresseachofthefollowing:

a)Whichbestguessvaluedoyoutrustmore?Why?b)Arethetwovaluesconsistentwitheachother?Oristhediscrepancysignificant?c)Arethetwovaluesred?

ReadThis:Thisexerciseinuncertaintyanalysisreallyhighlightstheconceptsofabsoluteuncertaintyvs.fractionaluncertainty.Theabsoluteuncertaintyin𝑦issimply∆𝑦.Mostoftenthe

word“absolute”isleftout.Thefractionaluncertaintyin𝑦isdefinedas∆!!.Sometimesthisis

reportedasapercentage.

Eq.1

Page 9: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

9

ReadThis:Youshouldhavefoundthatthewavelengthyoucalculatedusingthelarger𝑦valuehadasmalleruncertaintythanthewavelengththatyoucalculatedusingthesmaller𝑦value.

Bothofthose𝑦valueshavethesameabsoluteuncertaintysincetheyweredirectlymeasuredinthesameway.However,thelarger𝑦valuehadasmallerfractionaluncertainty.Byreducingthefractionaluncertaintyofalengththatyouusedtocalculate𝜆,youwereabletogetamoreprecisevaluefor𝜆.Inmostcases,ifameasuredvaluehasahighfractionaluncertaintythenanythingyoucalculateusingthatmeasuredvaluewillhavealargefractionaluncertaintyaswell.

Checkpoint1.11:Showthatyouunderstandthedefinitionoffractionaluncertaintybycalculatingthefractionaluncertaintyforthe𝑦valuesyourecordedinCheckpoint1.2andCheckpoint1.3.Thencomparethesevaluestothefractionaluncertaintyinthevalueyourecordedfor𝐷anddiscuss.

SynthesisQuestion1(30Points):Youhavebeendirectedtoperformtwoexperimentstodeterminethewavelengthofthelaser.Sortthroughyournotesandwriteareportabouttheexperimentthatgaveyouthebetterresults.Acompleteresponsewillincludethefollowing:

• Diagramoftheexperimentalsetupthathelpsdefinethevariablesinequationsthatyouuse(Youmayrefertothisdiagraminyourotherresponsesaswell.)

• Anannotatedvisualization(sketch,plot,photo,etc.)oftheinterferencepatternthatshowswhatdistancesyoumeasured

• Calculationsofthewavelengthusingn=1andahigherorderofn• Calculationoftheuncertaintyinthewavelength.StartwithEq.1andshowhowyouuse

it.• Discussionaboutwhatstep(s)youtooktominimizetheuncertaintyinthewavelength

(otherthanrepeatedmeasurements)• Plausibilitystatementregardingyourresults

2.DeterminingTrackPitchoftheCD

Younowhaveallthetoolsinplacetodeterminethetrackpitchofthethreediscsthatyouhavebeengiven.

DoThis:ReplacetheslideofslitswiththeCD(theclearone)anduseitasadiffractiongratingtoproduceaninterferencepatternonthescreen.Notethatdespitehavingmanymoreslits,thediffractiongratingwillproducemaximainthesamelocationaspredictedbyYoung’stwoslitexperiment.SeeAppendixBforanexplanationofwhy.

ReadThis:Pleasebeawarethatscratchesonthediskcanproduceinterferencepatternsthatmightconfuseyou.TobecertainthatyouarelookingataninterferencepatterncreatedbythetrackintheCD,youshouldwatchthepatternasyouslowlyspinthedisk.Youtrackproducesaninterferencepatternthatchangesverylittleasyouspinthedisk.Ifyoufindaresultforthetrack

S1

Page 10: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

10

pitchoftheCDthatisordersofmagnitudeoffofwhatyouexpect,thereisachancethatyouhavebeenlookingatapatternproducedbyascratchratherthanthetrack.

Checkpoint2.1:Measureallimportantdistancesandrecordtheminyournotes.

ReadThis:Recallthatthetrackpitch(ortrack

spacing)ofadiscreferstothespacingbetween

adjacentgroovesonthespiralthatholdsthe

information.PleaseseeFigure2orFigure4for

clarification.

Checkpoint2.2:Useyourdatatocalculatethetrackpitch(𝑑)oftheCD.

Checkpoint2.3:Whichordermaximumdidyouusetocalculatethetrackpitch?Explainwhyyouchoseoneorderoveranother.

Checkpoint2.4:Dosomemathtoshowwhyyoucouldn’tfindan𝑛 = 3maximum.

Checkpoint2.5:SearchonlinetofindaquotedvalueforthetrackpitchofaCD.Pleaserecordyoursourceinadditiontothevalue.

Checkpoint2.6:Figure7inAppendixCshowsaCDimagedbyascanningelectronmicroscope(SEM).UsethefiguretodeterminethetrackpitchofaCD.

SynthesisQuestion2(40Points):SortthroughyournotesandwriteareportshowinghowyoudeterminedthetrackpitchoftheCDandhowyouassessedtheplausibilityofyourresult.Acompleteresponsewillincludethefollowing:

• Anannotatedvisualization(sketch,plot,photo,etc.)oftheinterferencepatternthatshowswhatdistancesyoumeasured

• CalculationofthetrackpitchoftheCD• Mathshowingthatn=3maximumcannotbefound• Quantitativecomparison(%error)betweenyourexperimentalvalueandavaluefound

onlineandadiscussionbasedonthevalueofthe%error.Istheexperimentalvalueacceptable?

• TrackpitchfromFigure7inAppendixC.IncludeanannotatedpictureandanexplanationofhowthefigureisusedtomeasurethetrackpitchoftheCD.

• Quantitativecomparison(%difference)betweenyourexperimentalvalueandavaluefoundusingFigure7inAppendixCandadiscussionbasedonthevalueofthe%difference.

• Plausibilityoftheresult

S2

Figure4:Thespacingbetweenadjacentringsinthespiralcorrespondstotheslitseparation(𝒅)inFigure6inAppendixB.Thisspacing,calledthetrackspacingorthetrackpitch,isaconstantforeachdisctype(drawingisnottoscale).

Page 11: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

11

3.DeterminingTrackPitchofSomethingElse

ForthefinalSynthesisQuestion,youwilldeterminethetrackpitchofthepurplishDVD.

SynthesisQuestion3(30Points):PerformanexperimenttodeterminethetrackpitchthepurplishDVD.Youranswershouldcontainthefollowing:

• Anannotatedvisualization(sketch,plot,photo,etc.)oftheinterferencepatternthatshowswhatdistancesyoumeasured

• CalculationofthetrackpitchoftheDVD• Quantitativecomparison(%difference)betweenyourexperimentalvalueandavalue

youfoundusingFigure8inAppendixC.Includeanannotatedpictureandanexplanationofhowthefigureisusedtomeasurethetrackpitch.Discusswhethertheexperimentalvalueisacceptable.

• ComparisonbetweenthistrackpitchandthetrackpitchoftheCDalongwithaplausibilitystatementregardingthecomparison

• Explainhowtheinterferencepatternwouldchangeifyouusedabluelaserinsteadoftheredlaser

ReadThis:Hopefullyyourexperimentshaveshownthattakingaverycloselookatinterferencepatternscangiveyouverypreciseinformationaboutthegeometryofamaterial.Infact,scientistsusethesamebasicideasthatyouhaveusedinthislabtoanalyzecrystalstructures,examinewelds,andeventrytoimprovetheinternationalstandardforthekilogram!(YoumightwanttotakeasecondlookattheScientificAmericanarticleyoureadaspartofthePre-LabtotheMeasurementlablastsemester.)TheLaboratoryforMaterialsPhysicsResearchatWashUuseselectrondiffraction,x-raydiffraction,andneutrondiffractiontostudythestructureofvarioussubstances.Seethelabwebsiteforlinkstodetails.

TimetoCleanUp!

PleasecleanupyourstationaccordingtotheCleanup!Slideshowfoundonthelabwebsite.

S3

Current

Research

Page 12: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

12

AppendixA:DoubleSlitSlide

Allfourconfigurationsaredoubleslits,buttheseparationbetweenthetwoslitsdiffersforeachpattern.Use the center-to-center slit separation (printedbeloweachpattern, inmm)as thequantity𝑑 in theformulainAppendixB.Eachindividualslitis0.15mmwide.

Ourslitsareveryexotic,importedallthewayfromGermany(GutenTag!).Thismeansthatthenumbersarewritten in the European style, so commas are used in place ofwhat you are used to seeing as adecimalplace.Therefore,thefirstpairofslitshasaseparationof0.25mm,etc.

Figure5:Slidecontainingfourdoubleslitpatterns

Page 13: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

13

AppendixB:InterferenceandDiffraction

Huygens’sPrinciplestatesthatgivenawavefrontatsomeinitialtime,subsequentwavefrontscanbeconstructedatsomelatertimebytreatingeachpointontheinitialwavefrontasthesourceofacircularwavethatspreadsoutwithafixedamplitudeandspeed.Diffractionoccurswhenawavebendsaroundanobstacleitencounters,suchasaslit,andsubsequentlyspreadsoutintoacircularwaveaccordingtoHuygen’sPrinciple.Thiswillcreatepointsofconstructiveanddestructiveinterference,resultinginadiffractionpattern.

Whentherearemultipleslits,eachwavenotonlyconstructivelyanddestructivelyinterfereswithitself,asindiffraction,butalsowiththewavefrontsfromtheotherslits.Theresultingsequenceofbrightanddarkspotsiscalledaninterferencepattern.Thisistrueforalltypesofwaves,includingsound,water,andlightwaves.

ThelocationPofthe𝑛thpointofconstructiveinterferenceisgovernedbythefollowingequation:

𝑑 sin 𝜃 = 𝑛𝜆

ThelocationPofthe𝑛thmaxima,asmeasuredfromthecentralaxisisgivenbythefollowingequation:

𝑦 = 𝐷tan 𝜃

Where:𝑛isanintegerdescribingthemaximaofinterest,locatedonascreenatpointP;𝜃istheanglebetweenthecentralaxis(𝑛 = 0)andP;𝑦 isthedistancebetweenthecentralaxisandP;𝐷isthedistancebetweentheslitandthescreen;𝜆isthewavelengthoflight;and𝑑isthecenter-to-centerdistancebetweentheslits(Figure6).

Figure6:Young’sdoubleslitexperiment

Diffractiongratings,liketheonesusedinthislab,canhavemanyslits,allwiththesameseparation𝑑.YouhavetoaddintheextrawavesatPfromeachoftheseextraslits,takingproperaccountoftheirphaseshifts.Eachnewslitwilladdinawaveshiftedinphasebyδfromtheonebefore.Thismakesforsignificantlymorecomplicatedinteractions.However,theconditionforconstructiveinterferenceofthelightfromalltheslitsisunchanged–theinterferencemaximaremainatthesameanglesasinthecase

Page 14: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

14

oftwoslits.Themaindifferenceisthatthemaximabecomenarrowerandnarrowerasthenumberofslitsincreases.

Page 15: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

15

AppendixC:Close-upsoftheDiscs

ThisappendixcontainstwoimagescreatedusingaScanningElectronMicroscopeorSEM.AlloftheSEMimageswereproducedbyChrisSupranowitzattheUniversityofRochesterandcanbefoundonhiswebsite:http://www.optics.rochester.edu/workgroups/cml/opt307/spr05/chris/

Figure7:SEMimageofaCD.Thelighterfeaturesarepits.Notethescale.

Figure8:SEMimageofaDVD.Thelighterfeaturesarepits.Notethescale.

Page 16: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

16

AppendixD:PolarizationandMalus’Law

ABitofHistory

In1808,physicistEtienne-LouisMaluswasgazingthroughapieceofIcelandicspar,averycleartypeofcalcite crystal, at the sunset reflecting off thewindows of the Luxemburg Palace in Paris. He noticedsomeverystrangethingshappeningwhenherotatedthecrystal,apropertythatwouldeventuallybeunderstoodasdoublerefraction(sometimescalleddoublediffractioninstead).Malus’observationsonthat evening prompted him to explore the phenomenon further, leading to the first scientificexplanation of polarization. For his troubles,Malus received the very nifty honor of being one of 72French scientists, engineers, and mathematicians to have their names inscribed on the Eiffel tower(othernamesyoumightrecognizefromthissemesterareAmpère,Fourier,andCoulomb).

Malus’Law

Atitsmostbasiclevel,Malus’Lawmathematicallydescribeshowpolarizersaffectthelightthatpassesthroughthem.Whenunpolarizedlightpassesthroughapolarizer,onlycomponentsoftheelectricfieldvectorparalleltotheaxisofpolarizationwillgetthrough.Thisistrueforeachpolarizer,whetherthereisone,two,ortwenty.

Let’staketherelativelysimplecaseoftwopolarizers.Ifwewanttoknowhowmuchlightfromthefirstpolarizerwillmake it through the second,we can just look atwhat’s going onwith the electric fieldvectors.AsFigure9shows,onlycomponentsoftheelectricfieldparalleltotheaxisofpolarization(andtherefore parallel to𝐸! – see Figure 9) will be able to pass through the second polarizer. However,rememberthattheelectricfieldthatalreadypassedthroughthefirstpolarizer(𝐸!)andisnowincidenton the second polarizer is composed of two component vectors: one parallel to 𝐸! and oneperpendicularto𝐸!.Thesecomponentsarelabeled𝐸║and𝐸┴ ,respectively,inFigure9.

Figure9:Componentsoftheelectricfieldthatwillpassthroughpolarizersorientedatanangle𝜃withrespecttooneanother.

Page 17: Washington University in St. Louis Physical Optics Lab ...

WashingtonUniversityinSt.Louis PhysicalOpticsLab

IntroductoryPhysicsLab Summer2018

17

Therefore,thefractionoftheelectricfield(𝐸)thatpassesthroughboththefirstandsecondpolarizerisequalto:

𝐸 = 𝐸! cos 𝜃

Sincethe intensityof light isproportionaltothesquareoftheelectricfield,thetotal intensityof lightthat(𝐼)thatpassesthroughboththefirstandsecondpolarizerisequalto:

𝐼 = 𝐸!! cos! 𝜃 = 𝐼! cos! 𝜃

Finally, if we generalize this equation so that the light that passes through the first polarizer and isincidentonthesecondpolarizerhasthesubscript𝑖wehaveMalus’Law:

𝐼 = 𝐼! cos! 𝜃

Inthecaseofmorethantwopolarizers,Malus’Lawcanbeusedforeachsetofpolarizers. Justapplythe law separately to each pair of polarizers! For the case of three polarizers in a row, you wouldtherefore need to apply Malus’ law to the first and middle polarizer together and determine theintensityof light thatemerges from themiddlepolarizer. ThenapplyMalus’ lawagainwith the lightthatemergedfromthemiddlepolarizerastheincidentlightonthethirdpolarizer.