Top Banner
Constitutive Material Modeling - Formulary- HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1
21

 · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

May 25, 2018

Download

Documents

duongmien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

Constitutive Material Mod-eling

- Formulary-

HS 2014

Dr. Falk K. Wittel

Computational Physics of Engineering Materials

Institute for Building Materials

ETH Zürich

1

Page 2:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

1. Preliminaries....................................................................................................31.1. Vektors and tensors................................................................................31.2. Stress tensors.........................................................................................31.3. Strain tensors.........................................................................................51.4. Elasticity.................................................................................................7

2. Failure / Yield surfaces...................................................................................102.1. Invariant spaces...................................................................................102.2. One-parameter models.........................................................................112.3. Two-parameter models.........................................................................132.4. Multiple parameter models...................................................................132.5. Anisotropic failure / yield surface.........................................................15

3. Non-linear elasticity.......................................................................................153.1. CAUCHY-elastic material law................................................................163.2. GREEN-elastic material laws (hyperelastic)..........................................163.3. Hypo-elastic material laws....................................................................183.4. Variable Moduli models........................................................................18

4. Plasticity.........................................................................................................184.1. Approximation of material curves.........................................................18

2

Page 3:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

1.Preliminaries

1.1. Vectors and tensorsEINSTEIN‘s summation convention:

Further notations:

KRONECKER-symbol

LEVI-CIVITÀ-tensor:

1.2. Stress tensors

CAUCHY’s equation:

3

Page 4:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

BOLTZMANN’s axiom:

; VOIGT-notation:

Transformation relation:

Transformation matrix: with

with

Back transformation: Principal axis transformation:

Characteristic equation:

Ii 1.,2.,3. Invari-ants

Invariants:

Principal stresses: , resp. Transformation matrix:

4

Page 5:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

with Eigen vectors:

Principal shear stress:

Hydrostatic stress tensor:

Deviatoric stress tensor:

Decomposition of the stress tensor:

Invariants of the hydrostatic stress tensor:

Invariants of the deviatoric stress tensor:

Equilibrium condition:

5

Page 6:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

1.3. Strain tensors

Displacement point P:

Displacement infinitesimal line element dx:

Displacement gradient:

Decomposition of deformation gradient in symmetric and antisymmetric compo-nent:

Transformation relation:

Principal axis system with principal strains: Directions of maximum shear deformation:

Invariants:

Volumetric strain (dilatation): Decomposition of strain tensors:

Invariants:

6

Page 7:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

Octahedral strains:

Compatibility conditions (6compliance condition):

Push forward operation:

Pull back operation:

Polar decomposition: ; ; V left stretch tensor; U right stretch tensor; R orthonormal rotation tensor (R-1=RT)Deformation tensors: Right CAUCHY-GREEN deformation tensor C:

Left CAUCHY-GREEN deformation tensor B:

GREENs deformation tensor E:

EULER-ALMANSI strain tensor e:

7

Page 8:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

HENCKYs deformation tensor :

1.4. Elasticity

Notation: Aelotropic body (21 independent parameters):

Compliance tensor:

Monotropic Body (13 independent parameters): Symmetry with respect to one plane

Orthotropic body (9 independent parameters): Symmetry with respect to two planes

, resp..

8

Page 9:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

Positive definite of DAB: 1.

2.

3.

Symmetry condition DAB=DBA: With engineering constants Ei, Gij, nij follows

with Transversal isotropic body (5 independent parameters): rotation symmetry with respect to one axis

Isotropic body (2 independent parameters): Rotation symmetry with respect to two axes

9

Page 10:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

with

with Typical elasticity laws:

LAMEs constants:

Relation of elastic moduli:Shear

modulusE-modu-

lusCon-

strained modulus

Bulk modu-

lus

Lamé Pa-rameters

Poisson number

10

Page 11:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

Specific strain energy / complementary energy:

2.Failure / Yield surfaces

2.1. Invariant spaces

Principal stress space

Invariant space

-Invariant space

LODE-angle :

11

Page 12:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

Figure: Octahedral plane, deviatoric plane, meridian plane

Mean stress:

p,q,r Invariant space:

Invariant space:

2.2. One-parameter modelsRANKINE criterion (tension cutoff):

TRESCA criterion:

12

Page 13:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

Von MISES criterion:

HOSFORD criterion:

n=1: TRESCA; n=2: von MISES

2.3. Two-parameter modelsMOHR-COULOMB criterion: c, cohesion, internal friction angle

13

Page 14:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

MC-criterion in the MOHRs plane.

DRUCKER-PRAGER criterion:

+ if DP encloses the MC, -if DP enclosed by MC.

2.4. Multiple parameter modelsBRESLER und PISTER (Parabolic dependence of and ):

a,b,c failure parame-ters.

WILLAM und WARNKE: (3-parameter model) elliptic shape by dependence

A constant.

ARGYRIS et al.: a,b,c failure parame-ters.

14

Page 15:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

OTTOSEN (4-parameter model):

a, b, k1, k2 constants; (cosHSIEH-TING-CHEN criterion (4-parameter model):

a,b,c,d failure parameter.WILLAM-WARNKE criterion (5-parameter model):

15

Page 16:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

2.5. Anisotropic failure / yield surface LOGAN-HOSFORD yield criterion:

F,G,H scaling parameters in principal directions; n exponent e.g. for metal lat-tice (BCC n=6; FCC n=8).

HILLs yield criterion:

Generalized HILLs yield criterion:

CADDEL-RAGHAVA-ATKINS (CRA) yield criterion:

DESHPOANDE-FLECK-ASHBY (DFA) yield criterion:

3.Non-linear elasticityElastic total stress-strain relations:

16

Page 17:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

Incremental stress-strain relations:

3.1. CAUCHY-elastic material law

with or

Non- linear elastic of J2 power law type: , with b, m as material parameters

with

with is most general form.

3.2. GREEN-elastic material laws (hyper elastic)

, resp.. , with

17

Page 18:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

with CAYLEY-HAMILTON theoremNeo-HOOKEian material:

Incompressible:

Compressible:MOONEY-RIVLIN material:

with Polynomic approach for hyper elastic constitutive equations:

Polynomic row development after W(I1,I2):

Compressible: Incompressible:

Dk material constantsPolynomial row development after W(I1,I2,I3):

Stability conditions: Uniqueness:Stresses and strains have to be unique.Stability (DRUCKERs stability postulate):

• Additional external forces result in deformation and hence positive work.

• The resulting work due to loading and unloading by external forces is non-negative.

• Stability in small: 18

Page 19:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

• Cyclic stability: Normality conditon:

• Outward pointing normal at the surface of constant energy is normal

vector N. The proportionality holds Convexity condition:

• Every tangential plane never intersect the surface and is located entirely outside of the surface.

3.3. Hypo-elastic material laws

with tangent stiffness and compliance tensors C/D.

with secant moduli

3.4. Variable Moduli models

4.Plasticity

4.1. Approximation of material curves RAMBERG-OSGOOG: K,n material pa-rameters.

LUDWIK curves:

Exponential curves:

Power law curves:

19

Page 20:  · Web viewConstitutive Material Modeling-Formulary-HS 2014 Dr. Falk K. Wittel Computational Physics of Engineering Materials Institute for Building Materials ETH Zürich 1.Preliminaries3

SARGIN curves:

TO BE CONTINUED

20