Top Banner
Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A
29

Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

Dec 29, 2015

Download

Documents

Candice Tyler
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

Vibrationdata

1

Unit 17

SDOF Response to Applied Force

Revision A

Page 2: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

Vibrationdata

2

Introduction

SDOF systems may be subjected to an applied force Modal testing, impact or steady-state force Wind, fluid, or gas pressure Acoustic pressure field Rotating or reciprocating parts

Rotating imbalance

Shaft misalignment

Bearings

Blade passing frequencies

Electromagnetic force, magnetostriction

Page 3: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataSDOF System, Applied Force

3

m = mass

c = viscous damping coefficient

k = stiffness

x = displacement of the mass

f(t) = applied force

Page 4: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataFree Body Diagram

4

Summation of forces

xmF

)t(fkxxcxm

)t(fkxxcxm

)t(fm

1x

m

kx

m

cx

)t(fm

1xx2x 2

nn

n2)m/c(

2n)m/k(

Solve using Laplace transform.

f(t)

m

kx

x

cx

Page 5: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

Vibrationdata

5

For an arbitrary applied force, the displacement x is

Smallwood-type, ramp invariant, digital recursive filtering relationship

2d -1n

2idd2

d

nnnn3

n

1idn2

d

nndnn3

n

ind2

d

nndn3

n

2in

1idn

i

fTcos2Tsin12TexpT2expT2Tm

1

fTsinTexp122T2exp12TcosTexpT2Tm

1

fTTsin12Texp1TcosTexp2Tm

1

xT2exp

xTcosTexp2

x

T = time step

Page 6: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataSDOF Acceleration

6

2i1ii

d

dn

2in1idni

ff2fTm

TsinTexp

xT2expxTcosTexp2x

For an arbitrary applied force, the displacement isx

Page 7: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataTime Domain Calculation for Applied Force

7

Letfn = 10 HzQ=10mass = 20 lbm

Calculate response to applied force:

F = 4 lbf, f = 10 Hz, 4 sec duration, 400 samples/sec

First: vibrationdata > Generate Signal > Sine Save to Matlab Workspace

Next: vibrationdata > Select Input Data Type > Force > Select Analysis > SDOF Response to Applied Force

Page 8: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataApplied Force Time History

8

Page 9: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataDisplacement

9

Page 10: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataTransmitted Force

10

Special case:

SDOF driven at resonance

Transmitted force = ( Q )( applied force )

Page 11: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

Vibrationdata

Synthesize Time History for Force PSD

11

Similar process to synthesizing a time history for acceleration PSD.But the integrated force time history does not need to have a mean value of zero.

Frequency (Hz)

Force (lbf^2/Hz)

10 0.1

1000 0.1

Duration = 60 sec

Page 12: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

Vibrationdata

12

vibrationdata > Power Spectral Density > Force > Time History Synthesis from White Noisef = 4.26 Hz

Synthesized Time History for Force PSD

Matlab array:force_th

Page 13: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataHistogram of Force Time History

13

Page 14: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataPSD Verification

14

Page 15: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataSDOF Response

15

Letfn = 400 HzQ=10mass = 20 lbm

Calculate response to the previous synthesized force time history.

vibrationdata > Select Input Data Type > Force > Select Analysis > SDOF Response to Applied Force

Page 16: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataDisplacement

16

Matlab array:disp_resp_th

Overall Level = 7.6e-05 in RMS

Page 17: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataVelocity

17

Matlab array:vel_resp_th

Overall Level = 0.19 in/sec RMS

Page 18: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataAcceleration

18

Matlab array:accel_resp_th

Overall Level = 1.3 GRMS

Crest Factor = 4.5

Theoretical Rayleigh Distribution Crest Factor = 4.6

Page 19: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

Vibrationdata

19

Transmitted Force

Matlab array:tf_resp_th

Overall Level = 25.1 lbf RMS

Page 20: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataFrequency Response Function

20

Dimension Displacement/Force Velocity/Force Acceleration/Force

Name Admittance,Compliance,Receptance

Mobility Accelerance,Inertance

Dimension Force/Displacement Force/Velocity Force/Acceleration

Name Dynamic Stiffness Mechanical Impedance Apparent Mass,Dynamic Mass

Page 21: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataFRF Estimators

21

)(G

)(GH

FF

FX1

Cross spectrum between force and response divided by

autospectrum of force

Cross spectrum is complex conjugate of first variable Fourier transform times the second variable Fourier transform.

X*F)(GFX

* Denotes complex conjugate

The response can be acceleration, velocity or displacement.

Page 22: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataFRF Estimators (cont)

22

)(G

)(GH

XF

XX2

Autospectrum of response divided by cross spectrum between

response and force

Coherence Function is used to assess linearity, measurement, noise, leakage error, etc. Coherence is ideally equal to one.

)(G)(G

)(G

FFXX

2FX2

10 2

Page 23: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataFrequency Response Function Exercise

23

Calculate mobility function (velocity/force) using:

vibrationdata > miscellaneous > modal frf

- Two separate Arrays – Ensemble Averaging

Arrays: force_th & vel_resp_th

df = 4.26 Hz & use Hanning Window Important!

Plot H1 Freq & Mag & Phase

Page 24: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataMobility H1 SDOF fn=400 Hz, Q=10

24

Save Magnitude Array:

H1_mobility_mag

Save Complex Array:

H1_mobility _complex

Page 25: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataMobility H2 SDOF fn=400 Hz, Q=10

25

Page 26: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataCoherence from Mobility

26

Coherence = 0.98 at 400 Hz

Page 27: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataEstimate Q from H1 Mobility

27

Half-power Bandwidth Method

-3 dB points are 1/2

for the mobility curve.

421 – 380.1 Hz = 40.9 Hz

Q = 400 Hz / 40.9 Hz

10

H1_mobility_mag

Page 28: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

VibrationdataEstimate Q from H1 Mobility, Curve-fit

28

vibrationdata > Damping Functions > Half-power Bandwidth Curve-fit, Modal FRF

H1_mobility _complex

fn=400 Hz

Q=9.9

Page 29: Vibrationdata 1 Unit 17 SDOF Response to Applied Force Revision A.

Vibrationdata

29

Homework

Repeat the examples in the presentation using the Matlab scripts

Read:

• T. Irvine, Machine Mounting for Vibration Attenuation, Rev B, Vibrationdata, 2000

• Bruel & Kjaer Booklets: Mobility MeasurementModal Testing