Top Banner
Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento di Matematica ed Applicazioni University of Milano–Bicocca [email protected] – p. 1
81

Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Dec 14, 2018

Download

Documents

tiet nhan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Elliptic and parabolic equations with singular potentials

Veronica Felli

Dipartimento di Matematica ed Applicazioni

University of Milano–Bicocca

[email protected]

– p. 1

Page 2: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Problem:describe the behavior at the singularity of solutions to equationsassociated to Schrodinger operators with singular homogeneouspotentials (with the same order of homogeneity of the operator)

La := −∆− a(x/|x|)|x|2 , x ∈ R

N , a : SN−1 → R, N > 3

– p. 2

Page 3: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Problem:describe the behavior at the singularity of solutions to equationsassociated to Schrodinger operators with singular homogeneouspotentials (with the same order of homogeneity of the operator)

La := −∆− a(x/|x|)|x|2 , x ∈ R

N , a : SN−1 → R, N > 3

Examples

Dipole-potential : −~2

2m∆+ e

x ·D

|x|3 a(θ) = λθ ·D

– p. 2

Page 4: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Problem:describe the behavior at the singularity of solutions to equationsassociated to Schrodinger operators with singular homogeneouspotentials (with the same order of homogeneity of the operator)

La := −∆− a(x/|x|)|x|2 , x ∈ R

N , a : SN−1 → R, N > 3

Examples

Dipole-potential : −~2

2m∆+ e

x ·D

|x|3 a(θ) = λθ ·D

Quantummany-body :

M∑

j=1

−∆j

2mj+

M∑

j,m=1j<m

λjλm

|xj − xm|2 a(θ) =∑ λjλm

|θj − θm|2

xj ∈ Rd, N =Md, θj = xj/|x|, x = (x1, . . . , xM ) ∈ RN

– p. 2

Page 5: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Problem: describe the asymptotic behavior at the singularity of solutionsto equations associated to Schrodinger operators with singularhomogeneous electromagnetic potentials

LA,a :=

(

−i∇+A(x|x|

)

|x|

)2

−a(x|x|

)

|x|2 , A ∈ C1(SN−1,RN )

– p. 3

Page 6: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Problem: describe the asymptotic behavior at the singularity of solutionsto equations associated to Schrodinger operators with singularhomogeneous electromagnetic potentials

LA,a :=

(

−i∇+A(x|x|

)

|x|

)2

−a(x|x|

)

|x|2 , A ∈ C1(SN−1,RN )

Example: Aharonov-Bohm magnetic potentials associated to thinsolenoids; if the radius of the solenoid tends to zero while theflux through it remains constant, then the particle is subject to aδ-type magnetic field, which is called Aharonov-Bohm field.

A( x|x|

)

|x|= α

(

−x2

|x|2,x1

|x|2

)

, x = (x1, x2) ∈ R2

A(θ1, θ2) = α(−θ2, θ1), (θ1, θ2) ∈ S1,

with α = circulation around the solenoid.

– p. 3

Page 7: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Motivation

• regularity theory for elliptic operators with singularities of Fuchsian type[Mazzeo, Comm. PDE’s(1991)], [Pinchover , Ann. IHP(1994)]

– p. 4

Page 8: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Motivation

• regularity theory for elliptic operators with singularities of Fuchsian type[Mazzeo, Comm. PDE’s(1991)], [Pinchover , Ann. IHP(1994)]

• asymptotics at singular sets is expected to provide informations about the“critical dimension” for existence of solutions to problems with criticalgrowth (Brezis-Nirenberg type results)[Jannelli , J. Diff. Eq.(1999)], [Ferrero-Gazzola , J. Diff. Eq.(2001)]

– p. 4

Page 9: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Motivation

• regularity theory for elliptic operators with singularities of Fuchsian type[Mazzeo, Comm. PDE’s(1991)], [Pinchover , Ann. IHP(1994)]

• asymptotics at singular sets is expected to provide informations about the“critical dimension” for existence of solutions to problems with criticalgrowth (Brezis-Nirenberg type results)[Jannelli , J. Diff. Eq.(1999)], [Ferrero-Gazzola , J. Diff. Eq.(2001)]

• the asymptotic analysis is also a tool for the construction of solutions toSchrodinger equations with singular potentials[F.-Terracini , Comm. PDE’s(2006)][Abdellaoui-F.-Peral , Calc. Var. PDE’s(2009)]

– p. 4

Page 10: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Motivation

• regularity theory for elliptic operators with singularities of Fuchsian type[Mazzeo, Comm. PDE’s(1991)], [Pinchover , Ann. IHP(1994)]

• asymptotics at singular sets is expected to provide informations about the“critical dimension” for existence of solutions to problems with criticalgrowth (Brezis-Nirenberg type results)[Jannelli , J. Diff. Eq.(1999)], [Ferrero-Gazzola , J. Diff. Eq.(2001)]

• the asymptotic analysis is also a tool for the construction of solutions toSchrodinger equations with singular potentials[F.-Terracini , Comm. PDE’s(2006)][Abdellaoui-F.-Peral , Calc. Var. PDE’s(2009)]

• the knowledge of exact asymptotics of solutions at the poles is crucial inthe study of spectral properties (essential self-adjointness)[F.-Marchini-Terracini , J. Funct. Anal.(2007)][F.-Marchini-Terracini , Indiana Univ. Math. J.(2009)]

– p. 4

Page 11: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

References

[F.-Schneider, Adv. Nonl. Studies (2003)] : Holder continuity results fordegenerate elliptic equations with singular weights; include asymptotics of

solutions near the pole for potentials λ|x|2 (a(θ) constant).

– p. 5

Page 12: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

References

[F.-Schneider, Adv. Nonl. Studies (2003)] : Holder continuity results fordegenerate elliptic equations with singular weights; include asymptotics of

solutions near the pole for potentials λ|x|2 (a(θ) constant).

[F.-Marchini-Terracini, Discrete Contin. Dynam. Systems (20 08)]: exactasymptotics of solutions near the pole for anisotropic inverse-square singular

potentialsa(x/|x|)

|x|2 (a(θ) bounded), through separation of variables and

comparison methods.

– p. 5

Page 13: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

References

[F.-Schneider, Adv. Nonl. Studies (2003)] : Holder continuity results fordegenerate elliptic equations with singular weights; include asymptotics of

solutions near the pole for potentials λ|x|2 (a(θ) constant).

[F.-Marchini-Terracini, Discrete Contin. Dynam. Systems (20 08)]: exactasymptotics of solutions near the pole for anisotropic inverse-square singular

potentialsa(x/|x|)

|x|2 (a(θ) bounded), through separation of variables and

comparison methods.

[F.-Ferrero-Terracini, J. Europ. Math. Soc. (2011)] : singular homogeneouselectromagnetic potentials of Aharonov-Bohm type, by an Almgren typemonotonicity formula and blow-up methods.

– p. 5

Page 14: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

References

[F.-Schneider, Adv. Nonl. Studies (2003)] : Holder continuity results fordegenerate elliptic equations with singular weights; include asymptotics of

solutions near the pole for potentials λ|x|2 (a(θ) constant).

[F.-Marchini-Terracini, Discrete Contin. Dynam. Systems (20 08)]: exactasymptotics of solutions near the pole for anisotropic inverse-square singular

potentialsa(x/|x|)

|x|2 (a(θ) bounded), through separation of variables and

comparison methods.

[F.-Ferrero-Terracini, J. Europ. Math. Soc. (2011)] : singular homogeneouselectromagnetic potentials of Aharonov-Bohm type, by an Almgren typemonotonicity formula and blow-up methods.

[F.-Ferrero-Terracini, Preprint 2010] : behavior at collisions of solutions toSchrodinger equations with many-particle and cylindrical potentials by anonlinear Almgren type formula and blow-up.

– p. 5

Page 15: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Outline of the talk

1. Elliptic monotonicity formula

– p. 6

Page 16: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Outline of the talk

1. Elliptic monotonicity formula

2. Asymptotics at singularities (elliptic case)

– p. 6

Page 17: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Outline of the talk

1. Elliptic monotonicity formula

2. Asymptotics at singularities (elliptic case)

3. Parabolic monotonicity formula

– p. 6

Page 18: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Outline of the talk

1. Elliptic monotonicity formula

2. Asymptotics at singularities (elliptic case)

3. Parabolic monotonicity formula

4. Asymptotics at singularities (parabolic case)

– p. 6

Page 19: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

1. Elliptic monotonicity formula

Studying regularity of area-minimizing surfaces of codimension> 1, in 1979 F. Almgren introduced the frequency function

N (r) =r2−N

Br|∇u|2 dx

r1−N∫

∂Bru2

and observed that, if u is harmonic, then N ր in r .

– p. 7

Page 20: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

1. Elliptic monotonicity formula

Studying regularity of area-minimizing surfaces of codimension> 1, in 1979 F. Almgren introduced the frequency function

N (r) =r2−N

Br|∇u|2 dx

r1−N∫

∂Bru2

and observed that, if u is harmonic, then N ր in r .

Proof:

N ′(r) =

2r

[(∫

∂Br

∣∣∂u∂ν

∣∣2dS)(∫

∂Br|u|2dS

)

−(∫

∂Bru∂u∂ν dS

)2]

(∫

∂Br|u|2dS

)2

Schwarz’s>

inequality0

– p. 7

Page 21: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Why frequency?

If N ≡ γ is constant, then N ′(r) = 0, i.e.

(∫

∂Br

∣∣∣∣

∂u

∂ν

∣∣∣∣

2

dS

)

·(∫

∂Br

u2dS

)

−(∫

∂Br

u∂u

∂νdS

)2

= 0

=⇒ u and ∂u∂ν are parallel as vectors in L2(∂Br), i.e. ∃ η(r) s. t.

∂u

∂ν(r, θ) = η(r)u(r, θ), i.e.

d

drlog |u(r, θ)| = η(r).

– p. 8

Page 22: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Why frequency?

If N ≡ γ is constant, then N ′(r) = 0, i.e.

(∫

∂Br

∣∣∣∣

∂u

∂ν

∣∣∣∣

2

dS

)

·(∫

∂Br

u2dS

)

−(∫

∂Br

u∂u

∂νdS

)2

= 0

=⇒ u and ∂u∂ν are parallel as vectors in L2(∂Br), i.e. ∃ η(r) s. t.

∂u

∂ν(r, θ) = η(r)u(r, θ), i.e.

d

drlog |u(r, θ)| = η(r).

After integration we obtain

u(r, θ)= e∫ r

1η(s)dsu(1, θ) = ϕ(r)ψ(θ).

– p. 8

Page 23: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Why frequency? u(r, θ) = ϕ(r)ψ(θ) and ∆u = 0

⇓(ϕ′′(r) + N−1

r ϕ′(r))ψ(θ) + r−2ϕ(r)∆SN−1ψ(θ) = 0.

– p. 9

Page 24: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Why frequency? u(r, θ) = ϕ(r)ψ(θ) and ∆u = 0

⇓(ϕ′′(r) + N−1

r ϕ′(r))ψ(θ) + r−2ϕ(r)∆SN−1ψ(θ) = 0.

ψ is a spherical harmonic ⇒ ∃ k ∈ N s.t. −∆SN−1ψ = k(N − 2 + k)ψ

−ϕ′′(r)− N−1r ϕ(r) + r−2k(N − 2 + k)ϕ(r) = 0.

– p. 9

Page 25: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Why frequency? u(r, θ) = ϕ(r)ψ(θ) and ∆u = 0

⇓(ϕ′′(r) + N−1

r ϕ′(r))ψ(θ) + r−2ϕ(r)∆SN−1ψ(θ) = 0.

ψ is a spherical harmonic ⇒ ∃ k ∈ N s.t. −∆SN−1ψ = k(N − 2 + k)ψ

−ϕ′′(r)− N−1r ϕ(r) + r−2k(N − 2 + k)ϕ(r) = 0.

ϕ(r) = c1rσ+

+ c2rσ−

with σ± = −N−22 ± 1

2 (2k +N − 2)

σ+ = k, σ− = −(N − 2)− k

|x|σ−

ψ( x|x| ) /∈ H1(B1) ; c2 = 0, ϕ(1) = 1 ; c1 = 1

⇓u(r, θ) = rkψ(θ)

From N (r) ≡ γ, we deduce that γ = k.

– p. 9

Page 26: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Applications to elliptic PDE’s

The Almgren monotonicity formula was used in• [Garofalo-Lin, Indiana Univ. Math. J. (1986)] :

generalization to variable coefficient elliptic operators indivergence form (unique continuation)

• [Athanasopoulos-Caffarelli-Salsa, Amer. J. Math. (2008)] :regularity of the free boundary in obstacle problems.

• [Caffarelli-Lin, J. AMS (2008)] regularity of free boundary of thelimit components of singularly perturbed elliptic systems.

– p. 10

Page 27: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbed monotonicity

Example (Garofalo-Lin). Let u ∈ H1loc(B1) be a weak solution to

−∆u(x) + V (x)u = 0 in B1,

with V ∈ L∞loc(B1). Define

D(r) = 1rN−2

Br

[∣∣∇u

∣∣2+ V |u|2

]

dx

H(r) = 1rN−1

∂Br

|u|2 dS

Almgren type function

N (r) =D(r)

H(r)

– p. 11

Page 28: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbed monotonicity

Example (Garofalo-Lin). Let u ∈ H1loc(B1) be a weak solution to

−∆u(x) + V (x)u = 0 in B1,

with V ∈ L∞loc(B1). Define

D(r) = 1rN−2

Br

[∣∣∇u

∣∣2+ V |u|2

]

dx

H(r) = 1rN−1

∂Br

|u|2 dS

Almgren type function

N (r) =D(r)

H(r)

N ′(r) =

2r

[(∫

∂Br

∣∣∂u∂ν

∣∣2dS)(∫

∂Br|u|2dS

)

−(∫

∂Bru∂u

∂ν dS)2]

(∫

∂Br|u|2dS

)2 +R(r)

6

0– p. 11

Page 29: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbed monotonicity

R(r) = −2[ ∫

BrV u (x · ∇u) dx+ N−2

2

BrV u2 dx− r

2

∂BrV u2 dS

]

∂Br|u|2dS

– p. 12

Page 30: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbed monotonicity

R(r) = −2[ ∫

BrV u (x · ∇u) dx+ N−2

2

BrV u2 dx− r

2

∂BrV u2 dS

]

∂Br|u|2dS

|R(r)| 6 C1 r(N (r) + C2)

– p. 12

Page 31: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbed monotonicity

R(r) = −2[ ∫

BrV u (x · ∇u) dx+ N−2

2

BrV u2 dx− r

2

∂BrV u2 dS

]

∂Br|u|2dS

|R(r)| 6 C1 r(N (r) + C2)

N ′(r) > −C1r(N (r) + C2) i.e.d

drlog(N (r) + C2) > −C1r

– p. 12

Page 32: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbed monotonicity

R(r) = −2[ ∫

BrV u (x · ∇u) dx+ N−2

2

BrV u2 dx− r

2

∂BrV u2 dS

]

∂Br|u|2dS

|R(r)| 6 C1 r(N (r) + C2)

N ′(r) > −C1r(N (r) + C2) i.e.d

drlog(N (r) + C2) > −C1r

integrate between r and r N (r) + C2 6 (N (r) + C2)eC1

2r2 6 const

In particular, N is bounded.

– p. 12

Page 33: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbed monotonicity

H(r) =1

rN−1

∂Br

|u|2 dS =⇒ H ′(r) =2

rN−1

∂Br

u∂u

∂νdS

– p. 13

Page 34: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbed monotonicity

H(r) =1

rN−1

∂Br

|u|2 dS =⇒ H ′(r) =2

rN−1

∂Br

u∂u

∂νdS

Test −∆u(x) + V (x)u = 0 with u =⇒∫

Br

[∣∣∇u

∣∣2 + V |u|2

]

dx =

∂Br

u∂u

∂νdS

– p. 13

Page 35: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbed monotonicity

H(r) =1

rN−1

∂Br

|u|2 dS =⇒ H ′(r) =2

rN−1

∂Br

u∂u

∂νdS

Test −∆u(x) + V (x)u = 0 with u =⇒

rN−2D(r) =

Br

[∣∣∇u

∣∣2+V |u|2

]

dx =

∂Br

u∂u

∂νdS =

rN−1

2H ′(r)

– p. 13

Page 36: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbed monotonicity

H(r) =1

rN−1

∂Br

|u|2 dS =⇒ H ′(r) =2

rN−1

∂Br

u∂u

∂νdS

Test −∆u(x) + V (x)u = 0 with u =⇒

rN−2D(r) =

Br

[∣∣∇u

∣∣2+V |u|2

]

dx =

∂Br

u∂u

∂νdS =

rN−1

2H ′(r)

Hence H′(r)H(r) = 2

rN (r) 6 constr , i.e. d

dr logH(r) 6 Cr .

Integrating between R and 2R

logH(2R)

H(R)6 C log 2 i.e.

∂B2R

u2 dS 6 const

∂BR

u2 dS

– p. 13

Page 37: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Doubling and unique continuation

Doubling condition

B2R

u2 dx 6 Cdoub

BR

u2 dx

with Cdoub independent of R

– p. 14

Page 38: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Doubling and unique continuation

Doubling condition

B2R

u2 dx 6 Cdoub

BR

u2 dx

with Cdoub independent of R

Strong unique continuation property

If u vanishes of infinite order at 0, i.e.∫

BR

u2 dx = O(Rm) as R→ 0 ∀m ∈ N,

then u ≡ 0 in B1.

– p. 14

Page 39: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Doubling and unique continuation

Proof. Let m0 s.t.Cdoub

2m0

< 1.

Hence∫

B1

u2dx 6 Cdoub

B1/2

u2dx 6 · · · 6

6 Cndoub

B2−n

u2dx 6n large

CndoubC(m0)(2−n)m0

= C(m0)(Cdoub

2m0

)n n→∞−→ 0

Hence∫

B1u2dx = 0, i.e. u ≡ 0 in B1.

– p. 15

Page 40: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

2. Asymptotics at singularities (elliptic case)

describe the behavior at the singularity of solutions to equations associated toSchrodinger operators with singular homogeneous potentials (with the sameorder of homogeneity of the operator)

La := −∆− a(x/|x|)|x|2 , x ∈ R

N , a : SN−1 → R, N > 3

– p. 16

Page 41: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Hardy type inequalities

Λ(a) := supu∈D1,2\0

RN

|x|−2a(x/|x|)u2(x) dx∫

RN

|∇u(x)|2 dx

• Classical Hardy’s inequality: Λ(1) =(

2N−2

)2.

• If a ∈ L∞(SN−1), classical Hardy’s inequality ⇒ Λ(a) < +∞.

• For many body potentials a(x/|x|)|x|2 =

∑Mj<m

λjλm

|xj−xm|2 ,

Maz’ja and Badiale-Tarantello inequalities ⇒ Λ(a) < +∞.

– p. 17

Page 42: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Hardy type inequalities

Λ(a) := supu∈D1,2\0

RN

|x|−2a(x/|x|)u2(x) dx∫

RN

|∇u(x)|2 dx

• Classical Hardy’s inequality: Λ(1) =(

2N−2

)2.

• If a ∈ L∞(SN−1), classical Hardy’s inequality ⇒ Λ(a) < +∞.

• For many body potentials a(x/|x|)|x|2 =

∑Mj<m

λjλm

|xj−xm|2 ,

Maz’ja and Badiale-Tarantello inequalities ⇒ Λ(a) < +∞.

The quadratic form associated to

La = −∆− a(x/|x|)|x|2 is positive definite in D1,2 ⇐⇒ Λ(a) < 1

– p. 17

Page 43: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbations of La

linear /semilinear perturbations of La: Lau = h(x)u(x) + f(x,u(x))

– p. 18

Page 44: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbations of La

linear /semilinear perturbations of La: Lau = h(x)u(x) + f(x,u(x))

(H) h “negligible” with respect toa(x/|x|)

|x|2 at singularity:

limr→0+

η0(r) = 0,η0(r)

r∈ L1,

1

r

∫ r

0

η0(s)

sds ∈ L1,

η1(r)

r∈ L1,

1

r

∫ r

0

η1(s)

sds ∈ L1,

where η0(r) = supu∈H1(Br)

u 6≡0

Br|h(x)|u2dx

Br(|∇u|2 −

a(x/|x|)

|x|2u2)dx+ N−2

2r

∂Bru2dS

,

η1(r) = supu∈H1(Br)

u 6≡0

Br|∇h · x|u2dx

Br(|∇u|2 −

a(x/|x|)

|x|2u2)dx+ N−2

2r

∂Bru2dS

– p. 18

Page 45: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbations of La

linear /semilinear perturbations of La: Lau = h(x)u(x) + f(x,u(x))

(H) h “negligible” with respect toa(x/|x|)

|x|2 at singularity:

limr→0+

η0(r) = 0,η0(r)

r∈ L1,

1

r

∫ r

0

η0(s)

sds ∈ L1,

η1(r)

r∈ L1,

1

r

∫ r

0

η1(s)

sds ∈ L1,

Examples: • h, (x · ∇h) ∈ Ls for some s > N/2

• a ∈ L∞(SN−1) ; h(x) = O(|x|−2+ε)

•a(x/|x|)

|x|2=

j,m

λjλm

|xj − xm|2; |h(x)|+ |∇h · x| = O

(

|xj − xm|−2+ε)

– p. 18

Page 46: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Perturbations of La

linear /semilinear perturbations of La: Lau = h(x)u(x) + f(x,u(x))

(H) h “negligible” with respect toa(x/|x|)

|x|2 at singularity:

limr→0+

η0(r) = 0,η0(r)

r∈ L1,

1

r

∫ r

0

η0(s)

sds ∈ L1,

η1(r)

r∈ L1,

1

r

∫ r

0

η1(s)

sds ∈ L1,

Examples: • h, (x · ∇h) ∈ Ls for some s > N/2

• a ∈ L∞(SN−1) ; h(x) = O(|x|−2+ε)

•a(x/|x|)

|x|2=

j,m

λjλm

|xj − xm|2; |h(x)|+ |∇h · x| = O

(

|xj − xm|−2+ε)

(F) f at most critical: |f(x, s)s|+ |f ′s(x, s)s2|+ |∇xF (x, s) · x|6Cf (|s|

2 + |s|2∗

)

where F (x, s) =∫ s0 f(x, t) dt, 2∗ = 2N

N−2.

– p. 18

Page 47: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

The angular operatorWe aim to describe the rate and the shape ofthe singularity of solutions, by relating them to theeigenvalues and the eigenfunctions of a

Schrodinger operator on SN−1 corresponding to the angular part of La:

La := −∆SN−1 − a

– p. 19

Page 48: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

The angular operatorWe aim to describe the rate and the shape ofthe singularity of solutions, by relating them to theeigenvalues and the eigenfunctions of a

Schrodinger operator on SN−1 corresponding to the angular part of La:

La := −∆SN−1 − a

If Λ(a) < 1, La admits a diverging sequence of real eigenvalues

µ1(a) < µ2(a) 6 · · · 6 µk(a) 6 · · ·

– p. 19

Page 49: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

The angular operatorWe aim to describe the rate and the shape ofthe singularity of solutions, by relating them to theeigenvalues and the eigenfunctions of a

Schrodinger operator on SN−1 corresponding to the angular part of La:

La := −∆SN−1 − a

If Λ(a) < 1, La admits a diverging sequence of real eigenvalues

µ1(a) < µ2(a) 6 · · · 6 µk(a) 6 · · ·

Positivity of the quadratic formassociated to La

Λ(a) < 1

⇐⇒ µ1(a) > −(N−22

)2(PD)

– p. 19

Page 50: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

The Almgren type frequency function

In an open bounded Ω ∋ 0, let u be a H1(Ω)-weak solution to

Lau = h(x)u(x) + f(x, u(x))

For small r > 0 define

D(r) =1

rN−2

Br

(

|∇u(x)|2 −a( x

|x| )

|x|2 u2(x)− h(x)u2(x)− f(x, u(x))u(x)

)

dx,

H(r) =1

rN−1

∂Br

|u|2 dS.

– p. 20

Page 51: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

The Almgren type frequency function

In an open bounded Ω ∋ 0, let u be a H1(Ω)-weak solution to

Lau = h(x)u(x) + f(x, u(x))

For small r > 0 define

D(r) =1

rN−2

Br

(

|∇u(x)|2 −a( x

|x| )

|x|2 u2(x)− h(x)u2(x)− f(x, u(x))u(x)

)

dx,

H(r) =1

rN−1

∂Br

|u|2 dS.

If (PD) holds and u 6≡ 0,⇒ H(r) > 0 for small r > 0

;

Almgren type frequency function

N (r) = Nu,h,f (r) =D(r)

H(r)

is well defined in a suitably small interval (0, r0).

– p. 20

Page 52: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

“Perturbed monotonicity” N ′ is an integrable perturbation of anonnegative function: enough to provethe existence of limr→0+ N (r)

– p. 21

Page 53: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

“Perturbed monotonicity” N ′ is an integrable perturbation of anonnegative function: enough to provethe existence of limr→0+ N (r)

N ∈W 1,1loc (0, r0) and, in a distributional sense and for a.e. r ∈ (0, r0),

N ′(r) =

2r

[(∫

∂Br

∣∣∂u∂ν

∣∣2dS)(∫

∂Br|u|2dS

)

−(∫

∂Bru∂u

∂ν dS)2]

(∫

∂Br|u|2dS

)2 + (Rh +R1f +R2

f )(r)

Rh(r) = −

Br(2h(x) +∇h(x) · x)|u|2 dx

∂Br|u|2 dS

, R1f (r) =

r∫

∂Br

(

2F (x, u)− f(x, u)u)

dS∫

∂Br|u|2 dS

R2f (r) =

Br

(

(N − 2)f(x, u)u− 2NF (x, u)− 2∇xF (x, u) · x)

dx∫

∂Br|u|2 dS

.

– p. 21

Page 54: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

“Perturbed monotonicity” N ′ is an integrable perturbation of anonnegative function: enough to provethe existence of limr→0+ N (r)

N ∈W 1,1loc (0, r0) and, in a distributional sense and for a.e. r ∈ (0, r0),

N ′(r) =

2r

[(∫

∂Br

∣∣∂u∂ν

∣∣2dS)(∫

∂Br|u|2dS

)

−(∫

∂Bru∂u

∂ν dS)2]

(∫

∂Br|u|2dS

)2 + (Rh +R1f +R2

f )(r)

︸ ︷︷ ︸

Schwarz’s inequality6

0

Rh(r) = −

Br(2h(x) +∇h(x) · x)|u|2 dx

∂Br|u|2 dS

, R1f (r) =

r∫

∂Br

(

2F (x, u)− f(x, u)u)

dS∫

∂Br|u|2 dS

R2f (r) =

Br

(

(N − 2)f(x, u)u− 2NF (x, u)− 2∇xF (x, u) · x)

dx∫

∂Br|u|2 dS

.

– p. 21

Page 55: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

“Perturbed monotonicity” N ′ is an integrable perturbation of anonnegative function: enough to provethe existence of limr→0+ N (r)

N ∈W 1,1loc (0, r0) and, in a distributional sense and for a.e. r ∈ (0, r0),

N ′(r) =

2r

[(∫

∂Br

∣∣∂u∂ν

∣∣2dS)(∫

∂Br|u|2dS

)

−(∫

∂Bru∂u

∂ν dS)2]

(∫

∂Br|u|2dS

)2 + (Rh +R1f +R2

f )(r)

︸ ︷︷ ︸

Schwarz’s inequality6

0

Rh(r) = −

Br(2h(x) +∇h(x) · x)|u|2 dx

∂Br|u|2 dS

, R1f (r) =

r∫

∂Br

(

2F (x, u)− f(x, u)u)

dS∫

∂Br|u|2 dS

R2f (r) =

Br

(

(N − 2)f(x, u)u− 2NF (x, u)− 2∇xF (x, u) · x)

dx∫

∂Br|u|2 dS

.

︸ ︷︷ ︸

integrable

– p. 21

Page 56: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

“Perturbed monotonicity” N ′ is an integrable perturbation of anonnegative function: enough to provethe existence of limr→0+ N (r)

N ∈W 1,1loc (0, r0) and, in a distributional sense and for a.e. r ∈ (0, r0),

N ′(r) =

2r

[(∫

∂Br

∣∣∂u∂ν

∣∣2dS)(∫

∂Br|u|2dS

)

−(∫

∂Bru∂u

∂ν dS)2]

(∫

∂Br|u|2dS

)2 + (Rh +R1f +R2

f )(r)

︸ ︷︷ ︸

Schwarz’s inequality6

0

N ′ = nonnegative function + L1-function on (0, r) =⇒

N (r) = N (r)−∫ r

rN ′(s) ds

admits a limit γ as r → 0+

which is necessarily finite

︸ ︷︷ ︸

integrable

– p. 22

Page 57: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Blow-up: set wλ(x) =u(λx)√

H(λ), so that

∂B1

|wλ|2dS = 1.

wλλ∈(0,λ) is bounded in H1(B1) =⇒ for any λn → 0+, wλnk w inH1(B1) along a subsequence λnk

→ 0+, and∫

∂B1|w|2dS = 1.

– p. 23

Page 58: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Blow-up: set wλ(x) =u(λx)√

H(λ), so that

∂B1

|wλ|2dS = 1.

wλλ∈(0,λ) is bounded in H1(B1) =⇒ for any λn → 0+, wλnk w inH1(B1) along a subsequence λnk

→ 0+, and∫

∂B1|w|2dS = 1.

(Ek) − Lawλnk = λ2nk

h(λnkx)wλnk +

λ2nk√

H(λnk)f(

λnkx,√

H(λnk)wλnk

)

limit

;

weak

(E) Law(x) = 0

(Ek)− (E) tested with wλnk − w ⇒ wλnk → w in H1(B1)

– p. 23

Page 59: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Blow-up: set wλ(x) =u(λx)√

H(λ), so that

∂B1

|wλ|2dS = 1.

wλλ∈(0,λ) is bounded in H1(B1) =⇒ for any λn → 0+, wλnk w inH1(B1) along a subsequence λnk

→ 0+, and∫

∂B1|w|2dS = 1.

(Ek) − Lawλnk = λ2nk

h(λnkx)wλnk +

λ2nk√

H(λnk)f(

λnkx,√

H(λnk)wλnk

)

limit

;

weak

(E) Law(x) = 0

(Ek)− (E) tested with wλnk − w ⇒ wλnk → w in H1(B1)

If Nk(r) the Almgren frequency function associated to (Ek) andNw(r) is the Almgren frequency function associated to (E), then

limk→∞

Nk(r) = Nw(r) for all r ∈ (0, 1).

– p. 23

Page 60: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Blow-up: By scaling Nk(r) = N (λnkr)

⇓Nw(r) = lim

k→∞N (λnk

r)= γ ∀r ∈ (0, 1)

– p. 24

Page 61: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Blow-up: By scaling Nk(r) = N (λnkr)

⇓Nw(r) = lim

k→∞N (λnk

r)= γ ∀r ∈ (0, 1)

Then Nw is constant in (0, 1) and hence N ′w(r) = 0 for any r ∈ (0, 1)

⇓(∫

∂Br

∣∣∣∣

∂w

∂ν

∣∣∣∣

2

dS

)

·(∫

∂Br

|w|2dS)

−(∫

∂Br

w∂w

∂νdS

)2

= 0

Therefore w and ∂w∂ν are parallel as vectors in L2(∂Br), i.e. ∃ a real

valued function η = η(r) such that ∂w∂ν (r, θ) = η(r)w(r, θ) for r ∈ (0, 1).

– p. 24

Page 62: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Blow-up: By scaling Nk(r) = N (λnkr)

⇓Nw(r) = lim

k→∞N (λnk

r)= γ ∀r ∈ (0, 1)

Then Nw is constant in (0, 1) and hence N ′w(r) = 0 for any r ∈ (0, 1)

⇓(∫

∂Br

∣∣∣∣

∂w

∂ν

∣∣∣∣

2

dS

)

·(∫

∂Br

|w|2dS)

−(∫

∂Br

w∂w

∂νdS

)2

= 0

Therefore w and ∂w∂ν are parallel as vectors in L2(∂Br), i.e. ∃ a real

valued function η = η(r) such that ∂w∂ν (r, θ) = η(r)w(r, θ) for r ∈ (0, 1).

After integration we obtain

w(r, θ)= e∫ r1η(s)dsw(1, θ) = ϕ(r)ψ(θ).

– p. 24

Page 63: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Blow-up: w(r, θ) = ϕ(r)ψ(θ)

Rewriting equation (E) Law(x) = 0 in polar coordinates we obtain(−ϕ′′(r)− N−1

r ϕ′(r))ψ(θ) + r−2ϕ(r)Laψ(θ) = 0.

– p. 25

Page 64: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Blow-up: w(r, θ) = ϕ(r)ψ(θ)

Rewriting equation (E) Law(x) = 0 in polar coordinates we obtain(−ϕ′′(r)− N−1

r ϕ′(r))ψ(θ) + r−2ϕ(r)Laψ(θ) = 0.

Then ψ is an eigenfunction of the operator La.Let µk0

(a) be the corresponding eigenvalue =⇒ ϕ(r) solves

−ϕ′′(r)− N−1r ϕ(r) + r−2µk0

(a)ϕ(r) = 0.

– p. 25

Page 65: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Blow-up: w(r, θ) = ϕ(r)ψ(θ)

Rewriting equation (E) Law(x) = 0 in polar coordinates we obtain(−ϕ′′(r)− N−1

r ϕ′(r))ψ(θ) + r−2ϕ(r)Laψ(θ) = 0.

Then ψ is an eigenfunction of the operator La.Let µk0

(a) be the corresponding eigenvalue =⇒ ϕ(r) solves

−ϕ′′(r)− N−1r ϕ(r) + r−2µk0

(a)ϕ(r) = 0.

Then ϕ(r) = rσ+

with σ+ = −N−22 +

√(N−22

)2+ µk0

(a).

w(r, θ) = rσ+

ψ(θ)

From Nw(r) ≡ γ, we deduce that γ = σ+.

– p. 25

Page 66: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Asymptotics at the singularity

Step 1: any λn → 0+ admits a subsequence λnkk∈N s.t.

u(λnkx)

H(λnk)→ |x|γψ

( x

|x|)

strongly in H1(B1)

γ = −N−22 +

√(N−22

)2+ µk0

(a), ψ eigenfunction associated to µk0.

– p. 26

Page 67: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Asymptotics at the singularity

Step 1: any λn → 0+ admits a subsequence λnkk∈N s.t.

u(λnkx)

H(λnk)→ |x|γψ

( x

|x|)

strongly in H1(B1)

γ = −N−22 +

√(N−22

)2+ µk0

(a), ψ eigenfunction associated to µk0.

Step 2: limr→0+H(r)r2γ is finite and > 0 (Step 1 + separation of variables)

– p. 26

Page 68: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Asymptotics at the singularity

Step 1: any λn → 0+ admits a subsequence λnkk∈N s.t.

u(λnkx)

H(λnk)→ |x|γψ

( x

|x|)

strongly in H1(B1)

γ = −N−22 +

√(N−22

)2+ µk0

(a), ψ eigenfunction associated to µk0.

Step 2: limr→0+H(r)r2γ is finite and > 0 (Step 1 + separation of variables)

Step 3: So λ−γnku(λnk

θ) →j0+m−1∑

i=j0

βiψi(θ) in L2(SN−1)

where ψij0+m−1i=j0

is an L2(SN−1)-orthonormal basis for theeigenspace associated to µk0

.

Expanding u(λ θ) =∞∑

k=1

ϕk(λ)ψk(θ), we compute the βi’s.

– p. 26

Page 69: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Asymptotics at the singularity

βi = limk→∞

λ−γnkϕi(λnk )

=

SN−1

[

R−γu(Rθ) +

∫ R

0

h(sθ)u(sθ) + f(

sθ, u(sθ))

2γ +N − 2

(

s1−γ −sγ+N−1

R2γ+N−2

)

ds

]

ψi(θ) dS(θ)

depends neither on the sequence λnn∈N nor on its subsequence λnkk∈N

=⇒ the convergences actually hold as λ → 0+.

– p. 27

Page 70: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Asymptotics at the singularity

βi = limk→∞

λ−γnkϕi(λnk )

=

SN−1

[

R−γu(Rθ) +

∫ R

0

h(sθ)u(sθ) + f(

sθ, u(sθ))

2γ +N − 2

(

s1−γ −sγ+N−1

R2γ+N−2

)

ds

]

ψi(θ) dS(θ)

Theorem [F.-Ferrero-Terracini (2010)]

Let Ω ∋ 0 be a bounded open set in RN , N > 3, (PD), (H), (F) hold. If u 6≡ 0

weakly solves Lau = h(x)u+ f(x, u(x)) in Ω, then ∃ k0 ∈ N, k0 > 1, s. t.

γ = limr→0+ Nu,h,f (r) = −N−22 +

√(N−22

)2+ µk0

(a).

Furthermore, as λ→ 0+,

λ−γu(λx) → |x|γj0+m−1∑

i=j0

βiψi

(x

|x|

)

in H1(B1).

– p. 27

Page 71: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

3. Parabolic monotonicity formula

[Poon, Comm. PDE’s(1996)]

For u solving ut +∆u = 0 in RN × (0, T ), define

D(t) = t

RN

|∇u(x, t)|2G(x, t) dx

H(t) =

RN

u2(x, t)G(x, t) dx

Parabolic Almgren frequency

N (t) =D(t)

H(t)

where

G(x, t) = t−N/2 exp(

− |x|24t

)

is the heat kernel satisfying

Gt −∆G = 0 and ∇G(x, t) = − x

2tG(x, t).

– p. 28

Page 72: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

3. Parabolic monotonicity formula N ր in t

– p. 29

Page 73: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

3. Parabolic monotonicity formula N ր in t

Proof.

N ′(t) =

2t

[( ∫

RN

∣∣ut +

∇u·x2t

∣∣2Gdx

)( ∫

RN u2Gdx

)

−( ∫

RN

(ut +

∇u·x2t

)uGdx

)2]

H2(t)︸ ︷︷ ︸

Schwarz’s inequality

6

0

– p. 29

Page 74: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

3. Parabolic monotonicity formula N ր in t

Proof.

N ′(t) =

2t

[( ∫

RN

∣∣ut +

∇u·x2t

∣∣2Gdx

)( ∫

RN u2Gdx

)

−( ∫

RN

(ut +

∇u·x2t

)uGdx

)2]

H2(t)︸ ︷︷ ︸

Schwarz’s inequality

6

0

Doubling properties and unique continuation:[Escauriaza-Fern andez, Ark. Mat. (2003)]

[Fern andez, Comm. PDEs (2003)]

[Escauriaza-Fern andez-Vessella, Appl. Analysis (2006)]

[Escauriaza-Kenig-Ponce-Vega, Math. Res. Lett. (2006)]

See also [Caffarelli-Karakhanyan-Lin, J. Fixed Point Theory Appl. (2009)]

– p. 29

Page 75: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

4. Asymptotics at singularities (parabolic case)

ut +∆u+a(x/|x|)|x|2 u+ h(x, t)u = 0, in R

N × (0, T )

where T > 0, N > 3, a ∈ L∞(SN−1), and

(H)

|h(x, t)| 6 Ch(1 + |x|−2+ε) for all t ∈ (0, T ), a.e. x ∈ RN

h, ht ∈ Lr((0, T ), LN/2

), r > 1, ht ∈ L∞

loc

((0, T ), LN/2

).

– p. 30

Page 76: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

4. Asymptotics at singularities (parabolic case)

ut +∆u+a(x/|x|)|x|2 u+ h(x, t)u = 0, in R

N × (0, T )

where T > 0, N > 3, a ∈ L∞(SN−1), and

(H)

|h(x, t)| 6 Ch(1 + |x|−2+ε) for all t ∈ (0, T ), a.e. x ∈ RN

h, ht ∈ Lr((0, T ), LN/2

), r > 1, ht ∈ L∞

loc

((0, T ), LN/2

).

Remark: also subcritical semilinear perturbationsf(x, t, s) can be treated

– p. 30

Page 77: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

4. Asymptotics at singularities (parabolic case)

ut +∆u+a(x/|x|)|x|2 u+ h(x, t)u = 0, in R

N × (0, T )

where T > 0, N > 3, a ∈ L∞(SN−1), and

(H)

|h(x, t)| 6 Ch(1 + |x|−2+ε) for all t ∈ (0, T ), a.e. x ∈ RN

h, ht ∈ Lr((0, T ), LN/2

), r > 1, ht ∈ L∞

loc

((0, T ), LN/2

).

Parabolic Almgren type frequency function

N (t) =t∫

RN

(|∇u(x, t)|2 − a(x/|x|)

|x|2 u2(x, t)− h(x, t)u2(x, t))G(x, t) dx

RN u2(x, t)G(x, t) dx

where G(x, t) = t−N/2 exp(− |x|2

4t

)

– p. 30

Page 78: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

“Perturbed monotonicity”

N ′ is an L1-perturbation of a nonnegative function as t→ 0+

⇓∃ limt→0+

N (t) = γ.

– p. 31

Page 79: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

“Perturbed monotonicity”

N ′ is an L1-perturbation of a nonnegative function as t→ 0+

⇓∃ limt→0+

N (t) = γ.

Blow-up for scaling uλ(x, t) = u(λx, λ2t)

;

γ is an eigenvalue ofOrnstein-Uhlenbeck type operator

La = −∆+ x2 · ∇ − a(x/|x|)

|x|2

i.e.

γ = γm,k = m− αk

2 , αk =N−22 −

√(N−22

)2+ µk(a),

for some k,m ∈ N, k > 1.

– p. 31

Page 80: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Asymptotics at the singularity

Theorem [F.-Primo, to appear in DCDS-A]

Let u 6≡ 0 be a weak solution to ut + ∆u + a(x/|x|)|x|2 u + h(x, t)u = 0, with

h satisfying (H) and a ∈ L∞(SN−1

)satisfying (PD). Then ∃ m0, k0 ∈ N,

k0 > 1, such that limt→0+ N (t) = γm0,k0. Furthermore ∀ τ ∈ (0, 1)

limλ→0+

∫ 1

τ

∥∥∥∥λ−2γm0,k0u(λx, λ2t)− tγm0,k0V (x/

√t)

∥∥∥∥

2

Ht

dt = 0,

limλ→0+

supt∈[τ,1]

∥∥∥∥λ−2γm0,k0u(λx, λ2t)− tγm0,k0V (x/

√t)

∥∥∥∥Lt

= 0,

where V is an eigenfunction of La associated to the eigenvalue γm0,k0.

‖u‖Ht =

(∫

RN

(

t|∇u(x)|2+|u(x)|2)

G(x, t) dx

)12

, ‖u‖Lt =

(∫

RN|u(x)|2G(x, t) dx

)12

– p. 32

Page 81: Veronica Felli Dipartimento di Matematica ed Applicazioni ...felli/talks/sem_dottorato_2011.pdf · Elliptic and parabolic equations with singular potentials Veronica Felli Dipartimento

Eigenfunctions of La

A basis of the eigenspace corresponding to γm,k = m− αk

2 is

Vn,j : j, n ∈ N, j > 1, γm,k = n− αj2

,

where

Vn,j(x) = |x|−αjPj,n

( |x|24

)

ψj

( x

|x|)

,

ψj is an eigenfunction of the operator La = −∆SN−1 − a(θ)

associated to the j-th eigenvalue µj(a), and

Pj,n(t) =

n∑

i=0

(−n)i(N2 − αj

)

i

ti

i!,

(s)i =∏i−1j=0(s+ j), (s)0 = 1.

– p. 33