Top Banner
1 multiPlas 5.1 Verification examples – earth pressure © Dynardo GmbH, 2013 © Dynardo GmbH Verification examples Earth pressure 安世亚太 PERA Global
17

Verification examples Earth pressure

Apr 26, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Verification examples Earth pressure

1

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013 © Dynardo GmbH

Verification examples Earth pressure

安世

亚太

PERA Global

Page 2: Verification examples Earth pressure

2

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – model

• load steps 1 – 3: excavation is filled with three layers of sand (EKILL and EALIVE) earth pressure at rest

• load step 4: rotation of left boundary around base point active earth pressure

• plane strain conditions (thickness 1 m)

• file: example_01.dat • parameters dimension and

order control type of elements:

dimension order element type

2 1 PLANE182

2 2 PLANE183

3 1 SOLID185

3 2 SOLID186

安世

亚太

PERA Global

Page 3: Verification examples Earth pressure

3

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – material properties of sand

• the following elastic parameters are given • density: ρ=1800 kg/m³ • constrained modulus: Es=40 GPa • coefficient of earth pressure at rest: k0=0.5

• calculation of isotropic material parameters:

• Poisson’s ratio: 𝜈 =𝑘0

1+𝑘0= 0.33

• shear modulus: 𝐺 =1−2𝜈

2(1−𝜈) 𝐸𝑠 = 10 𝐺𝑃𝑎

• Young’s modulus: 𝐸 = 2 1 + 𝜈 𝐺 = 26.7 𝐺𝑃𝑎 • shear parameters of sand:

• friction angle: φ=30° • cohesion: c=0 MPa

• nonlinear behavior of sand can be simulated with multiPlas: • law 1 – Mohr-Coulomb yield surface • law 40 – Drucker-Prager yield surface

安世

亚太

PERA Global

Page 4: Verification examples Earth pressure

4

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 1

• combination of isotropic Mohr-Coulomb yield surface (shear failure) and isotropic Rankine yield surface (tensile failure)

• ideal plastic behavior • associated flow rule • law 1 parameters:

• initial/residual friction angle: 30°/30° • initial/residual cohesion: 1 Pa/1 Pa • dilatancy angle: 30°

• initial/residual tensile strength: 1 Pa/1 Pa • no joint sets

1 2 3 4 5 6 7 8 9 10

1-10 1 30° 1 Pa 15° 30° 1 Pa 1 Pa 1 Pa 0

11-20

21-30

31-40

41-50

51-60 0

61-70 1 1 1E-3 1E-20 10 4 0

71-80

安世

亚太

PERA Global

Page 5: Verification examples Earth pressure

5

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 1 Results – PLANE182 – load steps 1 and 2

vertical displacements [m] load step 1 – installation of 1st sand layer

vertical displacements [m] load step 2 – installation of 2nd sand layer

安世

亚太

PERA Global

Page 6: Verification examples Earth pressure

6

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 1 Results – PLANE182 – load step 3

vertical displacements [m] load step 3 – installation of 3rd sand layer

von Mises plastic strains end of load step 3 – installation of 3rd layer because of consistent elastic properties no

plastic strains at earth pressure at rest

安世

亚太

PERA Global

Page 7: Verification examples Earth pressure

7

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 1 Results – PLANE182 – load step 3

stresses [Pa] on left vertical boundary load step 3 – installation of 3rd sand layer

earth pressure coefficient end of load step 3 – installation of 3rd layer

because of consistent elastic properties the at rest earth pressure coefficient is 0.50

安世

亚太

PERA Global

Page 8: Verification examples Earth pressure

8

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 1 Results – PLANE182 – load step 4

vertical displacements [m] load step 4 – rotation of left boundary around

base point

von Mises plastic strains end of load step 4 – rotation of left boundary

around base point shear failure of sand

安世

亚太

PERA Global

Page 9: Verification examples Earth pressure

9

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 1 Results – PLANE182 – load step 4

plastic elements load step 4 – rotation of left boundary around

base point

plastic activity (last load increment) end of load step 4 – rotation of left boundary

around base point 0 – no activity

1 – Mohr-Coulomb yield surface activity

安世

亚太

PERA Global

Page 10: Verification examples Earth pressure

10

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 1 Results – PLANE182 – load step 4

stresses [Pa] on left vertical boundary load step 4 – rotation of left boundary around

base point

earth pressure coefficient end of load step 4 – rotation of left boundary

around base point active lateral earth pressure coefficient is

0.33 (corresponds to Mohr-Coulomb theory)

安世

亚太

PERA Global

Page 11: Verification examples Earth pressure

11

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 40

• single Drucker-Prager yield surface • ideal plastic behavior • associated flow rule • law 40 parameters (Drucker_Prager cone inscribes Mohr-Coulomb yield surface):

• parameter β: 0.495 • parameter σ: 0 Pa • dilatancy factor: 1.0

1 2 3 4 5 6 7 8 9 10

1-10 40

11-20

21-30

31-40

41-50

51-60 0.495 0 Pa 1.0 0

61-70 1 1 1E-3 1E-20 10 4 0

71-80

安世

亚太

PERA Global

Page 12: Verification examples Earth pressure

12

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 40 Results – PLANE182 – load steps 1 and 2

vertical displacements [m] load step 1 – installation of 1st sand layer

vertical displacements [m] load step 2 – installation of 2nd sand layer

安世

亚太

PERA Global

Page 13: Verification examples Earth pressure

13

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 40 Results – PLANE182 – load step 3

vertical displacements [m] load step 3 – installation of 3rd sand layer

von Mises plastic strains end of load step 3 – installation of 3rd layer because of consistent elastic properties no

plastic strains at earth pressure at rest

安世

亚太

PERA Global

Page 14: Verification examples Earth pressure

14

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 40 Results – PLANE182 – load step 3

stresses [Pa] on left vertical boundary load step 3 – installation of 3rd sand layer

earth pressure coefficient end of load step 3 – installation of 3rd layer

because of consistent elastic properties the at rest earth pressure coefficient is 0.50

安世

亚太

PERA Global

Page 15: Verification examples Earth pressure

15

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 40 Results – PLANE182 – load step 4

vertical displacements [m] load step 4 – rotation of left boundary around

base point

von Mises plastic strains end of load step 4 – rotation of left boundary

around base point shear failure of sand

安世

亚太

PERA Global

Page 16: Verification examples Earth pressure

16

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 40 Results – PLANE182 – load step 4

plastic elements load step 4 – rotation of left boundary around

base point

plastic activity (last load increment) end of load step 4 – rotation of left boundary

around base point 0 – no activity

1 – Mohr-Coulomb yield surface activity

安世

亚太

PERA Global

Page 17: Verification examples Earth pressure

17

multiPlas 5.1

Verification examples – earth pressure

© Dynardo GmbH, 2013

Earth pressure – multiPlas law 40 Results – PLANE182 – load step 4

stresses [Pa] on left vertical boundary load step 4 – rotation of left boundary around

base point

earth pressure coefficient end of load step 4 – rotation of left boundary

around base point active lateral earth pressure coefficient is 0.32 (small deviation from Mohr-Coulomb

theory 0.33)

安世

亚太

PERA Global