Top Banner
Appendix A Vector-valued Holomorphic Functions Let X be a Banach space and let Ω C be an open set. A function f X is holomorphic if f (z 0 ) := lim h0 hC\{0} f (z 0 + h) f (z 0 ) h (A.1) exists for all z 0 Ω. If f is holomorphic, then f is continuous and weakly holomorphic (i.e. x f is holomorphic for all x X ). If Γ := {γ (t): t [a, b]} is a finite, piecewise smooth contour in Ω, we can form the contour integral Γ f (z) dz. This coincides with the Bochner integral b a f (γ (t))γ (t) dt (see Section 1.1). Similarly we can define integrals over infinite contours when the corresponding Bochner integral is absolutely convergent. Since Γ f (z) dz, x = Γ f (z),x dz, many properties of holomorphic functions and contour integrals may be extended from the scalar to the vector-valued case, by applying the Hahn-Banach theorem. For example, Cauchy’s theorem is valid, and also Cauchy’s integral formula: f (w)= 1 2πi |zz0|=r f (z) z w dz (A.2) whenever f is holomorphic in Ω, the closed ball B(z 0 ,r) is contained in Ω and w B(z 0 ,r). As in the scalar case one deduces Taylor’s theorem from this. Proposition A.1. Let f X be holomorphic, where Ω C is open. Let z 0 Ω,r> 0 such that B(z 0 ,r) Ω. Then W. Arendt et al., Vector-valued Laplace Transforms and Cauchy Problems: Second Edition, 461 Monographs in Mathematics 96, DOI 10.1007/978-3-0348-0087-7, © Springer Basel AG 2011
74

Vector-valued Holomorphic Functions

Feb 23, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Vector-valued Holomorphic Functions

Appendix A

Vector-valued HolomorphicFunctions

Let X be a Banach space and let Ω ⊂ C be an open set. A function f : Ω→ X isholomorphic if

f ′(z0) := limh→0

h∈C\{0}

f(z0 + h)− f(z0)

h(A.1)

exists for all z0 ∈ Ω.If f is holomorphic, then f is continuous and weakly holomorphic (i.e. x∗ ◦ f

is holomorphic for all x∗ ∈ X∗). If Γ := {γ(t) : t ∈ [a, b]} is a finite, piecewisesmooth contour in Ω, we can form the contour integral

∫Γf(z) dz. This coincides

with the Bochner integral∫ b

af(γ(t))γ′(t) dt (see Section 1.1). Similarly we can

define integrals over infinite contours when the corresponding Bochner integral isabsolutely convergent. Since⟨∫

Γ

f(z) dz, x∗⟩=

∫Γ

〈f(z), x∗〉 dz,

many properties of holomorphic functions and contour integrals may be extendedfrom the scalar to the vector-valued case, by applying the Hahn-Banach theorem.For example, Cauchy’s theorem is valid, and also Cauchy’s integral formula:

f(w) =1

2πi

∫|z−z0|=r

f(z)

z − wdz (A.2)

whenever f is holomorphic in Ω, the closed ball B(z0, r) is contained in Ω andw ∈ B(z0, r). As in the scalar case one deduces Taylor’s theorem from this.

Proposition A.1. Let f : Ω → X be holomorphic, where Ω ⊂ C is open. Letz0 ∈ Ω, r > 0 such that B(z0, r) ⊂ Ω. Then

W. Arendt et al., Vector-valued Laplace Transforms and Cauchy Problems: Second Edition, 461Monographs in Mathematics 96, DOI 10.1007/978-3-0348-0087-7, © Springer Basel AG 2011

Page 2: Vector-valued Holomorphic Functions

462 A. VECTOR-VALUED HOLOMORPHIC FUNCTIONS

f(z) =∞∑

n=0

an(z − z0)n

converges absolutely for |z − z0| < r, where

an :=1

2πi

∫|z−z0|=r

f(z)

(z − z0)n+1dz.

We also mention a special form of the identity theorem.

Proposition A.2 (Identity theorem for holomorphic functions). Let Y be a closedsubspace of a Banach space X. Let Ω be a connected open set in C and f : Ω→ Xbe holomorphic. Assume that there exists a convergent sequence (zn)n∈N ⊂ Ω suchthat limn→∞ zn ∈ Ω and f(zn) ∈ Y for all n ∈ N. Then f(z) ∈ Y for all z ∈ Ω.

Note that for Y = {0}, we obtain the usual form of the identity theorem.

Proof. Let x∗ ∈ Y 0 := {y∗ ∈ X∗ : 〈y, y∗〉 = 0 (y ∈ Y )}. Then x∗ ◦f(zn) = 0 for alln ∈ N. It follows from the scalar identity theorem that x∗ ◦ f(z) = 0 for all z ∈ Ω.Hence, f(z) ∈ Y 00 = Y for all z ∈ Ω.

In the following we show that every weakly holomorphic function is holomor-phic. Actually, we will prove a slightly more general assertion which turns out tobe useful. A subset N of X∗ is called norming if

‖x‖1 := supx∗∈N

|〈x, x∗〉|

defines an equivalent norm on X. A function f : Ω → X is called locally boundedif supK ‖f(z)‖ <∞ for all compact subsets K of Ω.

Proposition A.3. Let Ω ⊂ C be open and let f : Ω → X be locally bounded suchthat x∗ ◦ f is holomorphic for all x∗ ∈ N , where N is a norming subset of X∗.Then f is holomorphic.

In particular, if X = L(Y, Z), where Y, Z are Banach spaces, and if f : Ω→X is locally bounded, then the following are equivalent:

(i) f is holomorphic.

(ii) f(·)y is holomorphic for all y ∈ Y .

(iii) 〈f(·)y, z∗〉 is holomorphic for all y ∈ Y, z∗ ∈ Z∗.

Proof. We can assume that ‖x‖1 = ‖x‖ for all x ∈ X. In order to show holomorphyat z0 ∈ Ω we can assume that z0 = 0, replacing Ω by Ω− z0 otherwise. For smallh, k ∈ C\{0}, let

u(h, k) :=f(h)− f(0)

h− f(k)− f(0)

k.

Page 3: Vector-valued Holomorphic Functions

463

We have to show that for ε > 0 there exists δ > 0 such that ‖u(h, k) ‖ ≤ εwhenever |h| ≤ δ and |k| ≤ δ. Let r > 0 such that B(0, 2r) ⊂ Ω and

M := supz∈B(0,2r)

‖ f(z) ‖ <∞.

Then by Cauchy’s integral formula, for |z| < r, |h| ≤ r, |k| ≤ r, h, k �= 0, x∗ ∈ N ,

〈u(h, k), x∗〉 =1

2πi

∫|z|=2r

〈f(z), x∗〉{1

h

(1

z − h− 1

z

)− 1

k

(1

z − k− 1

z

)}dz

=h− k

2πi

∫|z|=2r

〈f(z), x∗〉z(z − h)(z − k)

dz.

Hence, |〈u(h, k), x∗〉| ≤ |h− k|M/r2. Since N is norming, we deduce that

‖u(h, k) ‖ ≤ |h− k| Mr2

.

This proves the claim.

Corollary A.4. Let Ω ⊂ C be a connected open set and Ω0 ⊂ Ω be open. Leth : Ω0 → X be holomorphic. Assume that there exists a norming subset N ofX∗ such that for all x∗ ∈ N there exists a holomorphic extension Hx∗ : Ω → Cof x∗ ◦ h. If supx∗∈N

z∈Ω|Hx∗(z)| < ∞, then h has a unique holomorphic extension

H : Ω→ X.

Proof. Again we assume that ‖ · ‖1 = ‖ · ‖. Let

Y :={y = (yx∗)x∗∈N ⊂ C : ‖y‖∞ := sup

x∗∈N|yx∗ | <∞

},

and let H : Ω→ Y be given by H(z) := (Hx∗(z))x∗∈N . It follows from PropositionA.3 that H is holomorphic. By x ∈ X �→ (〈x, x∗〉)x∗∈N , one defines an isometricinjection from X into Y . Since H(z) ∈ X for z ∈ Ω0, it follows from the identitytheorem (Proposition A.2) that H(z) ∈ X for all z ∈ Ω.

We will extend Proposition A.3 considerably in Theorem A.7. Before that weprove Vitali’s theorem.

Theorem A.5 (Vitali). Let Ω ⊂ C be open and connected. Let fn : Ω → X beholomorphic (n ∈ N) such that

supn∈N

z∈B(z0,r)

‖fn(z)‖ <∞

whenever B(z0, r) ⊂ Ω. Assume that the set

Ω0 :={z ∈ Ω : lim

n→∞ fn(z) exists}

A. VECTOR-VALUED HOLOMORPHIC FUNCTIONS

Page 4: Vector-valued Holomorphic Functions

464 A. VECTOR-VALUED HOLOMORPHIC FUNCTIONS

has a limit point in Ω. Then there exists a holomorphic function f : Ω→ X suchthat

f (k)(z) = limn→∞ f (k)

n (z)

uniformly on all compact subsets of Ω for all k ∈ N0.

Proof. Let l∞(X) := {x = (xn)n∈N ⊂ X : ‖x‖∞ := sup ‖xn‖ < ∞}. Then l∞(X)is a Banach space for the norm ‖·‖∞ and the space c(X) of all convergent sequencesis a closed subspace of l∞(X). Consider the function F : Ω → l∞(X) given byF (z) = (fn(z))n∈N. It follows from Proposition A.3 that F is holomorphic. (Onemay take N to be the space of all functionals on l∞(X) of the form (xn)n∈N �→〈xk, x

∗〉 where k ∈ N, x∗ ∈ X∗, ‖x∗‖ ≤ 1). Since F (z) ∈ c(X) for all z ∈ Ω0,it follows from the identity theorem (Proposition A.2) that F (z) ∈ c(X) for allz ∈ Ω. Consider the mapping φ ∈ L(c(X), X) given by φ((xn)n∈N) = limn→∞ xn.Then f = limn→∞ fn = φ ◦ F : Ω→ X is holomorphic.

Finally, we prove uniform convergence on compact sets. Let B(z0, r) ⊂ Ω andk ∈ N0. It follows from (A.2) that

1

k!f (k)n (z) =

1

2πi

∫|w−z0|=r

fn(w)

(w − z)k+1dw.

Now the dominated convergence theorem implies that f(k)n (z) converges uniformly

on B(z0, r/2) to f (k)(z). Since every compact subset of Ω can be covered by afinite number of discs, the claim follows.

If in Vitali’s theorem (fn) is a net instead of a sequence, the proof showsthat f(z) = lim fn(z) exists for all z ∈ Ω and defines a holomorphic functionf : Ω→ X.

Next we recall a well known theorem from functional analysis.

Theorem A.6 (Krein-Smulyan). Let X be a Banach space and W be a subspaceof the dual space X∗. Denote by B∗ the closed unit ball of X∗. Then W is weak*closed if and only if W ∩B∗ is weak* closed.

For a proof, see [Meg98, Theorem 2.7.11].

Now we obtain the following convenient criterion for holomorphy.

Theorem A.7. Let Ω ⊂ C be open and connected, and let f : Ω → X be a locallybounded function. Assume that W ⊂ X∗ is a separating subspace such that x∗ ◦ fis holomorphic for all x∗ ∈W . Then f is holomorphic.

Here, W is called separating if 〈x, x∗〉 = 0 for all x∗ ∈ W implies x = 0(x ∈ X).

Proof. Let Y := {x∗ ∈ X∗ : x∗ ◦ f is holomorphic}. Since W ⊂ Y , the subspaceY is weak* dense. It follows from Vitali’s theorem (applied to nets if X is not

Page 5: Vector-valued Holomorphic Functions

465

separable) that Y ∩ B∗ is weak* closed. Now it follows from the Krein-Smulyantheorem that Y = X∗. Hence, f is holomorphic by Proposition A.3.

Notes: Usually, Vitali’s theorem is proved with the help of Montel’s theorem which isonly valid in finite dimensions. A vector-valued version is proved in the book of Hille andPhillips [HP57] by a quite complicated power-series argument going back to Liouville.The very simple proof given here is due to Arendt and Nikolski [AN00] who also provedTheorem A.7 (see also [AN06]).

A. VECTOR-VALUED HOLOMORPHIC FUNCTIONS

Page 6: Vector-valued Holomorphic Functions

Appendix B

Closed Operators

Let X be a complex Banach space. An operator on X is a linear map A : D(A)→X, where D(A) is a linear subspace of X, known as the domain of A. The rangeRanA, and the kernel KerA, of A are defined by:

RanA := {Ax : x ∈ D(A)},KerA := {x ∈ D(A) : Ax = 0}.

The operator A is densely defined if D(A) is dense in X.An operator A is closed if its graph G(A) is closed in X ×X, where

G(A) := {(x,Ax) : x ∈ D(A)}.Thus, A is closed if and only if

Whenever (xn) is a sequence in D(A), x, y ∈ X,‖xn − x‖ → 0 and ‖Axn − y‖ → 0, then x ∈ D(A) and Ax = y.

It is immediate from this that if A is closed and α, β ∈ C with α �= 0, then theoperator αA+ β with D(αA+ β) = D(A) is closed.

An operator A is said to be closable if there is an operator A (known as theclosure of A) such that G(A) is the closure of G(A) in X ×X. Thus A is closableif and only if

Whenever (xn) is a sequence in D(A), y ∈ X,‖xn‖ → 0 and ‖Axn − y‖ → 0, then y = 0.

When A is closable,

D(A) =

{x ∈ X : there exist xn ∈ D(A) and y ∈ X

such that ‖xn − x‖ → 0 and ‖Axn − y‖ → 0

},

Ax = y.

Page 7: Vector-valued Holomorphic Functions

468 B. CLOSED OPERATORS

For an operator A, D(A) becomes a normed space with the graph norm

‖x‖D(A) := ‖x‖+ ‖Ax‖.

The operator A : D(A) → X is always bounded with respect to the graph norm,and A is closed if and only if D(A) is a Banach space in the graph norm. Notethat if A is replaced by αA + β where α �= 0, then the space D(A) is unchangedand the graph norm is replaced by an equivalent norm.

Let A be a closed operator on X. A subspace D of D(A) is said to be a coreof A if D is dense in D(A) with respect to the graph norm. Thus, D is a core ofA if and only if A is the closure of A|D, or equivalently for each x ∈ D(A) there isa sequence (xn) in D such that ‖xn − x‖ → 0 and ‖Axn −Ax‖ → 0.

An operator A on X is said to be invertible if there is a bounded operator A−1

on X such that A−1Ax = x for all x ∈ D(A) and A−1y ∈ D(A) and AA−1y = yfor all y ∈ X.

Proposition B.1. Let A be an operator on X. The following assertions are equiv-alent:

(i) A is invertible.

(ii) RanA = X and there exists δ > 0 such that ‖Ax‖ ≥ δ‖x‖ for all x ∈ D(A).

(iii) A is closed, RanA is dense in X, and there exists δ > 0 such that ‖Ax‖ ≥δ‖x‖ for all x ∈ D(A).

(iv) A is closed, RanA = X and KerA = {0}.Proof. The equivalence of (i) and (ii) is an easy consequence of the definition. Sinceany bounded operator has closed graph, and since

G(A−1) = {(y, x) : (x, y) ∈ G(A)},

any invertible operator is closed. Thus, (i) and (ii) imply (iii) and (iv). When (iii)holds, G(A) is complete, and the map (x,Ax) �→ Ax is an isomorphism of G(A)onto RanA, so RanA is complete and (ii) follows. When (iv) holds, the inversemapping theorem can be applied to the map A from D(A) (with the graph norm)to X, showing that A−1 exists as a bounded map from X to D(A) and hence toX.

Let λ ∈ C. Then λ is said to be in the resolvent set ρ(A) of A if λ − Ais invertible, and we write R(λ,A) := (λ − A)−1. The remarks in the previousparagraphs show that if ρ(A) is non-empty, then A is closed. The function R(·, A) :ρ(A)→ L(X) is the resolvent of A. The spectrum of A is defined to be:

σ(A) := C \ ρ(A),

Page 8: Vector-valued Holomorphic Functions

469

and the spectral bound is:

s(A) := sup{Reλ : λ ∈ σ(A)}if the supremum exists (s(A) := −∞ if σ(A) is empty). The point spectrum σp(A),and approximate point spectrum σap(A), of A are defined by:

σp(A) := {λ ∈ C : Ker(λ−A) �= {0}} ,σap(A) :=

{λ ∈ C : there exist xn ∈ D(A) such that

‖xn‖ = 1 and limn→∞ ‖(λ−A)xn‖ = 0

}.

Thus, σp(A) and σap(A) consist of the eigenvalues and approximate eigenvalues ofA, respectively. It is clear that σp(A) ⊂ σap(A) ⊂ σ(A).

Proposition B.2. Suppose that A has non-empty resolvent set, and let μ ∈ ρ(A).Let λ ∈ C, λ �= μ. Then

a) λ ∈ ρ(A) if and only if (μ− λ)−1 ∈ ρ(R(μ,A)). In that case,

R(λ,A) = (μ− λ)−1((μ− λ)−1 −R(μ,A)

)−1R(μ,A). (B.1)

b) λ ∈ σp(A) if and only if (μ− λ)−1 ∈ σp(R(μ,A)).

c) λ ∈ σap(A) if and only if (μ− λ)−1 ∈ σap(R(μ,A)).

d) The topological boundary of σ(A) is contained in σap(A).

Proof. Parts a), b) and c) follow immediately from the identity

λ−A = (μ− λ)((μ− λ)−1 −R(μ,A)

)(μ−A).

Part d) follows from a), c) and the corresponding result for bounded operators.Alternatively, d) may be proved directly in exactly the same way as for boundedoperators.

Corollary B.3. For any operator A, ρ(A) is open and σ(A) is closed in C. Moreover,if μ ∈ ρ(A), λ ∈ C and |λ− μ| < ‖R(μ,A)‖−1, then λ ∈ ρ(A), and

R(λ,A) =

∞∑n=0

(μ− λ)nR(μ,A)n+1,

where the series is norm-convergent. Hence,

‖R(λ,A)‖ ≤ ‖R(μ,A)‖1− |λ− μ| ‖R(μ,A)‖ .

Moreover, R(·, A) is holomorphic on ρ(A) with values in L(X) and

R(μ,A)(n)

n!= (−1)nR(μ,A)n+1 (n ∈ N).

B. CLOSED OPERATORS

Page 9: Vector-valued Holomorphic Functions

470 B. CLOSED OPERATORS

Proof. This is immediate from (B.1) and the Neumann expansion, (I − T )−1 =∑∞n=0 T

n, when T is a bounded operator with ‖T‖ < 1.

Proposition B.4. Let A be an operator on X, and let λ, μ ∈ ρ(A). Then

R(λ,A)−R(μ,A) = (μ− λ)R(λ,A)R(μ,A). (B.2)

Proof. The identity (B.2) follows by rearranging (B.1).

Proposition B.5. Let A be an operator on X, and U be a connected open subset ofC. Suppose that U ∩ ρ(A) is nonempty and that there is a holomorphic functionF : U → L(X) such that {λ ∈ U ∩ ρ(A) : F (λ) = R(λ,A)} has a limit point inU . Then U ⊂ ρ(A) and F (λ) = R(λ,A) for all λ ∈ U .

Proof. Let V = {λ ∈ U ∩ ρ(A) : F (λ) = R(λ,A)}, μ ∈ ρ(A), x ∈ D(A), y ∈ X.For λ ∈ V ,

F (λ)(λ−A)x = x, (B.3)

F (λ)y = R(μ,A)y − (λ− μ)R(μ,A)F (λ)y, (B.4)

using (B.2). By uniqueness of holomorphic extensions (Proposition A.2), (B.3) and(B.4) are valid for all λ ∈ U . Now, (B.4) implies that F (λ)y ∈ D(A) and

R(μ,A)(λ−A)F (λ)y = F (λ)y + (λ− μ)R(μ,A)F (λ)y

= R(μ,A)y.

Since R(μ,A) is injective, (λ − A)F (λ)y = y for all λ ∈ U . This and (B.3) implythat λ ∈ ρ(A) and F (λ) = R(λ,A).

The equation (B.2) is known as the resolvent equation or resolvent identity. Afunction R : U → L(X), defined on a subset U of C, is said to be a pseudo-resolventif it satisfies the resolvent equation; i.e., if

R(λ)−R(μ) = (μ− λ)R(λ)R(μ) (λ, μ ∈ U).

The following proposition is easy to prove.

Proposition B.6. Let R : U → L(X) be a pseudo-resolvent. Then

a) KerR(λ) and RanR(λ) are independent of λ ∈ U .

b) There is an operator A on X such that R(λ) = R(λ,A) for all λ ∈ U if andonly if KerR(λ) = {0}.An operator A is said to have compact resolvent if ρ(A) �= ∅ and R(λ,A) is

a compact operator on X. Since the compact operators form an ideal of L(X), itis immediate from (B.2) that this property is independent of λ ∈ ρ(A). When Ahas compact resolvent, then σ(A) is a discrete subset of C. This follows from (B.1)and the fact that the spectrum of a compact operator has 0 as its only limit point.

The following is easy to prove.

Page 10: Vector-valued Holomorphic Functions

471

Proposition B.7. Let A be an operator on X with non-empty resolvent set, and letT ∈ L(X). The following are equivalent:

(i) R(λ,A)T = TR(λ,A) for all λ ∈ ρ(A).

(ii) R(λ,A)T = TR(λ,A) for some λ ∈ ρ(A).

(iii) For all x ∈ D(A), Tx ∈ D(A) and ATx = TAx.

For an operator A, the powers An (n ≥ 2) are defined recursively:

D(An) :={x ∈ D(An−1) : An−1x ∈ D(A)

},

Anx := A(An−1x).

Note that D((λ−A)n) = D(An) for all λ ∈ C, n ∈ N. It is easy to see that An isinvertible if and only if A is invertible, and then (An)−1 = (A−1)n.

If A is densely defined and ρ(A) �= ∅, then D(An) is a core for A, for eachn ∈ N. To see this, let λ ∈ ρ(A). Then R(λ,A) has dense range D(A). It followsthat the range D(An−1) of R(λ,A)n−1 is dense in X. Let x ∈ D(A). There isa sequence (ym)m∈N in D(An−1) converging to (λ − A)x. Let xm := R(λ,A)ym.Then xm ∈ D(An), ‖xm − x‖ → 0 and ‖Axm −Ax‖ → 0.

Let A be an operator on X, and let Y be a closed subspace of X. The partof A in Y is the operator AY on Y defined by

D(AY ) := {y ∈ D(A) ∩ Y : Ay ∈ Y },AY y := Ay.

The following results are easy to prove.

Proposition B.8. Let A be an operator on X, and let Y be a closed subspace of X.

a) If D(A) ⊂ Y , then ρ(A) ⊂ ρ(AY ) and R(λ,AY ) = R(λ,A)|Y for all λ ∈ρ(A).

b) Suppose that ρ(A) �= ∅ and there is a projection P of X onto Y such thatPR(λ,A) = R(λ,A)P for some λ ∈ ρ(A). Then A maps D(A)∩Y into Y , AY

is the restriction of A to D(A) ∩ Y , λ ∈ ρ(AY ) and R(λ,AY ) = R(λ,A)|Y .One situation where the conditions of Proposition B.8 b) are satisfied is

described in the following.

Proposition B.9. Let A be a closed operator on X with ρ(A) �= ∅, and suppose thatthere are a compact subset E1 and a closed subset E2 of C such that E1∩E2 = ∅ andE1∪E2 = σ(A). Then there is a bounded projection P on X such that R(λ,A)P =PR(λ,A) for all λ ∈ ρ(A), P (X) ⊂ D(A), σ(AY ) = E1 and σ(AZ) = E2, whereY := P (X), Z := (I − P )(X). Moreover, P is unique, and A|Y ∈ L(Y ).

B. CLOSED OPERATORS

Page 11: Vector-valued Holomorphic Functions

472 B. CLOSED OPERATORS

The projection P is known as the spectral projection of A associated with E1.

Proof. Take μ ∈ ρ(A) and consider R(μ,A) ∈ L(X). Then σ(R(μ,A)) = E′1 ∪ E′2,where

E′1 := {(μ− λ)−1 : λ ∈ E1}and

E′2 :=

{{(μ− λ)−1 : λ ∈ E2} if D(A) = X,

{(μ− λ)−1 : λ ∈ E2} ∪ {0} otherwise.

Then E′1 and E′2 are compact and disjoint. By the functional calculus for boundedoperators (see [DS59, p.573]), there is a unique bounded projection P on Xsuch that R(λ,A)P = PR(λ,A) for all λ ∈ ρ(A), σ(R(μ,A)|Y ) = E′1 andσ(R(μ,A)|Z) = E′2. Since 0 �∈ σ(R(μ,A)|Y ), Y ⊂ D(A) and A|Y is bounded bythe closed graph theorem. The remaining properties follow easily from PropositionB.2 a).

Suppose that A has compact resolvent, let λ ∈ ρ(A) and μ ∈ σ(A). Let Pbe the spectral projection of A associated with {μ}. Then there exists m ∈ Nsuch that (R(λ,A)P − (λ − μ)−1P )m = 0 (see [DS59, Theorem VII.4.5]). Hence,(A− μ)mP = 0.

Given an operator A on X, let

G(A∗) := {(x∗, y∗) ∈ X∗ ×X∗ : 〈Ax, x∗〉 = 〈x, y∗〉 for all x ∈ D(A)} ,which is a weak* closed subspace of X∗×X∗. If (and only if) A is densely defined,then G(A∗) is the graph of an operator A∗ in X∗, known as the adjoint of A. Forthe remainder of this appendix, we shall assume that A is densely defined, and weshall consider properties of A∗.

When A is closed, the operator A can be recovered from A∗ in the followingway.

Proposition B.10. Let A be a closed, densely defined operator on X, and let x, y ∈X. The following assertions are equivalent:

(i) x ∈ D(A) and Ax = y.

(ii) 〈x,A∗x∗〉 = 〈y, x∗〉 for all x∗ ∈ D(A∗).

Hence, D(A∗) is weak* dense in X∗.

Proof. The implication (i) ⇒ (ii) is immediate from the definition of A∗. For theconverse, suppose that (x, y) /∈ G(A). By the Hahn-Banach theorem, there exists(x∗, y∗) ∈ X∗×X∗ such that 〈x, x∗〉+ 〈y, y∗〉 �= 0 but 〈u, x∗〉+ 〈Au, y∗〉 = 0 for allu ∈ D(A). The latter condition implies that y∗ ∈ D(A∗) and A∗y∗ = −x∗. Thus,〈x,A∗y∗〉 = −〈x, x∗〉 �= 〈y, y∗〉, so (ii) is violated.

If D(A∗) is not weak* dense in X∗, then by the Hahn-Banach theorem thereexists y ∈ X such that y �= 0 and 〈y, x∗〉 = 0 for all x∗ ∈ D(A∗). By the previouspart, A0 = y, which is absurd.

Page 12: Vector-valued Holomorphic Functions

473

If A is closable (and densely defined), it is easy to see that (A)∗ = A∗, soD(A∗) is weak* dense by Proposition B.10. Conversely, it is easy to see that ifD(A∗) is weak* dense, then A is closable.

Proposition B.11. Let A be a closed, densely defined operator on X. Then

a) A∗ is invertible if and only if A is invertible, and then (A∗)−1 = (A−1)∗.

b) σ(A∗) = σ(A), and R(λ,A∗) = R(λ,A)∗ for all λ ∈ ρ(A).

c) σ(A) = σap(A) ∪ σp(A∗).

Proof. a) If A is invertible, it is easy to verify that (A−1)∗A∗x∗ = x∗ for allx∗ ∈ D(A∗) and A∗(A−1)∗y∗ = y∗ for all y∗ ∈ X∗. Thus, A∗ is invertible and(A∗)−1 = (A−1)∗.

Now suppose that A∗ is invertible, and let δ =∥∥(A∗)−1

∥∥−1. Since KerA∗ =

{0}, RanA is dense in X, by a simple application of the Hahn-Banach theorem.For x ∈ X, there exists x∗ ∈ X∗ such that ‖x∗‖ = 1 and 〈x, x∗〉 = ‖x‖. Lety∗ = (A∗)−1x∗ ∈ D(A∗), so that ‖y∗‖ ≤ δ−1 and A∗y∗ = x∗. Hence,

‖Ax‖ ≥ δ |〈Ax, y∗〉| = δ |〈x,A∗y∗〉| = δ‖x‖.

It follows from Proposition B.1 that A is invertible.b) This follows from a) by replacing A by λ−A.c) This follows from applying Proposition B.1 and the fact that RanA is

dense in X if and only if KerA∗ = {0} (by the Hahn-Banach theorem), with Areplaced by λ−A.

Now, let H be a Hilbert space with inner product (·|·)H . Identifying H∗ withH by means of the Riesz-Frechet lemma, we obtain the following. If A is a denselydefined operator on H, the adjoint A∗ of A is defined by

D(A∗) :=

{x ∈ H : there exists y ∈ H such that

(Au|x)H = (u|y)H for all u ∈ D(A)

},

A∗x = y.

We say that A is selfadjoint if A = A∗.

Example B.12 (Multiplication operators). Let (Ω, μ) be a measure space, H :=L2(Ω, μ), m : Ω→ R a measurable function. Define the operator Mm on H by

D(Mm) := {f ∈ H : mf ∈ H},Mmf := mf.

It is easy to see that Mm is selfadjoint.

B. CLOSED OPERATORS

Page 13: Vector-valued Holomorphic Functions

474 B. CLOSED OPERATORS

Let H, H be Hilbert spaces. Two operators A on H and A on H are calledunitarily equivalent if there exists a unitary operator U : H → H such that

D(A) = U−1D(A),

Ax = U−1AUx.

It is easy to see that, in that case, A is selfadjoint whenever A is.Now we can formulate the spectral theorem as follows; we refer to [RS72,

Theorem VIII.4] for a proof.

Theorem B.13 (Spectral Theorem). Each selfadjoint operator is unitarily equiva-lent to a real multiplication operator.

Thus, selfadjoint and real multiplication operators are effectively the samething. In proofs, we frequently regard an arbitrary selfadjoint operator as being areal multiplication operator.

A selfadjoint operator A is always symmetric; i.e., (Ax|y)H = (x|Ay)H forall x, y ∈ D(A). In particular, (Ax|x)H ∈ R for all x ∈ D(A). We say that A isbounded above if there exists ω ∈ R such that

(Ax|x)H ≤ ω(x|x)H (x ∈ D(A)).

In that case, ω is called an upper bound of A. If A is a multiplication operator Mm,then this is equivalent to saying that

m(y) ≤ ω for almost all y ∈ Ω.

It is easy to see (for example, from the spectral theorem) that for any selfadjointoperator A, we have σ(A) ⊂ R and ω is an upper bound for A if and only ifσ(A) ⊂ (−∞, ω]; i.e., ω ≥ s(A). Similarly, we say that A is bounded below by ω if

(Ax|x)H ≥ ω(x|x)H (x ∈ D(A)).

The definition of selfadjointness is not easy to verify in practice. Here is ahandy criterion, for a proof of which we refer to [RS72, Theorem X.1].

Theorem B.14. Let A be an operator on H and let ω ∈ R. The following areequivalent:

(i) A is selfadjoint with upper bound ω.

(ii) a) (Ax|y)H = (x|Ay)H (x, y ∈ D(A)),b) (Ax|x)H ≤ ω(x|x)H (x ∈ D(A)), andc) there exists λ > ω such that Ran(λ−A) = X.

Finally, we mention one or two topics concerning bounded operators. By theclosed graph theorem, an operator T on a Banach space X is bounded if T isclosed and D(T ) = X. Conversely, a densely defined, closed, bounded operator is

Page 14: Vector-valued Holomorphic Functions

475

everywhere defined. By convention, a bounded operator T on a Banach space Xwill be assumed to be defined on the whole of X. The spectral radius of T will bedenoted by r(T ), so

r(T ) = sup{|λ| : λ ∈ σ(T )} = inf{‖Tn‖1/n : n ∈ N

}.

In order to allow a convenient citation in the book, we state the followingstandard fact whose proof is straightforward. Note that a family of bounded linearoperators is equicontinuous if and only if it is bounded.

Proposition B.15. Let X,Y be Banach spaces, Tn ∈ L(X,Y ) (n ∈ N) such thatsupn∈N ‖Tn‖ <∞. The following are equivalent:

(i) (Tnx)n∈N converges for all x in a dense subspace of X.

(ii) (Tnx)n∈N converges for all x ∈ X.

(iii) (Tnx)n∈N converges uniformly in x ∈ K for all compact subsets K of X.

Notes: The material of this appendix is standard, and can be found in various books, forexample [Kat66, Chapter 3].

B. CLOSED OPERATORS

Page 15: Vector-valued Holomorphic Functions

Appendix C

Ordered Banach Spaces

Let X be a real Banach space. By a positive cone in X we understand a closedsubset X+ of X such that

X+ +X+ ⊂ X+; (C.1)

R+ ·X+ ⊂ X+; (C.2)

X+ ∩ (−X+) = {0}; and (C.3)

X+ −X+ = X. (C.4)

Then an ordering on X is introduced by setting

x ≤ y ⇐⇒ y − x ∈ X+.

The space X together with the positive cone is called a real ordered Banach space.The elements of X+ are called positive.

Remark C.1. Property (C.3) is frequently expressed by saying that X+ is a propercone, and (C.4) says thatX+ is generating. We assume these properties throughoutwithout further notice.

If x∗ ∈ X∗, then we say that x∗ is positive and write x∗ ≥ 0 if

〈x, x∗〉 ≥ 0 for all x ∈ X+.

The set X∗+ := {x∗ ∈ X∗ : x∗ ≥ 0} is closed and satisfies (C.1), (C.2) and (C.3).

For x, y ∈ X such that x ≤ y we denote by

[x, y] := {z ∈ X : x ≤ z ≤ y}

the order interval defined by x and y. One says that the cone X+ is normal if allorder intervals are bounded.

Page 16: Vector-valued Holomorphic Functions

478 C. ORDERED BANACH SPACES

Proposition C.2. The cone X∗+ is normal. The cone X+ is normal if and only if

X∗+ −X∗

+ = X∗.

Thus, if X+ is normal then (X∗, X∗+) is also an ordered Banach space with

normal cone. We call X∗+ the dual cone of X+.

If the cone X+ is normal then there is a constant c ≥ 0 such that

y ≤ x ≤ z =⇒ ‖x‖ ≤ cmax(‖y‖, ‖z‖). (C.5)

Indeed, passing to an equivalent norm one can even arrange that c = 1.If X is a real ordered Banach space we tacitly consider the complexification

of X. So in this book an ordered Banach space is always the complexification of areal ordered Banach space. Thus, any C∗-algebra is an ordered Banach space withnormal cone.

Let X be an ordered Banach space. A linear mapping T : X → X is calledpositive if

Tx ∈ X+ for all x ∈ X+.

Then we write T ≥ 0. If S, T : X → X are linear, we write S ≤ T if T − S ≥ 0.If X+ is normal, every positive linear mapping T : X → X is continuous.

Moreover, there is a constant k ≥ 0 such that

±S ≤ T =⇒ ‖S‖ ≤ k‖T‖ (C.6)

if S, T : X → X are linear.A real ordered Banach space X is a lattice if for all x, y ∈ X there exists a

least upper bound x∨y of x and y (i.e., x∨y ∈ X, x∨y ≥ x, x∨y ≥ y and w ≥ x, yimplies w ≥ x ∨ y). In that case, there also exists a largest lower bound x ∧ y =−((−x) ∨ (−y)). One sets x+ = x ∨ 0, x− = (−x)+, |x| = x ∨ (−x) = x+ + x−.Then X is called a real Banach lattice if in addition the following compatibilitycondition is satisfied:

|x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖ (C.7)

for all x, y ∈ X. Thus, the cone of a Banach lattice is always normal.In this book, a Banach lattice is the complexification of a real Banach lattice.

Important examples of Banach lattices are the spaces Lp(Ω, μ) (1 ≤ p ≤ ∞), where(Ω, μ) is a measure space, and

C(K) := {f : K → C : f continuous},where K is a compact space.

Let X be a real Banach lattice. A subspace Y of X is called a sublattice if

x ∈ Y implies |x| ∈ Y.

The space Y is called an ideal if

x ∈ Y, y ∈ X, |y| ≤ |x| implies y ∈ Y.

Page 17: Vector-valued Holomorphic Functions

479

Let (Ω, μ) be a σ-finite measure space and X = Lp(Ω, μ), where 1 ≤ p <∞.Then Y is a closed ideal of X if and only if

Y = {f ∈ X : f |S = 0 a.e.}

for some measurable subset S of Ω.If M ⊂ X is a subset, then

Md := {x ∈ X : |x| ∨ |y| = 0 for all y ∈M}

is a closed ideal of X. One says that M is a band if M = Mdd. In that case,M ⊕Md = X.

If X is a complex Banach lattice, then a subspace Y of X is called a sublattice(ideal, band) if

a) x ∈ Y =⇒ Rex ∈ X, and

b) Y ∩XR is a sublattice (ideal, band) of XR,

where XR denotes the underlying real Banach lattice.An ordered Banach space has order continuous norm if each decreasing pos-

itive sequence (xn)n∈N converges; i.e.,

If xn ≥ xn+1 ≥ 0 (n ∈ N), then limn→∞xn exists.

The spaces Lp(Ω, μ) (1 ≤ p <∞) have order continuous norm, but L∞(Ω, μ) andC(K) do not if they have infinite dimension. Also, the dual of a C∗-algebra hasorder continuous norm.

Let X be a Banach lattice. Then the following assertions are equivalent:

(i) If 0 ≤ xn ≤ xn+1 and supn∈N ‖xn‖ <∞, then (xn)n∈N converges.

(ii) X is a band in X∗∗.

(iii) c0 is not isomorphic to a closed subspace of X.

In assertion (ii), we identify X with a closed subspace of X∗∗ via the canonicalevaluation mapping.

A Banach lattice X satisfying the equivalent conditions (i), (ii), and (iii)is called a KB-space. Every reflexive Banach lattice and every space of the formL1(Ω, μ) are KB-spaces. Moreover, if X is a KB-space then X has order continuousnorm. The space c0 does have order continuous norm but is not a KB-space. Eachclosed ideal of a KB-space is a band.

Notes: We refer to the monograph [Sch74] by Schaefer and to the survey article [BR84]for all this and for further information.

C. ORDERED BANACH SPACES

Page 18: Vector-valued Holomorphic Functions

Appendix D

Banach Spaces which Contain c0

We let c0 be the Banach space of all complex sequences a = (ar)r≥1 such thatlimr→∞ ar = 0, with ‖a‖ = supr |ar|. For n ≥ 1, let en := (δnr)r≥1, so ‖en‖ = 1and ∥∥∥∥∥

m∑n=1

αnen

∥∥∥∥∥ = maxn|αn|

for all m ∈ N and α1, . . . , αm ∈ C.A complex Banach space X is said to contain c0 if there is a closed linear

subspace Y of X which is isomorphic (linearly homeomorphic) to c0. This is equiv-alent to the existence of a sequence (xn)n≥1 in X and strictly positive constantsc1 and c2 such that

c1 maxn|αn| ≤

∥∥∥∥∥m∑

n=1

αnxn

∥∥∥∥∥ ≤ c2 maxn|αn| (D.1)

for all m ∈ N and α1, . . . , αm ∈ C. Then the map∑m

n=1 αnxn �→∑m

n=1 αnenextends to an isomorphism of the closed linear span of {xn} onto c0.

Since c0 is not reflexive, a reflexive Banach space cannot contain c0. Moreover,for any measure space (Ω, μ), the space L1(Ω, μ) does not contain c0.

A formal series∑∞

n=1 xn in X is said to be unconditionally bounded if thereis a constant M such that ∥∥∥∥ m∑

j=1

xnj

∥∥∥∥ ≤M (D.2)

whenever m ∈ N and 1 ≤ n1 < n2 < · · · < nm. The series∑

n en in c0 isunconditionally bounded (with M = 1), but it is divergent. It follows that anyBanach space which contains c0 has a divergent, unconditionally bounded series.In this appendix, we shall give a converse result showing that if X contains adivergent, unconditionally bounded series, then X contains c0.

Page 19: Vector-valued Holomorphic Functions

482 D. BANACH SPACES WHICH CONTAIN C0

Lemma D.1. Suppose that∑

n xn is a divergent, unconditionally bounded series ina complex Banach space X, and let M be as in (D.2). Then∥∥∥∥∥

m∑n=1

αnxn

∥∥∥∥∥ ≤ 4M max1≤n≤m

|αn|

for all m ∈ N and α1, . . . , αm ∈ C.

Proof. First suppose that αn ≥ 0 for n = 1, 2, . . . ,m. By rearranging x1, x2, . . . , xm,we may suppose that 0 ≤ α1 ≤ α2 ≤ · · · ≤ αm. Then

m∑n=1

αnxn = α1

m∑n=1

xn + (α2 − α1)m∑

n=2

xn + · · ·+ (αm − αm−1)xm.

Hence,∥∥∥∥∥m∑

n=1

αnxn

∥∥∥∥∥ ≤ α1M + (α2 − α1)M + · · ·+ (αm − αm−1)M = αmM.

The general case follows by decomposing each complex number αn as∑3

j=0 αnjij

where αnj ≥ 0 and |αnj | ≤ |αn|.Lemma D.2. Suppose that X contains a divergent, unconditionally bounded series.Then there is a sequence (yj)j≥1 in X such that ‖yj‖ = 1 for all j and∥∥∥∥∥∥

m∑j=1

βjyj

∥∥∥∥∥∥ ≤ 3

2max

1≤j≤m|βj |

for all m ∈ N and β1, . . . , βm ∈ C.

Proof. Let∑

n xn be a divergent, unconditionally bounded series, and let

γk := sup

{∥∥∥∥∥m∑

n=k+1

αnxn

∥∥∥∥∥ : m > k, αn ∈ C, |αn| ≤ 1

}.

By Lemma D.1, γk is finite, and clearly (γk) is a decreasing sequence. Let γ :=limk→∞ γk. Then γ > 0, since

γk ≥ sup

{∥∥∥∥∥m∑

n=k+1

xn

∥∥∥∥∥ : m > k

}

and∑

n xn is divergent. Replacing xn by (5/4γ)xn, we may assume that γ = 5/4.

Page 20: Vector-valued Holomorphic Functions

483

Choose k1 ≥ 1 such that γk1 < 3/2. Since γk1 > 1, there exist k2 > k1 andαn ∈ C (k1 < n ≤ k2) such that |αn| ≤ 1 and

ν1 :=

∥∥∥∥∥k2∑

n=k1+1

αnxn

∥∥∥∥∥ > 1.

Iterating this, we may choose k1 < k2 < . . . and αn ∈ C (n > k1) such that|αn| ≤ 1 and

νj :=

∥∥∥∥∥∥kj+1∑

n=kj+1

αnxn

∥∥∥∥∥∥ > 1.

Let

yj := ν−1j

kj+1∑n=kj+1

αnxn.

Then ‖yj‖ = 1. Moreover, if m ∈ N and βj ∈ C (j = 1, . . . ,m) and jn is chosen sothat kjn < n ≤ kjn+1 (n > k1), then∥∥∥∥∥∥

m∑j=1

βjyj

∥∥∥∥∥∥ =

∥∥∥∥∥∥km+1∑

n=k1+1

βjnν−1jn

αnxn

∥∥∥∥∥∥ ≤ 3

2max

k1<n≤km+1

∣∣βjnν−1jn

αn

∣∣ ≤ 3

2max

1≤j≤m|βj |.

Theorem D.3. Suppose that X contains a divergent, unconditionally bounded series∑n xn. Then X contains c0.

Proof. Let (yj) be as in Lemma D.2. Let m ∈ N and βj ∈ C (j = 1, . . . ,m). Then∥∥∥∑mj=1 βjyj

∥∥∥ ≤ 32 maxj |βj |. We shall establish that

∥∥∥∑mj=1 βjyj

∥∥∥ ≥ 12 maxj |βj |,

so that (yj) satisfies the condition (D.1), and therefore X contains c0.Choose k such that |βk| = maxj |βj |, and choose x∗ ∈ X∗ such that ‖x∗‖ = 1

and βk〈yk, x∗〉 = |βk|. Let

β′j :=

{βj (j �= k),

−βk (j = k).

Then∥∥∥∥∥∥m∑j=1

βjyj

∥∥∥∥∥∥ ≥ Re 〈m∑j=1

βjyj , x∗〉 = 2|βk|+Re 〈

m∑j=1

β′jyj , x∗〉

≥ 2|βk| −∥∥∥∥∥∥

m∑j=1

β′jyj

∥∥∥∥∥∥ ≥ 2|βk| − 3

2max

j|βj | = 1

2max

j|βj |.

D. BANACH SPACES WHICH CONTAIN C0

Page 21: Vector-valued Holomorphic Functions

484 D. BANACH SPACES WHICH CONTAIN C0

This completes the proof.

Notes: Theorem D.3 is due to Bessaga and Pelczynski [BP58]. They also showed thatX contains c0 if (and only if) there is a sequence of unit vectors (yj) in X such that∑

j |〈yj , x∗〉| < ∞ for all x∗ ∈ X∗. Our proof, which is adapted from [LZ82], establishessuch a property but in a specific way which eliminates some of the cases considered in[BP58]. Moreover, this proof shows (when constants 5/4 and 3/2 are replaced by constantsarbitrarily close to 1) that X contains c0 “almost isometrically”, thereby establishinga positive solution to the “distortion problem” in c0. This was first proved by James[Jam64].

Another direct proof of Theorem D.3 is given in a paper of Eberhardt and Greiner[EG92]. There are numerous other characterizations of Banach spaces which contain c0,some of which may be found in the books of Guerre-Delabriere [Gue92], Lindenstraussand Tzafriri [LT77] and Megginson [Meg98]. Note in particular that a Banach lattice Xdoes not contain c0 (as a subspace, or equivalently as a sublattice) if and only if X isa KB-space, that is, every bounded increasing sequence in X converges [LT77, TheoremII.1.c.4], [Mey91, Theorem 2.4.12].

Page 22: Vector-valued Holomorphic Functions

Appendix E

Distributions and FourierMultipliers

In this appendix we collect basic facts on distributions and Fourier multipliers.They are needed at various places in the book; those which are essential to un-derstanding Parts I and II are also explained at the appropriate point in the text,while other results from this appendix are needed only for examples in Chapter 3or for the applications in Part III.

First, we consider distributions on Rn. A multi-index is an element α =(α1, . . . , αn) ∈ Nn

0 . We write |α| for ∑nj=1 αj , Dj for ∂

∂xjand Dα for Dα1

1 · · ·Dαnn .

We denote by D(Rn) (or by C∞c (Rn) in other contexts) the space of all complex-valued C∞-functions on Rn with compact supports (the test functions), and byS(Rn) the Schwartz space of all smooth, rapidly decreasing functions on Rn, i.e.

S(Rn) := {ϕ ∈ C∞(Rn) : ‖ϕ‖m,α <∞ for all m ∈ N0, α ∈ Nn0} ,

where

‖ϕ‖m,α := supx∈Rn

(1 + |x|)m|Dαϕ(x)|.

When equipped with the topology defined by the family of all norms ‖·‖m,α, S(Rn)is a Frechet space, and D(Rn) is a dense subspace of S(Rn).

We denote by D(Rn)′ the space of all distributions, i.e., linear maps f : ϕ �→〈ϕ, f〉 of D(Rn) into C such that for each compact K ⊂ Rn there exist m ∈ N andC > 0 such that

|〈ϕ, f〉| ≤ C sup|α|≤m

supx∈Rn

|Dαϕ(x)|

for all ϕ ∈ D(Rn) with suppϕ ⊂ K. Let S(Rn)′ be the space of all temperate distri-butions, i.e., continuous linear maps from S(Rn) into C. Then S(Rn)′ is embeddedin D(Rn)′ in a natural way.

Page 23: Vector-valued Holomorphic Functions

486 E. DISTRIBUTIONS AND FOURIER MULTIPLIERS

We considerD(Rn)′ to have the topology arising from the duality withD(Rn),so a net (fα) of distributions converges to 0 in D(Rn)′ if and only if 〈ϕ, fα〉 → 0for all ϕ ∈ D(Rn).

Any locally integrable f : Rn → C can be identified with a distribution by

〈ϕ, f〉 :=∫Rn

ϕ(x)f(x) dx (ϕ ∈ S(Rn)). (E.1)

We shall make such identifications freely.A function f : Rn → C is said to be absolutely regular if there exists k ∈ N0

such that x �→ (1 + |x|)−kf(x) is Lebesgue integrable on Rn. For an absolutelyregular function f , the corresponding distribution is temperate.

Any continuous linear map T : S(Rn) → S(Rn) induces an adjoint. Wenow describe how this enables operators of multiplication, differentiation, Fouriertransform and convolution to be extended from functions to distributions.

Let g : Rn → C be a C∞-function. Then ϕ · g ∈ D(Rn) for all ϕ ∈ D(Rn).Given a distribution f ∈ D(Rn)′, we can define g · f by

〈ϕ, g · f〉 := 〈ϕ · g, f〉 (ϕ ∈ D(Rn)). (E.2)

If, for each multi-index α, there exists mα ∈ N and cα > 0 such that

|(Dαg)(x)| ≤ cα(1 + |x|)mα (x ∈ Rn), (E.3)

then the map ϕ �→ ϕ · g is continuous from S(Rn) into S(Rn), and thereforeg · f ∈ S(Rn)′ whenever f ∈ S(Rn)′.

Given a distribution f ∈ D(Rn)′, the derivatives Djf (j = 1, . . . , n) aredefined in D(Rn)′ by

〈ϕ,Djf〉 := −〈Djϕ, f〉 (ϕ ∈ D(Rn)). (E.4)

Then Dj maps S(Rn)′ into itself. Integration by parts shows that this notationis consistent when differentiable functions are identified with distributions, andthe product law extends to derivatives of products of differentiable functions anddistributions as discussed above. For higher order derivatives, (E.4) becomes

〈ϕ,Dαf〉 = (−1)|α|〈Dαϕ, f〉 (ϕ ∈ D(Rn)). (E.5)

Next, we consider convolutions. For functions f and g, the convolution f ∗ gis defined by

(f ∗ g)(x) :=∫Rn

f(x− y)g(y) dy

whenever the integral exists. For ϕ, ψ ∈ S(Rn), ψ ∗ ϕ ∈ S(Rn) and the mapψ �→ ψ∗ϕ is continuous. Hence, the convolution ϕ∗f of ϕ ∈ S(Rn) and f ∈ S(Rn)′

can be defined by

〈ψ,ϕ ∗ f〉 := 〈ψ ∗ ϕ, f〉 (ψ ∈ S(Rn)), (E.6)

Page 24: Vector-valued Holomorphic Functions

487

where ϕ(x) := ϕ(−x), and then ϕ ∗ f ∈ S(Rn)′. An easy calculation shows thatthis is consistent when functions are identified with distributions.

An alternative way to define ϕ ∗ f is as follows. For x ∈ Rn and ψ ∈ S(Rn),let τxψ(y) := ψ(y − x). For ϕ ∈ S(Rn), τxϕ ∈ S(Rn) and the map x �→ τxϕ iscontinuous on S(Rn). For f ∈ S(Rn)′, let

(ϕ ∗ f)(x) := 〈τxϕ, f〉 (x ∈ Rn). (E.7)

Then ϕ ∗ f is a continuous, bounded function.These two definitions of ϕ ∗ f are consistent when functions are identified

with distributions. Moreover,

Dj(ϕ ∗ f) = (Djϕ) ∗ f. (E.8)

For f ∈ L1(Rn), the Fourier transform Ff of f is defined by:

(Ff)(ξ) =∫Rn

e−ix·ξf(x) dx (ξ ∈ Rn), (E.9)

where x · ξ :=∑n

j=1 xjξj . The Fourier inversion theorem [Hor83, Theorem 7.1.5]shows that F is a linear and topological isomorphism of S(Rn), and

(F−1ϕ)(ξ) = (2π)−n(Fϕ)(−ξ) (ϕ ∈ S(Rn), ξ ∈ Rn).

The Fourier transform therefore induces an isomorphism of S(Rn)′, also denotedby F :

〈ϕ,Ff〉 := 〈Fϕ, f〉 (ϕ ∈ S(Rn), f ∈ S(Rn)′). (E.10)

A simple application of Fubini’s theorem shows that this notation is consistentwhen f ∈ L1(Rn) and f is identified with a distribution in S(Rn)′.

The following relations, which are elementary for functions, extend to distri-butions f :

F−1f = (2π)−n(Ff ) = (2π)−nF f , where 〈ϕ, f〉 := 〈ϕ, f〉, (E.11)

FDjf = iξj · Ff, (E.12)

F(ϕ ∗ f) = (Fϕ) · (Ff) (ϕ ∈ S(Rn)). (E.13)

Plancherel’s theorem states that

〈Fϕ,F ψ〉 = (2π)n〈ϕ, ψ〉 (ϕ, ψ ∈ S(Rn)), (E.14)

where ψ is the complex conjugate of ψ, and hence F extends by continuity to alinear operator F on the Hilbert space L2(Rn) such that (2π)−n/2F is unitary.This also says that, for each f ∈ L2(Rn), the distribution Ff belongs to L2(Rn).

Many of the concepts above can be extended to the case of distributions onan open subset Ω of Rn. Let D(Ω) be the space of test functions on Ω, i.e., C∞-functions of compact support in Ω, and D(Ω)′ be the space of distributions on Ω,

E. DISTRIBUTIONS AND FOURIER MULTIPLIERS

Page 25: Vector-valued Holomorphic Functions

488 E. DISTRIBUTIONS AND FOURIER MULTIPLIERS

i.e., linear functionals f on D(Ω) such that for each compact K ⊂ Ω there existm ∈ N and C > 0 such that

|〈ϕ, f〉| ≤ C sup|α|≤m

supx∈Ω

|Dαϕ(x)|

for all ϕ ∈ D(Ω) with suppϕ ⊂ K. Locally integrable functions on Ω can beidentified with distributions, and the derivatives Dj of a distribution f are definedby

〈ϕ,Djf〉 := −〈Djϕ, f〉 (ϕ ∈ D(Ω)).For m ∈ N and 1 ≤ p ≤ ∞, the Sobolev space Wm,p(Ω) is defined by

Wm,p(Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all α ∈ Nn0 with |α| ≤ m},

where Dαf is understood in the sense of distributions. Thus, f ∈Wm,p(Ω) if andonly if for each α ∈ Nn

0 with |α| ≤ m there exists fα ∈ Lp(Ω) such that∫Ω

ϕfα dx = (−1)|α|∫Ω

(Dαϕ)f dx (ϕ ∈ D(Ω)).

In the special case when n = 1, f ∈Wm,p(Ω) if and only if f ∈ Cm−1(Ω), f (m−1)

is absolutely continuous, and f (j) ∈ Lp(Ω) for j = 0, 1, . . . ,m. Equipped with thenorm

‖f‖Wm,p(Ω) :=∑|α|≤m

‖Dαf‖p,

Wm,p(Ω) becomes a Banach space. The closure of D(Ω) in Wm,p(Ω) is denotedby Wm,p

0 (Ω). For p = 2, we also use the notation

Hm(Ω) := Wm,2(Ω) and Hm0 (Ω) := Wm,2

0 (Ω).

Equipped with the equivalent norm

‖f‖Hm(Ω) :=

⎛⎝ ∑|α|≤m

‖Dαf‖22

⎞⎠1/2

,

Hm(Ω) is a Hilbert space with the inner product

(f |g)Hm(Ω) =∑|α|≤m

∫Ω

DαfDαg dx.

Note that Plancherel’s theorem and (E.12) show that

Hm(Rn) = {f ∈ L2(Rn) : ξα · Ff ∈ L2(Rn) for all α ∈ Nn0 with |α| ≤ m},

where ξα is the function ξ �→ ξα11 ξα2

2 · · · ξαnn . Hence, f ∈ Hm(Rn) if and only if

ξ �→ (1 + |ξ|2)m/2(Ff)(ξ) belongs to L2(Rn).

Page 26: Vector-valued Holomorphic Functions

489

Now we consider Fourier multipliers. If g is a C∞-function satisfying theestimates (E.3), then the map ϕ �→ F−1gFϕ := F−1(g · (Fϕ)) is a continuouslinear map on S(Rn). It is a classical problem to seek conditions on a function suchthat such a map becomes continuous on a function space X = Lp(Rn) (1 ≤ p ≤ ∞)or C0(Rn). Let m : Rn → C be an absolutely regular function. For ϕ ∈ S(Rn), wedefine m · (Fϕ) ∈ S(Rn)′ by

〈ψ,m · (Fϕ)〉 :=∫Rn

ψm · (Fϕ) dx (ψ ∈ S(Rn)).

Then we consider the distribution F−1(m · (Fϕ)) ∈ S(Rn)′. We call m a Fouriermultiplier for X if F−1(m·(Fϕ)) ∈ X for all ϕ ∈ S(Rn) and there exists a constantC such that

‖F−1(m · (Fϕ))‖X ≤ C‖ϕ‖X (ϕ ∈ S(Rn)).

Then the map ϕ �→ F−1(m · (Fϕ)) extends to a bounded linear operator Tm :f �→ F−1mFf on X (in the case when X = L∞(Rn), the extension is weak*continuous). When m is a C∞-function, Tmf agrees with the distribution F−1(m ·Ff) defined earlier.

We denote the space of all Fourier multipliers for X by MX(Rn), or byMp(Rn) when X = Lp(Rn), with the usual identification of functions which coin-cide a.e. We put

‖m‖MX(Rn) := ‖Tm‖L(X).

Fourier multipliers are bounded functions, and ‖m‖MX(Rn) ≥ ‖m‖∞ (see Propo-sition E.2). It follows easily that MX(Rn) is a Banach space. Note also thatMC0

(Rn) ⊂M∞(Rn).

For a ∈ Rn, define τa ∈ L(X) by τaf(x) := f(x − a). If m ∈ MX(Rn), it iseasy to see that

Tmτa = τaTm (a ∈ Rn). (E.15)

Conversely, we have the following result.

Proposition E.1. Let X = Lp(Rn) (1 ≤ p ≤ ∞) or C0(Rn), and assume thatT ∈ L(X) satisfies (E.15). Then there exists m ∈MX(Rn) such that

Tf = F−1mFf (f ∈ X).

For a proof of Proposition E.1, see [Hor60].

For N ∈ N, we let MNp (Rn) be the space of all matrices m = (mij)1≤i,j≤N ,

where mij ∈ Mp(Rn). Each such matrix m defines a bounded operator F−1mFon Lp(Rn)N , where F : Lp(Rn)N → Lp(Rn)N acts on each coordinate function,and matrix multiplication operates as usual. The norm onMN

p (Rn) is taken to be

the norm of the operator F−1mF when Lp(Rn)N is given the norm of Lp(Rn ×{1, . . . , N}). Note that M1

p(Rn) =Mp(Rn).

E. DISTRIBUTIONS AND FOURIER MULTIPLIERS

Page 27: Vector-valued Holomorphic Functions

490 E. DISTRIBUTIONS AND FOURIER MULTIPLIERS

Proposition E.2. Let 1 ≤ p ≤ ∞, N ∈ N. Then the following hold true:

a) MNp (Rn) is a Banach algebra.

b) MN2 (Rn) = L∞(Rn,L(CN )) := {(mij)1≤i,j≤N : mij ∈ L∞(Rn)N}.

c) MNp (Rn) =MN

p′ (Rn), where 1/p+ 1/p′ = 1.

d) MN1 (Rn) ⊂MN

p (Rn) ⊂MN2 (Rn). Moreover, for m ∈MN

1 (Rn),

‖m‖MNp (Rn) ≤ ‖m‖θMN

1 (Rn)‖m‖1−θMN

2 (Rn), (E.16)

where θ := 2∣∣ 1p − 1

2

∣∣.e) Given a ∈ MN

p (Rn) define at by at(ξ) := a(tξ) for t > 0, ξ ∈ Rn. Then

at ∈MNp (Rn) for all t > 0 and

‖at‖MNp (Rn) = ‖a‖MN

p (Rn) (t > 0).

f) Let (aj)j∈N ⊂ MNp (Rn). Assume that there exists a constant C > 0 such

that ‖aj‖MNp (Rn) ≤ C for j ∈ N. Let a ∈ L∞(Rn) such that aj(x) → a(x)

for almost all x ∈ Rn as j →∞. Then a ∈MNp (Rn) and ‖a‖MN

p (Rn) ≤ C.

Proof. We give only sketches of the proofs; details may be found in [Hor60] or[Ste93].

a) follows from the formal identity F−1(m1m2)F = (F−1m1F)(F−1m2F),b) is an easy consequence of Plancherel’s theorem and c) is easily proved by duality,showing even that the equalities are isometric.

For d), we can assume by c) that 1 ≤ p ≤ 2. Let m ∈ MNp (Rn). By c),

F−1mF is bounded on Lp(Rn)N and on Lp′(Rn)N . Moreover the two versionsof the map agree on Lp(Rn)N ∩ Lp′(Rn)N . By the Riesz-Thorin theorem [Hor83,Theorem 7.1.12], F−1mF extends to a bounded linear operator on L2(Rn)N . Thisshows that MN

p (Rn) ⊂ MN2 (Rn). The inclusion MN

1 (Rn) ⊂ MNp (Rn) and the

inequality (E.16) also follows from the Riesz-Thorin theorem.e) follows from the fact that F−1atF = J−1

t F−1aFJt, where Jt is the isom-etry, (Jtf)(ξ) := t−n/pf(tξ), on Lp(Rn), and f) is proved by taking limits throughthe definitions of Fourier multipliers.

An extremely useful sufficient condition for a functionm to belong toM1p(R

n)for 1 < p < ∞ is given by the Mikhlin multiplier theorem. Let j := min{k ∈ N :k > n

2 }. Define the Banach space MM by

MM :={m : Rn → K : m ∈ Cj(Rn \ {0}), |m|M <∞}

, (E.17)

where the norm | · |M is defined by

|m|M := max|α|≤j

supξ∈Rn\{0}

|ξ||α||Dαm(ξ)|. (E.18)

We then have the following result.

Page 28: Vector-valued Holomorphic Functions

491

Theorem E.3 (Mikhlin). Let 1 < p <∞. Then MM ↪→Mp(Rn).

For a proof of Mikhlin’s theorem, we refer to [Ste93, Theorem VI.4.4].The following results on Fourier multipliers will be useful in Chapter 8.

Theorem E.4. Let 1 ≤ p ≤ ∞. Then the following hold true:

a) Let a be a real homogeneous polynomial on Rn of degree m > 1. Then eia ∈Mp(Rn) if and only if p = 2.

b) Let a ∈ C∞(Rn) satisfy

a(ξ) :=

{|ξ|−βe−i|ξ|α (|ξ| ≥ 2),

0 (|ξ| ≤ 1),

where α > 0 and β ≥ 0.

(i) If α �= 1 and 1 < p <∞ (respectively, p = 1), then a ∈ Mp(Rn) if and

only if n∣∣ 12 − 1

p

∣∣ ≤ βα (respectively, n

2 < βα ).

(ii) If α = 1 and 1 < p < ∞ (respectively, p = 1) then a ∈ Mp(Rn) if andonly if (n− 1)

∣∣ 12 − 1

p

∣∣ ≤ β (respectively, n−12 < β).

c) Define a1 : R3 → C and a2 : R3 → C by

a1(ξ) := (−i)(ξ1 + ξ22 + ξ23 − i),

a2(ξ) := ξ1 + ξ22 + ξ23 + i.

(i) If p �= 2, then a−11 �∈ Mp(R3).

(ii) Let a := a1a2. Define the operator Ap on Lp(R3) by Apf := F−1(aFf)with D(Ap) := {f ∈ Lp(R3) : F−1(aFf) ∈ Lp(R3)}. If ∣∣ 12 − 1

p

∣∣ > 38 ,

then σ(Ap) = C.

For a proof of the assertions of Theorem E.4 we refer to [Hor60] (assertiona)), [FS72], [Miy81] and [Per80] (assertion b)), [KT80] (assertion c)i)) and [IS70](assertion c)ii)).

Finally, we note one instance of Mikhlin’s Theorem.For x ∈ R, define

signx :=

⎧⎪⎨⎪⎩1 (x > 0),

0 (x = 0),

−1 (x < 0).

Then sign ∈MM . By Mikhlin’s theorem, sign ∈Mp(R) for 1 < p <∞.For ϕ ∈ S(R), one finds that F−1(−i sign)Fϕ is a function given by

(F−1(−i sign)Fϕ)(x) = limε↓0

1

π

∫|x−y|≥ε

ϕ(y)

x− ydy. (E.19)

This is known as the Hilbert transform of ϕ. Thus, we have the following.

E. DISTRIBUTIONS AND FOURIER MULTIPLIERS

Page 29: Vector-valued Holomorphic Functions

492 E. DISTRIBUTIONS AND FOURIER MULTIPLIERS

Proposition E.5. Let 1 < p < ∞. Then the Hilbert transform is a bounded linearoperator on Lp(R).

Notes: The material on distributions is very standard and can be found in many books,for example [Hor83]. The basic material on Fourier multipliers can be found in [Ste93].

Page 30: Vector-valued Holomorphic Functions

Bibliography

[Abe26] N. H. Abel. Untersuchungen uber die Reihe 1 + m1 x + m(m−1)

1·2 x2 +m(m−1)(m−2)

1·2·3 x3 + . . . u.s.w. J. Reine Angew. Math. 1 (1826), 311–339.

[Alb81] E. Albrecht. Spectral decomposition for systems of commuting operators.Proc. Roy. Irish Acad. Sect. A 81 (1981), 81–98.

[AB85] C. D. Aliprantis and O. Burkinshaw. Positive Operators, AcademicPress, London, 1985.

[AOR87] G. R. Allan, A. G. O’Farrell and T. J. Ransford. A Tauberian theoremarising in operator theory. Bull. London Math. Soc. 19 (1987), 537–545.

[AR89] G. R. Allan and T. J. Ransford. Power-dominated elements in a Banachalgebra. Studia Math. 94 (1989), 63–79.

[Ama95] H. Amann. Linear and Quasilinear Parabolic Problems. Vol. I.Birkhauser, Basel, 1995.

[AP71] L. Amerio and G. Prouse. Almost-periodic Functions and FunctionalEquations. Van Nostrand, New York, 1971.

[Are84] W. Arendt. Resolvent positive operators and integrated semigroups.Semesterbericht Funktionalanalysis, Univ. Tubingen (1984), 73–101.

[Are87a] W. Arendt. Resolvent positive operators. Proc. London Math. Soc. 54(1987), 321–349.

[Are87b] W. Arendt. Vector–valued Laplace transforms and Cauchy problems.Israel J. Math. 59 (1987), 327–352.

[Are91] W. Arendt. Sobolev imbeddings and integrated semigroups. SemigroupTheory and Evolution Equations, Proc. Delft 1989, P. Clement et al. eds.,Marcel-Dekker, New York (1991), 29–40.

[Are94a] W. Arendt. Vector-valued versions of some representation theorems inreal analysis. Functional Analysis, Proc. Essen 1991, Marcel-Dekker,New York (1994), 33–50.

Page 31: Vector-valued Holomorphic Functions

494 BIBLIOGRAPHY

[Are94b] W. Arendt. Spectrum and growth of positive semigroups. Evolu-tion Equations, Proc. Baton Rouge 1992, G. Ferreyra, G. Goldstein,F. Neubrander eds., Marcel-Dekker, New York (1994), 21–28.

[Are00] W. Arendt. Resolvent positive operators and inhomogeneous boundaryvalue problems. Ann. Scuola Norm. Sup. Pisa (4), 29 (2000), 639–670.

[Are01] W. Arendt. Approximation of degenerate semigroups. Taiwanese J.Math. 5 (2001), 279–295.

[Are04] W. Arendt. Semigroups and evolution equations: functional calculus,regularity and kernel estimates. Evolutionary equations. Vol. I, Handb.Differ. Equ., North-Holland, Amsterdam (2004), 1–85.

[Are08] W. Arendt. Positive semigroups of kernel operators. Positivity 12 (2008),25–44.

[AB88] W. Arendt and C. J. K. Batty. Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 306 (1988), 837–852.

[AB92a] W. Arendt and C. J. K. Batty. Domination and ergodicity for positivesemigroups. Proc. Amer. Math. Soc. 114 (1992), 743–747.

[AB95] W. Arendt and C. J. K. Batty. A complex Tauberian theorem and meanergodic semigroups. Semigroup Forum 50 (1995), 351–366.

[AB97] W. Arendt and C. J. K. Batty. Almost periodic solutions of first- andsecond-order Cauchy problems. J. Differential Equations 137 (1997),363–383.

[AB99] W. Arendt and C. J. K. Batty. Asymptotically almost periodic solutionsof inhomogeneous Cauchy problems on the half-line. Bull. London Math.Soc. 31 (1999), 291–304.

[AB00] W. Arendt and C. J. K. Batty. Slowly oscillating solutions of Cauchyproblems with countable spectrum. Proc. Roy. Soc. Edinburgh Sect. A130 (2000), 471–484.

[AB06] W. Arendt and C. J. K. Batty. Rank-1 perturbations of cosine functionsand semigroups. J. Funct. Anal. 238 (2006), 340–352.

[AB07] W. Arendt and C. J. K. Batty. Forms, functional calculus, cosine func-tions and perturbation. Perspectives in Operator Theory. Banach CenterPubl. 75, Polish Acad. Sci., Warsaw (2007), 17–38.

[AB92b] W. Arendt and Ph. Benilan. Inegalites de Kato et semi-groupes sous-markoviens. Rev. Mat. Univ. Complut. Madrid 5 (1992), 279–308.

Page 32: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 495

[AB98] W. Arendt and Ph. Benilan. Wiener regularity and heat semigroups onspaces of continuous functions. Topics in Nonlinear Analysis, J. Escher,G. Simonett eds., Birkhauser, Basel (1998), 29–49.

[AB04] W. Arendt and S. Bu. The operator-valued Marcinkiewicz multipliertheorem and maximal regularity. Math. Z. 240 (2002), 311-343.

[ACK82] W. Arendt, P. Chernoff and T. Kato. A generalization of dissipativityand positive semigroups. J. Operator Theory 8 (1982), 167–180.

[AD08] W. Arendt and D. Daners. Varying domains: stability of the Dirichletand the Poisson problem. Discrete Contin. Dyn. Syst. 21 (2008), 21–39.

[AEH97] W. Arendt, O. El-Mennaoui and M. Hieber. Boundary values of holo-morphic semigroups. Proc. Amer. Math. Soc. 125 (1997), 635–647.

[AEK94] W. Arendt, O. El-Mennaoui and V. Keyantuo. Local integrated semi-groups: evolution with jumps of regularity. J. Math. Anal. Appl. 186(1994), 572–595.

[AF93] W. Arendt and A. Favini. Integrated solutions to implicit differentialequations. Rend. Sem. Mat. Univ. Politec. Torino 51 (1993), 315–329.

[AK89] W. Arendt and H. Kellermann. Integrated solutions of Volterra inte-grodifferential equations and applications. Volterra IntegrodifferentialEquations in Banach Spaces and Applications, Proc. Trento 1987, G. DaPrato, M. Iannelli eds., Pitman Res. Notes Math. 190, Longman, Harlow(1989), 21–51.

[ANS92] W. Arendt, F. Neubrander and U. Schlotterbeck. Interpolation of semi-groups and integrated semigroups. Semigroup Forum 45 (1992), 26–37.

[AN00] W. Arendt and N. Nikolski. Vector-valued holomorphic functions revis-ited. Math. Z. 234 (2000), 777–805.

[AN06] W. Arendt and N. Nikolski. Addendum: “Vector-valued holomorphicfunctions revisited”. Math. Z. 252 (2006), 687–689.

[AP92] W. Arendt and J. Pruss. Vector-valued Tauberian theorems and asymp-totic behavior of linear Volterra equations. SIAM J. Math. Anal. 23(1992), 412–448.

[AR91] W. Arendt and A. Rhandi. Perturbation of positive semigroups. Arch.Math. (Basel) 56 (1991), 107–119.

[AS99] W. Arendt and S. Schweiker. Discrete spectrum and almost periodicity.Taiwanese J. Math. 3 (1999), 475–490.

Page 33: Vector-valued Holomorphic Functions

496 BIBLIOGRAPHY

[Arv82] W. Arveson. The harmonic analysis of automorphism groups. OperatorAlgebras and Applications. Vol. I. Proc. Symp. Pure Math. 38, Amer.Math. Soc., Providence (1982), 199–269.

[Atz84] A. Atzmon. On the existence of hyperinvariant subspaces. J. OperatorTheory 11 (1984), 3–40.

[BV62] I. Babuska and R. Vyborny. Regulare und stabile Randpunkte fur dasProblem des Warmeleitungsgleichung. Ann. Polon. Math. 12 (1962),91–104.

[BB05] B. Baillard and H. Bourget (eds.). Correspondance d’Hermite et de Stielt-jes. Gauthier Villars, Paris, 1905.

[BE79] M. Balabane and H. A. Emami-Rad. Smooth distribution group andSchrodinger equation in Lp(RN ). J. Math. Anal. Appl. 70 (1979), 61–71.

[BE85] M. Balabane and H. A. Emami-Rad. Lp estimates for Schrodinger evo-lution equations. Trans. Amer. Math. Soc. 292 (1985), 357–373.

[BEJ93] M. Balabane, H. A. Emami-Rad and M. Jazar. Spectral distributionsand generalization of Stone’s theorem. Acta. Appl. Math. 31 (1993),275–295.

[Bal60] A. V. Balakrishnan. Fractional powers of closed operators and the semi-groups generated by them. Pacific J. Math. 10 (1960), 419–437.

[BLR89] C. Bardos, G. Lebeau and J. Rauch. Un exemple d’utilisation des notionsde propagation pour le controle et la stabilisation de problemes hyper-boliques. Rend. Sem. Mat. Univ. Politec. Torino 1988, Special Issue(1989), 11–31.

[Bas95] B. Basit. Some problems concerning different types of vector valuedalmost periodic functions. Dissertationes Math. 338, 1995.

[Bas97] B. Basit. Harmonic analysis and asymptotic behavior of solutions to theabstract Cauchy problem. Semigroup Forum 54 (1997), 58–74.

[Bas78] A. G. Baskakov. Spectral criteria for almost periodicity of solutions offunctional equations. Math. Notes 24 (1978), 606–612.

[Bas85] A. G. Baskakov. Harmonic analysis of cosine and exponential operator-valued functions. Math. USSR-Sb. 52 (1985), 63–90.

[BEPS06] A. Batkai, K.-J. Engel, J. Pruss and R. Schnaubelt. Polynomial stabilityof operator semigroups. Math. Nachr. 279 (2006), 1425–1440.

[Bat78] C. J. K. Batty. Dissipative mappings and well-behaved derivations. J.London Math. Soc. (2) 18 (1978), 527–533.

Page 34: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 497

[Bat90] C. J. K. Batty. Tauberian theorems for the Laplace-Stieltjes transform.Trans. Amer. Math. Soc. 322 (1990), 783–804.

[Bat94] C. J. K. Batty. Asymptotic behaviour of semigroups of operators. Func-tional Analysis and Operator Theory. Banach Center Publ. 30, PolishAcad. Sci., Warsaw (1994), 35–52.

[Bat96] C. J. K. Batty. Spectral conditions for stability of one-parameter semi-groups. J. Differential Equations 127 (1996), 87–96.

[Bat03] C. J. K. Batty. Bounded Laplace transforms, primitives and semigrouporbits. Arch. Math. (Basel) 81 (2003), 72–81.

[BB00] C. J. .K. Batty and M. D. Blake. Convergence of Laplace integrals. C.R. Acad. Sci. Paris Ser. I Math. 330 (2000), 71–75.

[BBG96] C. J. K. Batty, Z. Brzezniak and D. A. Greenfield. A quantitative asymp-totic theorem for contraction semigroups with countable unitary spec-trum. Studia Math. 121 (1996), 167–183.

[BC99] C. J. K. Batty and R. Chill. Bounded convolutions and solutions ofinhomogeneous Cauchy problems. Forum Math. 11 (1999), 253–277.

[BCN98] C. J. K. Batty, R. Chill and J. M. A. M. van Neerven. Asymptoticbehaviour of C0-semigroups with bounded local resolvents. Math. Nachr.219 (2000), 65–83.

[BCT02] C. J. K. Batty, R. Chill and Y. Tomilov. Strong stability of boundedevolution families and semigroups. J. Funct. Anal. 193 (2002), 116–139.

[BD82] C. J. K. Batty and E. B. Davies. Positive semigroups and resolvents. J.Operator Theory 10 (1982), 357–363.

[BD08] C. J. K. Batty and T. Duyckaerts. Non-uniform stability for boundedsemi-groups in Banach spaces. J. Evolution Equations 8 (2008), 765–780.

[BHR99] C. J. K. Batty, W. Hutter and F. Rabiger. Almost periodicity of mildsolutions of inhomogeneous periodic Cauchy problems. J. DifferentialEquations 156 (1999), 309–327.

[BNR98a] C. J. K. Batty, J. M. A. M. van Neerven, and F. Rabiger. Local spectraand individual stability of uniformly bounded C0-semigroups. Trans.Amer. Math. Soc. 350 (1998), 2071–2085.

[BNR98b] C. J. K. Batty, J. M. A. M. van Neerven, and F. Rabiger. Tauberiantheorems and stability of solutions of the Cauchy problem. Trans. Amer.Math. Soc. 350 (1998), 2087–2103.

Page 35: Vector-valued Holomorphic Functions

498 BIBLIOGRAPHY

[BR84] C. J. K. Batty and D. W. Robinson. Positive one-parameter semigroupson ordered Banach spaces. Acta Appl. Math. 2 (1984), 221–296.

[BV90] C. J. K. Batty and Q. P. Vu. Stability of individual elements under one-parameter semigroups. Trans. Amer. Math. Soc. 322 (1990), 805–818.

[BV92] C. J. K. Batty and Q. P. Vu. Stability of strongly continuous represen-tations of abelian semigroups. Math. Z. 209 (1992), 75–88.

[BY00] C. J. K. Batty and S. B. Yeates. Weighted and local stability of semi-groups of operators. Math. Proc. Cambridge Phil. Soc. 129 (2000), 85–98.

[Bau97] B. Baumer. Vector-Valued Operational Calculus and Abstract CauchyProblems. Dissertation, Louisiana State Univ., Baton Rouge, 1997.

[Bau01] B. Baumer. Approximate solutions to the abstract Cauchy problem.Evolution equations and their applications in physical and life sciences.Proc. Bad Herrenalb 1998, Lecture Notes in Pure and Appl. Math., 215,Marcel-Dekker, New York (2001), 33–41.

[Bau03] B. Baumer. On the inversion of the convolution and Laplace transform.Trans. Amer. Math. Soc. 355 (2003), 1201-1212.

[BLN99] B. Baumer, G. Lumer and F. Neubrander. Convolution kernels andgeneralized functions. Generalized Functions, Operator Theory, and Dy-namical Systems. Proc. Brussels 1997, Chapman & Hall, Boca Raton(1999), 68–78.

[BN94] B. Baumer and F. Neubrander. Laplace transform methods for evolutionequations. Confer. Sem. Mat. Univ. Bari 259 (1994), 27–60.

[BN96] B. Baumer and F. Neubrander. Existence and uniqueness of solutionsof ordinary linear differential equations in Banach spaces. Unpublishedmanuscript, Baton Rouge, 1996.

[Bea72] R. Beals. On the abstract Cauchy problem, J. Funct. Anal. 10 (1972),281–299.

[BCP88] Ph. Benilan, M. G. Crandall and A. Pazy. “Bonnes solutions” d’unprobleme d’evolution semi-lineaire. C. R. Acad. Sci. Paris Ser. I Math.306 (1988), 527–530.

[BCP90] Ph. Benilan, M. G. Crandall and A. Pazy. Evolution problems governedby accretive operators. Unpublished manuscript, Besancon, 1990.

[BB65] H. Berens and P. L. Butzer. Uber die Darstellung vektorwertiger holo-morpher Funktionen durch Laplace-Integrale. Math. Ann. 158 (1965),269–283.

Page 36: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 499

[Ber28] S. Bernstein. Sur les fonctions absolument monotones. Acta Math. 52(1928), 1–66.

[BP58] C. Bessaga and A. Pelczynski. On bases and unconditional convergenceof series in Banach spaces. Studia Math. 17 (1958), 329–396.

[Beu47] A. Beurling. Sur une classe de fonctions presque-periodiques. C. R.Acad. Sci. Paris 225 (1947), 326–328.

[Bid33] Sylvia Martis in Biddau. Studio della transformazione di Laplace e dellasua inversa dal punto di vista dei funzionali analitici. Rend. Circ. Mat.Palermo 57 (1933), 1–70.

[Bla99] M. D. Blake. Asymptotically norm-continuous semigroups of operators.DPhil Thesis, Oxford, 1999.

[Bla01] M. D. Blake. A spectral bound for asymptotically norm-continuous semi-groups. J. Operator Theory 45 (2001), 111–130.

[BM96] O. Blasco and J. Martinez. Norm continuity and related notions forsemigroups on Banach spaces. Arch. Math. (Basel) 66 (1996), 470–478.

[Blo49] P. H. Bloch. Uber den Zusammenhang zwischen den Konvergenzabszis-sen, der Holomorphie- und der Beschranktheitsabszisse bei der Laplace-Transformation. Comment. Math. Helv. 22 (1949), 34–47.

[Bob97a] A. Bobrowski. On the Yosida approximation and the Widder-Arendtrepresentation theorem. Studia Math. 124 (1997), 281–290.

[Bob97b] A. Bobrowski. The Widder-Arendt theorem on inverting of the Laplacetransform, and its relationships with the theory of semigroups of opera-tors. Methods Funct. Anal. Topology 3 (1997), 1–39.

[Bob01] A. Bobrowski. Inversion of the Laplace transform and generation of Abelsummable semigroups. J. Funct. Anal. 186 (2001), 1–24.

[Boc42] S. Bochner. Completely monotone functions in partially ordered spaces.Duke Math. J. 9 (1942), 519–526.

[Boh25] H. Bohr. Zur Theorie der fastperiodischen Funktion, I and II. ActaMath. 45 (1925), 29–127 and 46 (1925), 101–214.

[Boh47] H. Bohr. Almost Periodic Functions. Chelsea, New York, 1947.

[BCT07] A. Borichev, R. Chill and Y. Tomilov. Uniqueness theorems for (sub-)harmonic functions with applications to operator theory. Proc. LondonMath. Soc. 95 (2007), 687–708.

Page 37: Vector-valued Holomorphic Functions

500 BIBLIOGRAPHY

[BT10] A. Borichev and Y. Tomilov. Optimal polynomial decay of functions andoperator semigroups. Math. Ann. 347 (2010), 455-478.

[BY84] J. M. Borwein and D. T. Yost. Absolute norms on vector lattices. Proc.Edinburgh Math. Soc. 27 (1984), 215–222.

[Bou82] J. Bourgain. A Hausdorff-Young inequality for B-convex Banach spaces.Pacific J. Math. 101 (1982), 255–262.

[Bou83] J. Bourgain. Some remarks on Banach spaces in which martingale dif-ference sequences are unconditional. Ark. Math. 21 (1983), 163–168.

[Bou88] J. Bourgain. Vector-valued Hausdorff-Young inequalities and applica-tions. Geometric Aspects of Functional Analysis. Lect. Notes in Math.1317, Springer-Verlag, Berlin (1988), 239–249.

[BD92] K. Boyadzhiev and R. deLaubenfels. Semigroups and resolvents ofbounded variation, imaginary powers and H∞ functional calculus. Semi-group Forum 45 (1992), 372–384.

[Bre66] Ph. Brenner. The Cauchy problem for symmetric hyperbolic systems inLp. Math. Scand. 19 (1966), 27–37.

[Bre73] Ph. Brenner. The Cauchy problem for systems in Lp and Lp,α. Ark.Mat. 11 (1973), 75–101.

[BT79] Ph. Brenner and V. Thomee. On rational approximations of semigroups.SIAM J. Numer. Anal. 16 (1979), 683-694.

[Bre83] H. Brezis. Analyse Fonctionelle. Masson, Paris, 1983.

[Buk81] A. V. Bukhvalov. Hardy spaces of vector-valued functions. J. SovietMath. 16 (1981), 1051–1059.

[BD82] A. V. Bukhvalov and A. A. Danilevich. Boundary properties of analyticand harmonic functions with values in Banach space. Math. Notes 31(1982), 104–110.

[Bur81] D. L. Burkholder. A geometrical characterization of Banach spaces inwhich martingale difference sequences are unconditional. Ann. Probab.9 (1981), 997–1011.

[Bur98] N. Burq. Decroissance de l’energie locale de l’equation des ondes pourle probleme exterieur et absence de resonance au voisinage du reel. ActaMath. 180 (1998), 1–29.

[Cas85] J. A. van Casteren. Generators of Strongly Continuous Semigroups. Pit-man Res. Notes Math. 115, Longman, Harlow, 1985.

Page 38: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 501

[Cha84] S. D. Chatterji. Tauber’s theorem—a few historical remarks. Jahrb.Uberbl. Math., 1984, Bibliographisches Institut, Mannheim (1984), 167–175.

[Cha71] J. Chazarain. Problemes de Cauchy abstraits et applications a quelquesproblemes mixtes, J. Funct. Anal. 7 (1971), 346–446.

[Che68] P. R. Chernoff. Note on product formulas for operator semigroups. J.Funct. Anal. 2 (1968), 238–242.

[Che74] P. R. Chernoff. Product Formulas, Nonlinear Semigroups and Additionof Unbounded Operators. Mem. Amer. Math. Soc. 140, 1974.

[CL99] C. Chicone and Y. Latushkin. Evolution Semigroups in Dynamical Sys-tems and Differential Equations. Amer. Math. Soc., Providence, 1999.

[Chi98a] R. Chill. Fourier Transforms and Asymptotics of Evolution Equations.PhD Thesis, Ulm, 1998.

[Chi98b] R. Chill. Tauberian theorems for vector-valued Fourier and Laplacetransforms. Studia Math. 128 (1998), 55–69.

[CP01] R. Chill and J. Pruss. Asymptotic behaviour of linear evolutionary inte-gral equations. Integral Equations Operator Theory 39 (2001), 193–213.

[CT03] R. Chill and Y. Tomilov. Stability of C0-semigroups and geometry ofBanach spaces. Math. Proc. Cambridge Philos. Soc. 135 (2003), 493–511.

[CT04] R. Chill and Y. Tomilov. Analytic continuation and stability of operatorsemigroups. J. Anal. Math. 93 (2004), 331–357.

[CT07] R. Chill and Y. Tomilov. Stability of operator semigroups: ideas andresults. Perspectives in Operator Theory. Banach Center Publ. 75, PolishAcad. Sci., Warsaw (2007), 71–109.

[CT09] R. Chill and Y. Tomilov. Operators L1(R+) → X and the norm conti-nuity problem for semigroups. J. Funct. Anal. 256 (2009), 352–384.

[Cho02] W. Chojnacki. A generalization of the Widder-Arendt theorem. Proc.Edinb. Math. Soc. (2) 45 (2002), 161–179.

[CL03] I. Cioranescu and C. Lizama. On the inversion of the Laplace transformfor resolvent families in UMD-spaces. Arch. Math. (Basel) 81 (2003),182-192.

[CL94] I. Cioranescu and G. Lumer. Problemes d’evolution regularises par unnoyau general K(t). Formule de Duhamel, prolongements, theoremes degeneration. C.R. Acad. Sci. Paris Ser. I Math. 319 (1994), 1273–1278.

Page 39: Vector-valued Holomorphic Functions

502 BIBLIOGRAPHY

[CHA87] Ph. Clement, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn andB. de Pagter. One-parameter Semigroups. North-Holland, Amsterdam,1987.

[Con73] J. B. Conway. Functions of One Complex Variable. Springer-Verlag,Berlin, 1973.

[CW77] R. R. Coifman and G. Weiss. Transference Methods in Analysis. Conf.Board Math. Sci. Reg. Conf. Series Math. 31, Amer. Math. Soc., Provi-dence, 1977.

[Cou84] T. Coulhon. Suites d’operateurs sur un espace C(K) de Grothendieck.C. R. Acad. Sci. Paris Ser. I Math. 298 (1984), 13–15.

[Cro04] M. Crouzeix. Operators with numerical range in a parabola. Arch. Math.(Basel) 82 (2004), 517–527.

[Cro07] M. Crouzeix. Numerical range and functional calculus in Hilbert space.J. Funct. Anal. 244 (2007), 668–690.

[Cro08] M. Crouzeix. A functional calculus based on the numerical range: appli-cations. Linear Multilinear Algebra 56 (2008), 81–103.

[DaP66] G. Da Prato. Semigruppi regolarizzabili. Ricerche Mat. 15 (1966), 223–248.

[DG67] G. Da Prato and F. Giusti. Una caratterizzazione dei generatori difunzioni coseno astratte. Bull. Un. Mat. Ital. 22 (1967), 357–362.

[DS87] G. Da Prato and E. Sinestrari. Differential operators with nondensedomain. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 285–344.

[DK74] Y. L. Daletskii and M. G. Krein. Stability of Solutions of DifferentialEquations in Banach Space. Amer. Math. Soc., Providence, 1974.

[Dat70] R. Datko. Extending a theorem of A. M. Liapunov to Hilbert space. J.Math. Anal. Appl. 32 (1970), 610–616.

[Dat72] R. Datko. Uniform asymptotic stability of evolutionary processes in aBanach space. SIAM J. Math. Anal. 3 (1972), 428–445.

[DM95] C. Datry and G. Muraz. Analyse harmonique dans les modules de Ba-nach, I: proprietes generales. Bull. Sci. Math. 119 (1995), 299–337.

[DM96] C. Datry and G. Muraz. Analyse harmonique dans les modules de Ba-nach, II: presque-periodicite et ergodicite. Bull. Sci. Math. 120 (1996),493–536.

Page 40: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 503

[DL90] R. Dautray and J. L. Lions. Mathematical Analysis and Numerical Meth-ods for Science and Technology. Vol. 1–3. Springer-Verlag, Berlin, 1990.

[Dav80] E. B. Davies. One-parameter Semigroups. Academic Press, London,1980.

[Dav90] E. B. Davies. Heat Kernels and Spectral Theory. Cambridge Univ. Press,Cambridge, 1990.

[Dav95] E. B. Davies. Spectral Theory and Differential Operators. CambridgeUniv. Press, Cambridge, 1995.

[Dav05] E. B. Davies. Triviality of the peripheral point spectrum. J. Evol. Equ.5 (2005), 407–415.

[Dav07] E. B. Davies. Linear Operators and their Spectra. Cambridge Univ.Press, Cambridge, 2007.

[DP87] E. B. Davies and M. M. Pang. The Cauchy problem and a generalizationof the Hille-Yosida theorem. Proc. London Math. Soc. 55 (1987), 181–208.

[Dea81] M. A. B. Deakin. The development of the Laplace transform, 1737-1937.I. Euler to Spitzer, 1737-1880. Arch. Hist. Exact Sci. 25 (1981), 343–390.

[Dea82] M. A. B. Deakin. The development of the Laplace transform, 1737-1937.II. Poincare to Doetsch, 1880-1937. Arch. Hist. Exact Sci. 26 (1982),351–381.

[deL90] R. deLaubenfels. Integrated semigroups and integrodifferential equa-tions. Math. Z. 204 (1990), 501–514.

[deL94] R. deLaubenfels. Existence Families, Functional Calculi and EvolutionEquations. Lecture Notes in Math. 1570, Springer-Verlag, Berlin, 1994.

[DHW97] R. deLaubenfels, Z. Huang, S. Wang, and Y. Wang. Laplace trans-forms of polynomially bounded vector-valued functions and semigroupsof operators. Israel J. Math. 98 (1997), 189–207.

[DVW02] R. deLaubenfels, Q. P. Vu, and S. Wang. Laplace transforms of vector-valued functions with growth ω and semigroups of operators. SemigroupForum 64 (2002), 355–375.

[Der80] R. Derndinger. Uber das Spektrum positiver Generatoren. Math. Z. 172(1980), 281–293.

[DP93] W. Desch and J. Pruss. Counterexamples for abstract linear Volterraequations. J. Integral Equations Appl. 5 (1993), 29–45.

Page 41: Vector-valued Holomorphic Functions

504 BIBLIOGRAPHY

[DS88] W. Desch and W. Schappacher. Some perturbation results for analyticsemigroups. Math. Ann. 281 (1988), 157–162.

[DSS09] W. Desch, G. Schappacher and W. Schappacher. Relatively boundedrank one perturbations of non-analytic semigroups can generate largepoint spectrum. Semigroup Forum 75 (2007), 470–476.

[DU77] J. Diestel and J. J. Uhl. Vector Measures. Amer. Math. Soc., Providence,1977.

[Doe37] G. Doetsch. Theorie und Anwendung der Laplace-Transformation. Ver-lag Julius Springer, Berlin, 1937.

[Doe50] G. Doetsch. Handbuch der Laplace-Transformation. Vol. I, II, III.Birkhauser, Basel, 1950, 1955, 1956.

[DE99] A. Driouich and O. El-Mennaoui. On the inverse formula for Laplacetransforms. Arch. Math. (Basel) 72 (1999), 56–63.

[DS59] N. Dunford and J. Schwartz. Linear Operators. Vol. I. Interscience, NewYork, 1958.

[Dur70] P. L. Duren. Theory of Hp Spaces. Academic Press, New York, 1970.

[EG92] B. Eberhardt and G. Greiner. Baillon’s theorem on maximal regularity.Acta Appl. Math. 27 (1992), 47–54.

[Eis10] T. Eisner. Stability of Operators and Operator Semigroups. Birkhauser,Basel, 2010.

[Elm92] O. El-Mennaoui. Traces des semi-groupes holomorphes singuliers al’origine et comportement asymptotique. PhD Thesis, Besancon, 1992.

[Elm94] O. El-Mennaoui. Asymptotic behaviour of integrated semigroups. J.Comput. Appl. Math. 54 (1994), 351–369.

[EE94] O. El-Mennaoui and K. J. Engel. On the characterization of eventuallynorm continuous semigroups in Hilbert spaces. Arch. Math. (Basel) 63(1994), 437–440.

[EK96a] O. El-Mennaoui and V. Keyantuo. On the Schrodinger equation in Lp-spaces. Math. Ann. 304 (1996), 293–302.

[EK96b] O. El-Mennaoui and V. Keyantuo. Trace theorems for holomorphic semi-groups and the second order Cauchy problem. Proc. Amer. Math. Soc.124 (1996), 1445–1458.

[EN00] K. J. Engel and R. Nagel. One-parameter Semigroups for Linear Evolu-tion Equations. Springer-Verlag, Berlin, 2000.

Page 42: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 505

[EN06] K. J. Engel and R. Nagel. A Short Course on Operator Semigroups.Springer-Verlag, Berlin, 2006.

[EW85] I. Erdelyi and S. W. Wang. A Local Spectral Theory for Closed Oper-ators. London Math. Soc. Lecture Note 105, Cambridge Univ. Press,Cambridge, 1985.

[ESZ92] J. Esterle, E. Strouse, and F. Zouakia. Stabilite asymptotique de certainssemi-groupes d’operateurs et ideaux primaires de L1(R+). J. OperatorTheory 28 (1992), 203–227.

[Eva98] L. C. Evans. Partial Differential Equations. Amer. Math. Soc., Provi-dence, 1998.

[FP01] E. Fasangova and J. Pruss. Asymptotic behaviour of a semilinear vis-coelastic beam model. Arch. Math. (Basel) 77 (2001), 488–497

[Fat69] H. O. Fattorini. Ordinary differential equations in linear topologicalspaces, II. J. Differential Equations 6 (1969), 50–70.

[Fat83] H. O. Fattorini. The Cauchy Problem. Addison-Wesley, Reading, 1983.

[Fat85] H. O. Fattorini. Second Order Linear Differential Equations in BanachSpaces. North-Holland, Amsterdam, 1985.

[FY99] A. Favini and A. Yagi. Degenerate Differential Equations in BanachSpaces. Marcel-Dekker New York, 1999.

[FS72] C. Fefferman, E. M. Stein. Hp spaces of several variables. Acta Math.129 (1972), 137–193.

[Fin74] A. M. Fink. Almost Periodic Differential Equations. Lecture Notes inMath. 377, Springer-Verlag, Berlin, 1974.

[Fra86] J. L. Rubio de Francia. Martingale and integral transforms of Banachspace valued functions. Probability and Banach Spaces, Proc. Zaragoza1985, Lecture Notes in Math. 1221, Springer-Verlag, Berlin (1986), 195–222.

[Ful56] W. Fulks. A note on the steady state solutions of the heat equation.Proc. Amer. Math. Soc. 7 (1956), 766–770.

[Ful57] W. Fulks. Regular regions for the heat equation. Pacific J. Math. 7(1957), 867–877.

[Gea78] L. Gearhart. Spectral theory for contraction semigroups on Hilbert space.Trans. Amer. Math. Soc. 236 (1978), 385–394.

Page 43: Vector-valued Holomorphic Functions

506 BIBLIOGRAPHY

[GT83] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equationsof Second Order. Springer-Verlag, Berlin, 1983.

[GL61] I. Glicksberg and K. de Leeuw. Applications of almost periodic com-pactifications. Acta Math. 105 (1961), 63–97.

[GW99] V. Goersmeyer and L. Weis. Norm continuity of C0-semigroups. StudiaMath. 134 (1999), 169–178.

[Gol85] J. A. Goldstein. Semigroups of Linear Operators and Applications. Ox-ford Univ. Press, Oxford, 1985.

[Gom99] A. M. Gomilko. On conditions for the generating operator of a uniformlybounded C0-semigroup of operators. Funct. Anal. Appl. 33 (1999), 294–296.

[GN89] A. Grabosch and R. Nagel. Order structure of the semigroup dual: acounterexample. Nederl. Akad. Wetensch. Indag. Math. 51 (1989), 199–201.

[Gre94] D. A. Greenfield. Semigroup Representations: an Abstract Approach.DPhil Thesis, Oxford, 1994.

[Gre82] G. Greiner. Spektrum und Asymptotik stark stetiger Halbgruppen pos-itiver Operatoren. Sitzungsber. Heidelb. Akad. Wiss. Math.-Natur. Kl.1982, 55–80.

[Gre84] G. Greiner. Some applications of Fejer’s theorem to one-parameter semi-groups. Semesterbericht Funktionalanalysis, Tubingen (1984/1985), 33–50.

[Gre87] G. Greiner. Perturbing the boundary conditions of a generator. HoustonJ. Math. 13 (1987), 213–229.

[GM93] G. Greiner and M. Muller. The spectral mapping theorem for integratedsemigroups. Semigroup Forum 47 (1993), 115–122.

[GN83] G. Greiner and R. Nagel. On the stability of strongly continuous semi-groups of positive operators on L2(μ). Ann. Scuola Norm. Sup. Pisa Cl.Sci. (4) 10 (1983), 257–262.

[GVW81] G. Greiner, J. Voigt and M. Wolff. On the spectral bound of the gen-erator of semigroups of positive operators. J. Operator Theory 5 (1981),245–256.

[GN81] U. Groh and F. Neubrander. Stabilitat starkstetiger, positiver Opera-torhalbgruppen auf C∗-Algebren. Math. Ann. 256 (1981), 509–516.

Page 44: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 507

[Gue92] S. Guerre-Delabriere. Classical Sequences in Banach Spaces. Marcel-Dekker, New York, 1992.

[Haa06] M. Haase. The Functional calculus for Sectorial Operators. Birkhauser,Basel, 2006.

[Haa07a] M. Haase. Functional calculus for groups and applications to evolutionequations. J. Evol. Equ. 7 (2007), 529–554.

[Haa07b] M. Haase. Convexity inequalities for positive operators. Positivity 11(2007), 57–68.

[Haa08] M. Haase. The complex inversion formula revisited. J. Aust. Math. Soc.84 (2008), 7383.

[Haa09] M. Haase. The group reduction for bounded cosine functions on UMDspaces. Math. Z. 262 (2009), 281–299.

[Har91] A. Haraux. Systemes Dynamiques Dissipatifs et Applications. Masson,Paris, 1991.

[Hea93] O. Heaviside. Electromagnetic Theory. Vol. I–III. Benn, London, 1893–1899.

[Hel69] L. L. Helms. Introduction to Potential Theory. Wiley, New York, 1969.

[HN93] B. Hennig and F. Neubrander. On representations, inversions, and ap-proximations of Laplace transforms in Banach spaces. Appl. Anal. 49(1993), 151–170.

[Her83] W. Herbst. The spectrum of Hilbert space semigroups. J. OperatorTheory 10 (1983), 87–94.

[HK79] R. Hersh and T. Kato. High-accuracy stable difference schemes for well-posed initial value problems. SIAM J. Numer. Anal. 16 (1979), 670-682.

[Hes70] P. Hess. Zur Storungstheorie linearer Operatoren in Banachraumen.Comment. Math. Helv. 45 (1970), 229–235.

[Hie91a] M. Hieber. Integrated semigroups and differential operators on Lp spaces.Math. Ann. 291 (1991), 1–16.

[Hie91b] M. Hieber. Laplace transforms and α-times integrated semigroups. Fo-rum Math. 3 (1991), 595–612.

[Hie91c] M. Hieber. Integrated semigroups and the Cauchy problem for systemsin Lp-spaces. J. Math. Ann. Appl. 162 (1991), 300–308.

Page 45: Vector-valued Holomorphic Functions

508 BIBLIOGRAPHY

[Hie91d] M. Hieber. An operator-theoretical approach to Dirac’s equation on Lp-spaces. Semigroup Theory and Evolution Equations, Proc. Delft 1989, P.Clement et al. eds., Marcel-Dekker, New York (1991), 259-265.

[Hie95] M. Hieber. Lp spectra of pseudodifferential operators generating inte-grated semigroups. Trans. Amer. Math. Soc. 347 (1995), 4023–4035.

[HHN92] M. Hieber, A. Holderieth and F. Neubrander. Regularized semigroupsand systems of partial differential equations. Ann. Scuola Norm. Sup.Pisa Cl. Sci. (4) 19 (1992), 263–379.

[Hil48] E. Hille. Functional Analysis and Semi-groups. Amer. Math. Soc., Prov-idence, 1948.

[HP57] E. Hille and R. S. Phillips. Functional Analysis and Semi-groups. Amer.Math. Soc., Providence, 1957.

[Hor60] L. Hormander. Estimates for translation invariant operators in Lp spaces.Acta Math. 104 (1960), 93–139.

[Hor83] L. Hormander. The Analysis of Linear Partial Differential Operators.Vol. I,II. Springer-Verlag, Berlin, 1983.

[How84] J. S. Howland. On a theorem of Gearhart. Integral Equations OperatorTheory 7 (1984), 138–142.

[Hua83] F. L. Huang. Asymptotic stability theory for linear dynamical systemsin Banach spaces. Kexue Tongbao 28 (1983), 584–586.

[Hua85] F. L. Huang. Characteristic conditions for exponential stability of lin-ear dynamical systems in Hilbert spaces. Ann. Differential Equations 1(1985), 43–56.

[Hua93a] F. L. Huang. Spectral properties and stability of one-parameter semi-groups. J. Differential Equations 104 (1993), 182–195.

[Hua93b] F. L. Huang. Strong asymptotic stability of linear dynamical systems inBanach spaces. J. Differential Equations 104 (1993), 307–324.

[Hua99] S. Z. Huang. A local version of Gearhart’s theorem. Semigroup Forum58 (1999), 323–335.

[HN99] S. Z. Huang and J. M. A. M. van Neerven. B-convexity, the analyticRadon-Nikodym property, and individual stability of C0-semigroups. J.Math. Anal. Appl. 231 (1999), 1–20.

[HR94] S. Z. Huang and F. Rabiger. Superstable C0-semigroups on Banachspaces. Evolution equations, control theory and biomathematics, Proc.Han sur Lesse 1991, Marcel-Dekker, New York (1994), 291–300.

Page 46: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 509

[IS70] F. T. Iha and C. F. Schubert. The spectrum of partial differential oper-ators on Lp(Rn). Trans. Amer. Math. Soc. 152 (1970), 215–226.

[Ile07] P. Iley. Perturbations of differentiable semigroups. J. Evol. Equ. 7 (2007),765–781.

[Ing35] A. E. Ingham. On Wiener’s method in Tauberian theorems. Proc. Lon-don Math. Soc. 38 (1935), 458–480.

[Jac76] S. V. D’Jacenko. Semigroups of almost negative type and their applica-tions. Soviet Math. Dokl. 17 (1976), 1189–1193.

[Jac56] K. Jacobs. Ergodentheorie und fastperiodische Funktionen auf Halb-gruppen. Math. Z. 64 (1956), 298–338.

[Jam64] R. C. James. Uniformly non-square Banach spaces. Ann. of Math. 80(1964), 542–550.

[Jar08] P. Jara. Rational approximation schemes for bi-continuous semigroups.J. Math. Anal. Appl. 344 (2008), 956–968.

[JNO08] P. Jara, F. Neubrander and K. Ozer. Rational inversion of the Laplacetransform. Preprint, 2008.

[Jaz95] J. M. Jazar. Fractional powers of momentum of a spectral distribution.Proc. Amer. Math. Soc. 123 (1995), 1805–1813.

[Kad69] M. I. Kadets. On the integration of almost periodic functions with valuesin a Banach space. Funct. Anal. Appl. 3 (1969), 228–230.

[KW03] C. Kaiser and L. Weis. Perturbation theorems for α-times integratedsemigroups. Arch. Math. (Basel) 81 (2003), 215–228.

[Kat59] T. Kato. Remarks on pseudo-resolvents and infinitesimal generators ofsemi-groups. Proc. Japan Acad. 35 (1959), 467–468.

[Kat66] T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag,Berlin, 1966.

[Kat82] T. Kato. A Short Introduction to Perturbation Theory for Linear Oper-ators. Springer-Verlag, Berlin, 1982.

[Kat68] Y. Katznelson. An Introduction to Harmonic Analysis. Wiley, New York,1968.

[KT86] Y. Katznelson and L. Tzafriri. On power bounded operators. J. Funct.Anal. 68 (1986), 313–328.

[Kei06] V. Keicher. On the peripheral spectrum of bounded positive semigroupson atomic Banach lattices. Arch. Math. (Basel) 87 (2006), 359–367.

Page 47: Vector-valued Holomorphic Functions

510 BIBLIOGRAPHY

[Kel86] H. Kellermann. Integrated Semigroups. PhD Thesis, Tubingen, 1986.

[KH89] H. Kellermann and M. Hieber. Integrated semigroups. J. Funct. Anal.84 (1989), 160–180.

[Kel67] O. D. Kellogg. Foundations of Potential Theory. Springer-Verlag, Berlin,1967.

[KT80] C. E. Kenig and P. A. Tomas. Lp behavior of certain second order partialdifferential operators. Trans. Amer. Math. Soc. 262 (1980), 521–531.

[Ker97] L. Kerchy. Operators with regular norm-sequences. Acta Sci. Math.(Szeged) 63 (1997), 571–605.

[Ker99] L. Kerchy. Representations with regular norm-behaviour of discreteabelian semigroups. Acta Sci. Math. (Szeged) 65 (1999), 701–726.

[Key95a] V. Keyantuo. A note on interpolation of semigroups. Proc. Amer. Math.Soc. 123 (1995), 2123–2132.

[Key95b] V. Keyantuo. The Laplace transform and the ascent method for abstractwave equations. J. Differential Equations 122 (1995), 27–47.

[KMV03] V. Keyantuo, C. Muller and P. Vieten. Finite and local Laplace trans-forms in Banach spaces. Proc. Edinb. Math. Soc. (2) 46 (2003), 357–372.

[KR81] A. Kishimoto and D. W. Robinson. Subordinate semigroups and orderproperties. J. Austral. Math. Soc. Ser. A 31 (1981), 59–76.

[Kis72] J. Kisynski. On cosine operator functions and one-parameter groups ofoperators. Studia Math. 44 (1972), 93–105.

[Kis76] J. Kisynski. Semi-groups of operators and some of their applicationsto partial differential equations. Control Theory and Topics in Func-tional Analysis, Proc. Trieste 1974, Vol. III, International Atomic EnergyAgency, Vienna (1976), 305–405.

[Kis00] J. Kisynski. Around Widder’s characterization of the Laplace transformof an element of L∞(R+). Ann. Polon. Math. 74 (2000), 161–200.

[KN94] C. Knuckles and F. Neubrander. Remarks on the Cauchy problem formulti-valued linear operators. Partial Differential Equations, Proc. Han-sur-Lesse 1993, Akademie Verlag, Berlin (1994), 174–187.

[Kom66] H. Komatsu. Fractional powers of operators. Pacific J. Math. 19 (1966),285–346.

[Kon60] H. Konig. Neuer Beweis eines klassischen Tauber-Satzes. Arch. Math.,11 (1960), 278–279.

Page 48: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 511

[Koo80] P. Koosis. Introduction to Hp Spaces. London Math. Soc. Lecture Note40. Cambridge Univ. Press, 1980.

[Kor82] J. Korevaar. On Newman’s quick way to the prime number theorem.Math. Intelligencer 4 (1982), 108–115.

[Kor04] J. Korevaar. Tauberian theory. A century of developments. Springer-Verlag, Berlin, 2004.

[Kov07] M. Kovacs. On the convergence of rational approximations of semigroupson intermediate spaces. Math. Comp. 76 (2007), 273-286.

[KS90] W. Kratz and U. Stadtmuller. Tauberian theorems for Borel-type meth-ods of summability. Arch. Math. (Basel) 55 (1990), 465–474.

[Kre71] S. G. Krein. Linear Differential Equations in Banach Spaces. Amer.Math. Soc.. Providence, 1971.

[Kre59] H. O. Kreiss. Uber Matrizen die beschrankte Halbgruppen erzeugen.Math. Scand. 7 (1959), 71–80.

[Kre85] U. Krengel. Ergodic Theorems. De Gruyter, Berlin, 1985.

[KW04] P.C. Kunstmann and L. Weis. Maximal Lp-regularity for parabolic equa-tions, Fourier multiplier theorems and H∞-functional calculus. Func-tional analytic methods for evolution equations, Lecture Notes in Math.1855, Springer-Verlag, Berlin (2004), 65–311.

[Kur69] T. G. Kurtz. Extensions of Trotter’s operator semigroup approximationtheorems. J. Funct. Anal. 3 (1969), 354–375.

[Kwa72] S. Kwapien. Isomorphic characterizations of inner product spaces byorthogonal series with vector valued coefficients. Studia Math. 44 (1972),583–595.

[Lan68] E. Lanconelli. Valutazioni in Lp(Rn) della soluzione del problema diCauchy per l’equazione di Schrodinger. Boll. Un. Mat. Ital. (4) 1 (1968),591–607.

[Lan72] N. S. Landkof. Foundation of Modern Potential Theory. Springer-Verlag,Berlin, 1972.

[LM95] Y. Latushkin and S. Montgomery-Smith. Evolutionary semigroups andLyapunov theorems in Banach spaces. J. Funct. Anal. 127 (1995), 173–197.

[LP67] P. D. Lax and R. S. Phillips. Scattering Theory. Academic Press, NewYork, 1967.

Page 49: Vector-valued Holomorphic Functions

512 BIBLIOGRAPHY

[Leb96] G. Lebeau. Equation des ondes amorties. Algebraic and geometric meth-ods in mathematical physics, Proc. Kaciveli 1993, Math. Phys. Stud. 19,Kluwer Acad. Publ., Dordrecht (1996), 73–109.

[Leb72] N. N. Lebedev. Special Functions and their Applications. Dover, NewYork, 1972.

[LS97] H. G. Leopold and E. Schrohe. Invariance of the Lp spectrum for hy-poelliptic operators. Proc. Amer. Math. Soc. 125 (1997), 3679-3687.

[Lev69] D. Leviatan. On the representation of functions as Laplace integrals. J.London Math. Soc. 44 (1969), 88–92.

[Lev66] B. M. Levitan. Integration of almost periodic functions with values in aBanach space. Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 1101–1110.

[LZ82] B. M. Levitan and V. V. Zhikov. Almost Periodic Functions and Differ-ential Equations. Cambridge Univ. Press, Cambridge, 1982.

[LT77] J. Lindenstrauss and L. Tzafriri. Classical Banach Spaces. Vol. I,II.Springer-Verlag, Berlin, 1977.

[Lio60] J.-L. Lions. Les semi groupes distributions. Portugal. Math. 19 (1960)141–164.

[Lit63] W. Littman. The wave operator and Lp norms. J. Math. Mech. 12(1963), 55–68.

[LR05] Z. Liu and B. Rao. Characterization of polynomial decay rate for thesolution of linear evolution equation. Z. Angew. Math. Phys. 56 (2005),630–644.

[Liz94] C. Lizama. On the convergence and approximation of integrated semi-groups. J. Math. Anal. Appl. 181 (1994), 89–103.

[Liz00] C. Lizama. Regularized solutions for abstract Volterra equations. J.Math. Anal. Appl. 243 (2000), 278–292.

[Loo60] L. H. Loomis. On the spectral characterization of a class of almostperiodic functions. Ann. of Math. 72 (1960), 362–368.

[LB07] L. Lorenzi and M. Bertoldi. Analytical Methods for Markov Semigroups.Chapman & Hall/CRC, Boca Raton, 2007.

[Lot85] H. P. Lotz. Uniform convergence of operators on L∞ and similar spaces.Math. Z. 190 (1985), 207–220.

[Lum75] G. Lumer. Probleme de Cauchy avec valeurs au bord continues. C. R.Acad. Sci. Paris Ser. A 281 (1975), 805–807.

Page 50: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 513

[Lum90] G. Lumer. Solutions generalisees et semi-groupes integres. C. R. Acad.Sci. Paris Ser. I Math. 310 (1990), 577–582.

[Lum92] G. Lumer. Semi-groupes irreguliers et semi-groupes integres: applicationa l’identification de semi-groupes irreguliers analytiques et resultats degeneration. C. R. Acad. Sci. Paris Ser. I Math. 314 (1992), 1033–1038.

[Lum94] G. Lumer. Evolution equations. Solutions for irregular evolution prob-lems via generalized solutions and generalized initial values. Applicationsto periodic shocks modes. Ann. Univ. Sarav. Ser. Math. 5 (1994), 1–102.

[Lum97] G. Lumer. Singular evolution problems, regularization, and applicationsto physics, engineering, and biology. Linear Operators, Banach CenterPubl. 34, Polish Acad. Sci., Warsaw (1997), 205–216.

[LN97] G. Lumer and F. Neubrander. Signaux non-detectables en dimension Ndans des systemes gouvernes par des equations de type paraboliques. C.R. Acad. Sci. Paris Ser. I Math. 324 (1997), 731–736.

[LN99] G. Lumer and F. Neubrander. Asymptotic Laplace transforms and evo-lution equations. Evolution Equations, Feshbach Resonances, SingularHodge Theory, Wiley-VCH, Berlin (1999), 37–57.

[LN01] G. Lumer and F. Neubrander. The asymptotic Laplace transform: newresults and relation to Komatsu’s Laplace transform of hyperfunctions.Partial Differential Equations on Multistructures, Marcel-Dekker, NewYork (2001), 147–162.

[LP79] G. Lumer and L. Paquet. Semi-groupes holomorphes, produit tensorielde semi-groupes et equations d’evolution. Sem. Theorie du Potentiel 4(Paris, 1977/78), Lecture Notes in Math. 713, Springer-Verlag, Berlin(1979), 156–177.

[LS99] G. Lumer and R. Schnaubelt. Local operator methods and time depen-dent parabolic equations on non-cylindrical domains. Evolution Equa-tions, Feshbach Resonances, Singular Hodge Theory, Wiley-VCH, Berlin(1999), 58–130.

[Lun95] A. Lunardi. Analytic Semigroups and Optimal Regularity in ParabolicEquations. Birkhauser, Basel, 1995.

[Lun86] J. van de Lune. An Introduction to Tauberian Theory: from Tauber toWiener. Stichting Math. Centrum, Centrum Wisk. Inform., Amsterdam,1986.

[Lyu66] Yu. I. Lyubich. The classical and local Laplace transformation in anabstract Cauchy problem. Russian Math. Surveys 21 (1966), 1–52.

Page 51: Vector-valued Holomorphic Functions

514 BIBLIOGRAPHY

[LV88] Y. I. Lyubich and Q. P. Vu. Asymptotic stability of linear differentialequations in Banach spaces. Studia Math. 88 (1988), 37–42.

[LV90a] Y. I. Lyubich and Q. P. Vu. A spectral criterion for the almost periodicityof one-parameter semigroups. J. Soviet. Math. 48 (1990), 644–647.

[LV90b] Y. I. Lyubich and Q. P. Vu. A spectral criterion for asymptotic al-most periodicity of uniformly continuous representations of abelian semi-groups. J. Soviet. Math. 49 (1990), 1263–1266.

[MS01] C. Martınez Carracedo and M. Sanz Alix. The Theory of FractionalPowers of Operators. North-Holland, Amsterdam, 2001.

[MM96] J. Martinez and J. M. Mazon. C0-semigroups norm continuous at infinity.Semigroup Forum 52 (1996), 213–224.

[Mar11] M. Martınez. Decay estimates of functions through singular extensionsof vector-valued Laplace transforms. J. Math. Anal. Appl. 375 (2011),196–206.

[Mat08] T. Matrai. Resolvent norm decay does not characterize norm continuity.Israel J. Math. 168 (2008), 1–28.

[Meg98] R. E. Megginson. An Introduction to Banach Space Theory. Springer-Verlag, Berlin, 1998.

[MF01] I.V. Melnikova and A. Filinkov. Abstract Cauchy Problems: Three Ap-proaches. Chapman & Hall, Boca Raton, 2001.

[MS78] R. B. Melrose and J. Sjostrand. Singularities of boundary value problems.I. Comm. Pure Appl. Math. 31 (1978),593–617.

[Mey91] P. Meyer-Nieberg. Banach Lattices. Springer-Verlag, Berlin, 1991.

[Mih09] C. Mihai. Zeros of the Laplace transform. Int. J. Pure Appl. Math. 56(2009), 49–55.

[MB87] J. Mikusinski and T. Boehme. Operational Calculus, Vol. II. 2nd ed.,Pergamon Press, Oxford, 1987.

[Mil80] P. Milnes. On vector-valued weakly almost periodic functions. J. LondonMath. Soc. (2) 22 (1980), 467–472.

[Miy81] A. Miyachi. On some singular Fourier multipliers. J. Fac. Sci. Univ.Tokyo Sect. 1A Math. 28 (1981), 267–315.

[Miy56] I. Miyadera. On the representation theorem by the Laplace transforma-tion of vector-valued functions. Tohoku Math. J. 8 (1956), 170–180.

Page 52: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 515

[Mon96] S. Montgomery-Smith. Stability and dichotomy of positive semigroupson Lp. Proc. Amer. Math. Soc. 124 (1996), 2433-2437.

[MRS77] C. S. Morawetz, J. V. Ralston and W. A. Strauss. Decay of solutionsof the wave equation outside nontrapping obstacles. Comm. Pure Appl.Math. 30 (1977), 447–508.

[Nag86] R. Nagel (ed.). One-parameter Semigroups of Positive Operators. LectureNotes in Math. 1184. Springer-Verlag, Berlin, 1986.

[NP00] R. Nagel and J. Poland. The critical spectrum of a strongly continuoussemigroup. Adv. Math. 152 (2000), 120–133.

[NR93] R. Nagel and F. Rabiger. Superstable operators on Banach spaces. IsraelJ. Math. 81 (1993), 213–226.

[NS94] R. Nagel and E. Sinestrari. Inhomogeneous Volterra integrodifferentialequations for Hille-Yosida operators. Functional Analysis, Proc. Essen1991, Marcel-Dekker, New York (1994), 51–70.

[Nee92] J. M. A. M. van Neerven. The Adjoint of a Semigroup of Linear Opera-tors. Lecture Notes in Math. 1529, Springer-Verlag, Berlin, 1992.

[Nee96a] J. M. A. M. van Neerven. Characterization of exponential stability of asemigroup of operators in terms of its action by convolution on vector-valued function spaces over R+. J. Differential Equations 124 (1996),324–342.

[Nee96b] J. M. A. M. van Neerven. Individual stability of C0-semigroups withuniformly bounded local resolvent. Semigroup Forum 53 (1996), 155–161.

[Nee96c] J. M. A. M. van Neerven. The Asymptotic Behaviour of Semigroups ofLinear Operators. Birkhauser, Basel, 1996.

[Nee96d] J. M. A. M. van Neerven. Inequality of spectral bound and growthbound for positive semigroups in rearrangement invariant Banach func-tion spaces. Arch. Math. (Basel) 66 (1996), 406–416.

[Nee00] J. M. A. M. van Neerven. The vector-valued Loomis theorem for thehalf-line and individual stability of C0-semigroups: a counterexample.Semigroup Forum 60 (2000), 271–283.

[Nee09] J. M. A. M. van Neerven. Asymptotic behaviour of C0-semigroups andγ-boundedness of the resolvent. J. Math. Anal. Appl. 358 (2009), 380–388.

Page 53: Vector-valued Holomorphic Functions

516 BIBLIOGRAPHY

[NSW95] J. M. A. M. van Neerven, B. Straub and L. Weis. On the asymptoticbehaviour of a semigroup of linear operators. Indag. Math. (N.S.) 6(1995), 453–476.

[Neu86] F. Neubrander. Laplace transform and asymptotic behavior of stronglycontinuous semigroups. Houston J. Math. 12 (1986), 549–561.

[Neu88] F. Neubrander. Integrated semigroups and their applications to the ab-stract Cauchy problem. Pacific J. Math. 135 (1998), 111–155.

[Neu89a] F. Neubrander. Integrated semigroups and their applications to completesecond order Cauchy problems. Semigroup Forum 38 (1989), 233–251.

[Neu89b] F. Neubrander. Abstract elliptic operators, analytic interpolation semi-groups, and Laplace transforms of analytic functions. SemesterberichtFunktionalanalysis, Univ. Tubingen (1988/89), 163–185.

[Neu94] F. Neubrander. The Laplace-Stieltjes transform in Banach spaces andabstract Cauchy problems. Evolution Equations, Control Theory, andBiomathematics, Proc. Han sur Lesse 1991, Marcel-Dekker, New York(1994), 417–431.

[New80] D. J. Newman. Simple analytic proof of the prime number theorem.Amer. Math. Monthly 87 (1980), 693–696.

[New98] D. J. Newman. Analytic Number Theory. Springer-Verlag, Berlin, 1998.

[Nic93] S. Nicaise. The Hille-Yosida and Trotter-Kato theorems for integratedsemigroups. J. Math. Anal. Appl. 180 (1993), 303–316.

[Oha71] S. Oharu. Semigroups of linear operators in a Banach space. Publ. Res.Inst. Math. Sci. 7 (1971), 205–260.

[Ouh05] E.-M. Ouhabaz. Analysis of Heat Equations on Domains. PrincetonUniv. Press, Princeton, 2005.

[Pag89] B. de Pagter. A characterization of sun-reflexivity. Math. Ann. 283(1989), 511–518.

[Pas19] J. Rey Pastor. La investigacion matematica. Boletin de critica, peda-gogia, historia y bibliografia 1 (1919), 97 - 108.

[Paz72] A. Pazy. On the applicability of Lyapunov’s theorem in Hilbert space.SIAM J. Math. Anal. 3 (1972), 291–294.

[Paz83] A. Pazy. Semigroups of Linear Operators and Applications to PartialDifferential Equations. Springer-Verlag, Berlin, 1983.

[Ped89] G. K. Pedersen. Analysis Now. Springer-Verlag, Berlin, 1989.

Page 54: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 517

[PC98] Jigen Peng and Si-Kit Chung. Laplace transforms and generators ofsemigroups of operators. Proc. Amer. Math. Soc. 126 (1998), 2407–2416.

[Per80] J. C. Peral. Lp estimates for the wave equation. J. Funct. Anal. 36(1980), 114–145.

[Phr04] E. Phragmen. Sur une extension d’un theoreme classique de la theoriedes fonctions. Acta Math. 28 (1904), 351–368.

[Pis86] G. Pisier. Factorization of Linear Operators and Geometry of BanachSpaces. Conf. Board Math. Sci. Reg. Conf. Series Math. 60, Amer. Math.Soc., Providence, 1986.

[Pit58] H. R. Pitt. Tauberian Theorems. Oxford Univ. Press, Oxford, 1958.

[Pru84] J. Pruss. On the spectrum of C0-semigroups. Trans. Amer. Math. Soc.284 (1984), 847–857.

[Pru93] J. Pruss. Evolutionary Integral Equations and Applications. Birkhauser,Basel, 1993.

[RW95] F. Rabiger and M. Wolff. Superstable semigroups of operators. Indag.Math. (N.S.) 6 (1995), 481–494.

[RS72] M. Reed and B. Simon. Methods of Modern Mathematical Physics. Vol.I,II. Academic Press, New York, 1972, 1975.

[Rei52] H. J. Reiter. Investigations in harmonic analysis. Trans. Amer. Math.Soc. 73 (1952), 401–427.

[Rob91] D.W. Robinson. Elliptic Operators and Lie Groups. Oxford Univ. Press,Oxford, 1991.

[RRS91] J. Rosenblatt, W. M. Ruess, F. D. Sentilles. On the critical part of aweakly almost periodic function. Houston J. Math. 17 (1991), 237–249.

[Rud62] W. Rudin. Fourier Analysis on Groups. Wiley, New York, 1962.

[Rud76] W. Rudin. Principles of Mathematical Analysis. 3rd ed., McGraw-Hill,New York, 1976.

[Rud87] W. Rudin. Real and Complex Analysis. 3rd ed., McGraw-Hill, New York,1987.

[Rud91] W. Rudin. Functional Analysis. 2nd ed., McGraw-Hill, New York, 1991.

[Rue91] W. M. Ruess. Almost periodicity properties of solutions to the nonlinearCauchy problem in Banach spaces. Semigroup Theory and EvolutionEquations, Proc. Delft 1989, P. Clement et al. eds., Marcel-Dekker, NewYork (1991), 421–440.

Page 55: Vector-valued Holomorphic Functions

518 BIBLIOGRAPHY

[Rue95] W. M. Ruess. Purely imaginary eigenvalues of operator semigroups.Semigroup Forum 51 (1995), 335–341.

[RS86] W. M. Ruess and W. H. Summers. Asymptotic almost periodicity andmotions of semigroups of operators. Linear Algebra Appl. 84 (1986),335–351.

[RS87] W. M. Ruess and W. H. Summers. Presque-periodicite faible et theoremeergodique pour les semi-groupes de contractions non lineaires. C. R.Acad. Sci. Paris Ser. I Math. 305 (1987), 741–744.

[RS88a] W. M. Ruess and W. H. Summers. Weak almost periodicity and thestrong ergodic limit theorem for contraction semigroups Israel J. Math.64 (1988), 139–157.

[RS88b] W. M. Ruess and W. H. Summers. Compactness in spaces of vectorvalued continuous functions and asymptotic almost periodicity. Math.Nachr. 135 (1988), 7–33.

[RS89] W. M. Ruess and W. H. Summers. Integration of asymptotically almostperiodic functions and weak asymptotic almost periodicity. Disserta-tiones Math. 279, 1989.

[RS90a] W. M. Ruess and W. H. Summers. Weak almost periodicity and thestrong ergodic limit theorem for periodic evolution systems. J. Funct.Anal. 94 (1990), 177–195.

[RS90b] W. M. Ruess and W. H. Summers. Weakly almost periodic semigroupsof operators. Pacific J. Math. 143 (1990), 175–193.

[RS92a] W. M. Ruess and W. H. Summers. Ergodic theorems for semigroups ofoperators. Proc. Amer. Math. Soc. 114 (1992), 423–432.

[RS92b] W. M. Ruess and W. H. Summers. Weak asymptotic almost periodicityfor semigroups of operators. J. Math. Anal. Appl. 164 (1992), 242–262.

[RV95] W. M. Ruess and Q. P. Vu. Asymptotically almost periodic solutionsof evolution equations in Banach spaces. J. Differential Equations 122(1995), 282–301.

[San75] N. Sanekata. Some remarks on the abstract Cauchy problem. Publ. Res.Inst. Math. Sci. 11 (1975), 51–65.

[Sch74] H. H. Schaefer. Banach Lattices and Positive Operators. Springer-Verlag,Berlin, 1974.

[Sch71] M. Schechter. Spectra of Partial Differential Operators. North Holland,Amsterdam, 1971.

Page 56: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 519

[SV98] E. Schuler and Q. P. Vu. The operator equation AX −XB = C, admis-sibility, and asymptotic behavior of differential equations. J. DifferentialEquations 145 (1998), 394–419.

[See68] G. L. Seever. Measures on F -spaces. Trans. Amer. Math. Soc. 133(1968), 267–280.

[She47] Yu-Cheng Shen. The identical vanishing of the Laplace integral. DukeMath. J. 14 (1947), 967-973.

[SF00] D.-H. Shi and D.-X. Feng. Characteristic conditions of the generationof C0 semigroups in a Hilbert space. J. Math. Anal. Appl. 247 (2000),356–376.

[Sim79] B. Simon. Functional Integration and Quantum Physics. AcademicPress, London, 1979.

[Sin85] E. Sinestrari. On the abstract Cauchy problem of parabolic type inspaces of continuous functions. J. Math. Anal. Appl. 107 (1985), 16–66.

[Sjo70] S. Sjostrand. On the Riesz means of the solution of the Schrodingerequation. Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 331–348.

[SS82] G. M. Skylar and V. Ya. Shirman. On the asymptotic stability of a lineardifferential equation in a Banach space. Teor. Funktsiı Funktsional. Anal.i Prilozhen. 37 (1982), 127–132.

[Sle76] M. Slemrod. Asymptotic behavior of C0-semigroups as determined bythe spectrum of the generator. Indiana Univ. Math. J. 25 (1976), 783–792.

[Sov66] M. Sova. Cosine operator functions. Rozprawy Mat. 49, 1966.

[Sov68] M. Sova. Probleme de Cauchy pour equations hyperboliques operationn-elles a coefficients constants non-bornes. Ann. Scuola Norm. Sup. Pisa(3) 22 (1968), 67–100.

[Sov77] M. Sova. On inversion of Laplace transform, I. Casopis Pest. Mat. 102(1977), 166–172.

[Sov79a] M. Sova. The Laplace transform of analytic vector-valued functions (realconditions). Casopis Pest. Mat. 104 (1979), 188–199.

[Sov79b] M. Sova. The Laplace transform of analytic vector-valued functions(complex conditions). Casopis Pest. Mat. 104 (1979), 267–280.

[Sov79c] M. Sova. Laplace transform of exponentially lipschitzian vector-valuedfunctions. Casopis Pest. Mat. 104 (1979), 370–381.

Page 57: Vector-valued Holomorphic Functions

520 BIBLIOGRAPHY

[Sov80a] M. Sova. The Laplace transform of exponentially bounded vector-valuedfunctions (real conditions). Casopis Pest. Mat. 105 (1980), 1–13.

[Sov80b] M. Sova. Relation between real and complex properties of the Laplacetransform. Casopis Pest. Mat. 105 (1980), 111–119.

[Sov81a] M. Sova. On the equivalence of Widder-Miyadera’s and Leviatan’s rep-resentability conditions for the Laplace transform of integrable vector-valued functions. Casopis Pest. Mat. 106 (1981), 117–126.

[Sov81b] M. Sova. On a fundamental theorem of the Laplace transform theory.Casopis Pest. Mat. 106 (1981), 231–242.

[Sov82] M. Sova. General representability problem for the Laplace transform ofexponentially bounded vector-valued functions. Casopis Pest. Mat. 107(1982), 69–89.

[ST81] U. Stadtmuller and R. Trautner. Tauberian theorems for Laplace trans-forms in dimension d > 1. J. Reine Angew. Math. 323 (1981), 127–138.

[Sta81] O. J. Staffans. On asymptotically almost periodic solutions of a convo-lution equation. Trans. Amer. Math. Soc. 266 (1981), 603–616.

[Ste93] E. M. Stein. Harmonic Analysis: Real-variable Methods, Orthogonality,and Oscillatory Integrals. Princeton Univ. Press, Princeton, 1993.

[Tai95] K. Taira. Analytic Semigroups and Semilinear Initial Boundary ValueProblems. London Math. Soc. Lecture Note 222, Cambridge Univ. Press,Cambridge, 1995.

[TakO90] T. Takenaka and N. Okazawa. Wellposedness of abstract Cauchy prob-lems for second order differential equations. Israel J. Math. 69 (1990),257–288.

[TM92] N. Tanaka and I. Miyadera. C-semigroups and the abstract Cauchyproblem. J. Math. Anal. Appl. 170 (1992), 196–206.

[TanO90] N. Tanaka and N. Okazawa. Local C-semigroups and local integratedsemigroups. Proc. London Math. Soc. 61 (1990), 63–90.

[Tau97] A. Tauber. Ein Satz aus der Theorie der unendlichen Reihen. Monatsh.Math. Phys. 8 (1897), 273–277.

[Tay73] S. J. Taylor. Introduction to Measure and Integration. Cambridge Univ.Press, Cambridge, 1973.

[Thi98a] H. R. Thieme. Remarks on resolvent positive operators and their per-turbation. Discrete Contin. Dynam. Systems 4 (1998), 73–90.

Page 58: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 521

[Thi98b] H. R. Thieme. Positive perturbation of operators semigroups: growthbounds, essential compactness, and asynchronous exponential growth.Disrete Contin. Dynam. Systems 4 (1998), 735–764.

[Tom01] Y. Tomilov. Resolvent approach to stability of operator semigroups. J.Operator Theory 46 (2001), 63–98.

[TE05] L. N. Trefethen and M. Embree. Spectra and pseudospectra. The behav-ior of nonnormal matrices and operators. Princeton University Press,Princeton, 2005.

[Tyc38] A. Tychonoff. Sur l’equation de la chaleur a plusieurs variables. Bull.Univ. Moscow Ser. Int. Sect. A1 (1938), 1–44.

[Ulm99] M. Ulm. The interval of resolvent-positivity for the biharmonic operator.Proc. Amer. Math. Soc. 127 (1999), 481–489.

[Vie95] P. Vieten. Holomorphie und Laplace Transformation banachraumwer-tiger Funktionen. Dissertation, Universitat Kaiserslautern, 1995.

[Vig39] J. C. Vignaux. Sugli integrali di Laplace asintotici. Atti Accad. Naz.Lincei Rend. Cl. Sci. Fis. Mat. (6) 29 (1939), 396–402.

[VC44] J. C. Vignaux and M. Cotlar. Asymptotic Laplace-Stieltjes integrals.Univ. Nac. La Plata. Publ. Fac. Ci. Fisicomat. (2) 3(14) (1944), 345–400.

[Voi89] J. Voigt. On resolvent positive operators and positive C0-semigroups onAL-spaces. Semigroup Forum 38 (1989), 263–266.

[Vu91] Q. P. Vu. The operator equation AX − XB = C with unboundedoperators A and B and related abstract Cauchy problems. Math. Z. 208(1991), 567–588.

[Vu92] Q. P. Vu. Theorems of Katznelson-Tzafriri type for semigroups of oper-ators. J. Funct. Anal. 103 (1992), 74–84.

[Vu93] Q. P. Vu. Semigroups with nonquasianalytic growth. Studia Math. 104(1993), 229–241.

[Vu97] Q. P. Vu. Almost periodic and strongly stable semigroups of operators.Linear Operators, Banach Center Publ. 38, Polish Acad. Sci., Warsaw(1997), 401–426.

[Wei93] L. Weis. Inversion of the vector-valued Laplace transform in Lp(X)-spaces. Differential Equations in Banach Spaces, Proc. Bologna 1991,North- Holland, Amsterdam, 1993.

Page 59: Vector-valued Holomorphic Functions

522 BIBLIOGRAPHY

[Wei95] L. Weis. The stability of positive semigroups on Lp spaces. Proc. Amer.Math. Soc. 123 (1995), 3089–3094.

[Wei96] L. Weis. Stability theorems for semi-groups via multiplier theorems.Tubinger Berichte Funktionalanalysis 6 (1996/97), 253–268.

[Wei98] L. Weis. A short proof for the stability theorem for positive semigroupson Lp(μ). Proc. Amer. Math. Soc. 126 (1998), 3253–3256.

[WW96] L. Weis and V. Wrobel. Asymptotic behavior of C0-semigroups in Banachspaces. Proc. Amer. Math. Soc. 124 (1996), 3663–3671.

[Wei88] G. Weiss. Weak Lp-stability of a linear semigroup on a Hilbert spaceimplies exponential stability. J. Differential Equations 76 (1988), 269–285.

[Wei90] G. Weiss. The resolvent growth assumption for semigroups on Hilbertspaces. J. Math. Anal. Appl. 145 (1990), 154–171.

[Wid36] D. V. Widder. A classification of generating functions. Trans. Amer.Math. Soc. 39 (1936), 244–298.

[Wid41] D. V. Widder. The Laplace Transform. Princeton Univ. Press, Princeton,1941.

[Wid71] D. V. Widder. An Introduction to Transform Theory. Academic Press,New York, 1971.

[Wil70] S. Willard. General Topology. Addison-Wesley, Reading, 1970.

[Woj91] P. Wojtaszczyk. Banach Spaces for Analysts. Cambridge Univ. Press,Cambridge, 1991.

[Wol81] M. Wolff. A remark on the spectral bound of the generator of semi-groups of positive operators with applications to stability theory. Func-tional Analysis and Approximation, Proc. Oberwolfach 1980, Birkhauser(1981), 39–50.

[Wol07] M. Wolff. Triviality of the peripheral point spectrum of positive semi-groups on atomic Banach lattices. Positivity 12 (2008), 185–192.

[Woo74] G. S. Woodward. The generalized almost periodic part of an ergodicfunction. Studia Math. 50 (1974), 103–116.

[Wro89] V. Wrobel. Asymptotic behavior of C0-semigroups in B-convex spaces.Indiana Univ. Math. J. 38 (1989), 101–114.

[XL98] T. J. Xiao and J. Liang. The Cauchy Problem for Higher-Order AbstractDifferential Equations. Lecture Notes in Math. 1701, Springer-Verlag,Berlin, 1998.

Page 60: Vector-valued Holomorphic Functions

BIBLIOGRAPHY 523

[XL00] T. J. Xiao and J. Liang. Approximations of Laplace transforms andintegrated semigroups. J. Funct. Anal. 172 (2000), 202–220.

[Yos80] K. Yosida. Functional Analysis. 6th ed., Springer-Verlag, Berlin, 1980.

[You92] P. H. You. Characteristic conditions for a C0-semigroup with continuityin the uniform operator topology for t > 0. Proc. Amer. Math. Soc. 116(1992), 991–997.

[Zab75] A. Zabczyk. A note on C0-semigroups. Bull. Acad. Polon. Sci. 23 (1975),895–898.

[Zab79] A. Zabczyk. Stabilization of boundary control systems. Systems Op-timization and Analysis, Lecture Notes in Control Information Sci. 14,Springer-Verlag, Berlin (1979), 321–333.

[Zai60] S. Zaidman. Sur un theoreme de I. Miyadera concernant la representationdes functions vectorielles par des integrales de Laplace. Tohoku Math.J. (2) 12 (1960), 47–51.

[Zar93] M. Zarrabi. Contractions a spectre denombrable et proprietes d’unicitedes fermes denombrables du cercle. Ann. Inst. Fourier (Grenoble) 43(1993), 251–263.

[Zem94] J. Zemanek. On the Gelfand-Hille theorem. Functional Analysis andOperator Theory. Banach Center Publ. 30, Polish Acad. Sci., Warsaw(1994), 369–385.

Page 61: Vector-valued Holomorphic Functions

Notation

Function and Distribution Spaces

AAP(R+, X) space of asymptotically almost periodic functions . . . . . 307

AP(I,X),AP(I) space of almost periodic functions . . . . . . . . . . . 292, 297, 307

BSV([a, b], X) space of functions of bounded semivariation . . . . . . . . . . . . 48

BSVloc(R+, X) space of functions of locally bounded semivariation . . . . . 48

BUC(I,X),BUC(I) space of bounded, uniformly continuous functions . . . . . 15

Lipω(R+, X) space of Lipschitz continuous functions . . . . . . . . . . . . . 63, 77

D(Ω)′ space of distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485, 488

D(Ω) space of test functions . . . . . . . . . . . . . . . . . . . . . . . . 15, 485, 487

E , E(R+, X) space of totally ergodic functions . . . . . . . . . . . . . . . . 301, 308

FL1(Rn) Fourier algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

MM Mikhlin space of Fourier multipliers . . . . . . . . . . . . . . 436, 490

MNp (Rn) space of matrices of Fourier multipliers . . . . . . . . . . . . . . . 489

MX(Rn),Mp(Rn) space of Fourier multipliers on X or Lp(Rn) . . . . . . . . . . 489

Mε strong Mikhlin space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

S(Rn)′ space of temperate distributions . . . . . . . . . . . . . . . . . . . . . . 486

S(Rn) Schwartz space of rapidly decreasing functions . . . 319, 485

E quotient of space of totally ergodic functions . . . . . 301, 308

C(I,X), C(Ω) space of continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . 15

c(X) space of convergent sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Page 62: Vector-valued Holomorphic Functions

526 NOTATION

Ck(I,X), Ck(Ω) space of k-times continuously differentiable functions . . . 15

C∞(I,X), C∞(Ω) space of infinitely differentiable functions . . . . . . . . . . . . . . 15

C0(I,X), C0(Ω) space of continuous functions vanishing at infinity . . . . . . 15

c0 space of null sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 481

Cc(I,X), Cc(Ω) space of continuous functions with compact support . . . 15

C∞c (I,X), C∞c (Ω) space of infinitely differentiable functions with compact sup-port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C∞W ((ω,∞), X) Widder space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64, 78

C1ω(R+, X) space of functions with continuous, exponentially bounded

derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

H2(C+, X), H2(C+) Hardy spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Hm(Ω), Hm0 (Ω) Sobolev space of order (m, 2) . . . . . . . . . . . . . . . . . . . . . . . . . 488

Lp(Ω, μ) space of p-integrable functions on a measure space . . . . 175

Lp(I) space of Lebesgue p-integrable functions . . . . . . . . . . . . . . . 14

Lp(I,X) space of Bochner p-integrable functions . . . . . . . . . . . . 13, 14

lp space of p-summable sequences . . . . . . . . . . . . . . . . . . . . 10, 132

L∞(I,X), L∞(I) space of bounded measurable functions . . . . . . . . . . . . . . . . 14

l∞(X) space of bounded sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

L∞ω (I,X) space of exponentially bounded functions . . . . . . . . . 77, 226

L1loc(R+, X) space of locally Bochner integrable functions . . . . . . . . . . . 13

Smρ,0 space of symbols of pseudo-differential operators . . . . . . 430

Wm,p(Ω),Wm,p0 (Ω) Sobolev space of order (m, p) . . . . . . . . . . . . . . . . . . . . . . . . . 488

Dual Spaces and Subspaces

V ′ antidual of V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

X∗ dual space of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

X sun-dual of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

X0 space of vectors converging to 0 . . . . . . . . . . . . . . . . . . . . . . . 360

Page 63: Vector-valued Holomorphic Functions

NOTATION 527

Xe space of totally ergodic vector in X . . . . . . . . . . . . . . . . . . . . 267

Xap space of almost periodic vectors in X . . . . . . . . . . . . 290, 361

Xe0 space of totally ergodic vectors with means 0 . . . . . . . . . 267

Norms and Dualities

(·|·)H inner product on a Hilbert space H . . . . . . . . . . . . . . . . . . . . 45

(·|·) duality between a space and its antidual . . . . . . . . . . . . . . 421

〈·, ·〉 duality between a space and its dual . . . . . . . . . . . . . . . 7, 485

‖ · ‖D(A) graph norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

‖ · ‖W Widder norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64, 78

|α| norm of multi-index α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

| · |M Mikhlin norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436, 490

‖ · ‖p Lebesgue-Bochner norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 14

| · |Mεstrong Mikhlin norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

‖ · ‖ω,∞ exponentially bounded norm . . . . . . . . . . . . . . . . . . . . . . 77, 226

|π| norm of partition π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Functions, Integrals and Abscissas

abs(f), abs(dF ) abscissa of convergence . . . . . . . . . . . . . . . . . . . . . . 27, 30, 56, 57

χΩ characteristic function of Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Cos cosine function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

hol(f), hol(T ) abscissa of holomorphy of f or T . . . . . . . . . . . . . . . . . . . 33, 35

hol0(f) abscissa of boundedness of f . . . . . . . . . . . . . . . . . . . . . . . . . . . 33∫ b

ag(t) dF (t) Riemann-Stieltjes integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49∫ b

ag(t) dt Riemann integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50∫

If(t) dt Bochner integral of f over I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ω(f), ω(T ) exponential growth bound of f or T . . . . . . . . . . . . . . . . 29, 30

ω1(T ) exponential growth bound of classical solutions . . . . . . . 343

Page 64: Vector-valued Holomorphic Functions

528 NOTATION

sign signum function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138, 491

Sin sine function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206, 218

En Newtonian potential on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

eλ exponential function t �→ eλt . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

eλ ⊗ x the function t �→ eλtx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

f ∗ g, T ∗ f convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 24, 487

kt, kz Gaussian kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

S(g, π) Riemann sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

S(g, F, π) Riemann-Stieltjes sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ux orbit of T through x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 337

V (π, F ) variation of F over π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

V (F ), V[a,b](F ) total variation of F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Operators

Δ distributional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Δ0 Laplacian on C0(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Δp Laplacian on Lp(Rn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

ΔX Laplacian on X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Δmax Laplacian on C(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

ΔL2(Ω) Dirichlet-Laplacian on L2(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . 140

Ap system of differential operators on Lp(Rn) . . . . . . . . . . . . 449

AX pseudo-differential operator on X . . . . . . . . . . . . . . . . . . . . . 431

K(X) space of compact operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

L(X,Y ),L(X) space of bounded linear operators . . . . . . . . . . . . . . . . . . . . . . 24

OpX(a),Opp(a) pseudo-differential operator on X or Lp(Rn) . . . . . . . . . . 430

KerA kernel of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261, 467

RanA range of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261, 467

Page 65: Vector-valued Holomorphic Functions

NOTATION 529

A closure of an operator A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Φ Riesz operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ΦS Riesz-Stieltjes operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A∗ adjoint of an operator A . . . . . . . . . . . . . . . . . . . . . . . . . . 472, 473

AH operator associated with quadratic form . . . . . . . . . . . . . . . 419

AY part of an operator A in Y . . . . . . . . . . . . . . . . . . . . . . . 136, 471

B−z fractional power of B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B1/2 square root of B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

D(A) domain of an operator A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Dα higher order partial derivative . . . . . . . . . . . . . . . . . . . 485, 486

Dj partial derivative ∂/∂xj . . . . . . . . . . . . . . . . . . . . . . . . . . 485, 486

R(λ,A) resolvent of an operator A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

Spectrum and Resolvent Set

spB(f) Beurling spectrum of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

spC(f) Carleman spectrum of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

sp(f) half-line spectrum of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

spw(f) weak half-line spectrum of f . . . . . . . . . . . . . . . . . . . . . . . . . . 325

ρ(A) resolvent set of an operator A . . . . . . . . . . . . . . . . . . . . . . . . . 468

ρu(A, x) imaginary local resolvent set . . . . . . . . . . . . . . . . . . . . . . . . . . 371

σ(A, x) local spectrum of A at x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

σ(A) spectrum of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

σp(A) point spectrum of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

σu(A, x) imaginary local spectrum of A at x . . . . . . . . . . . . . . . . . . . 371

σap(A) approximate point spectrum of A . . . . . . . . . . . . . . . . . . . . . 469

r(T ) spectral radius of an operator T . . . . . . . . . . . . . . . . . . . . . . . 475

s(A) spectral bound of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188, 469

Page 66: Vector-valued Holomorphic Functions

530 NOTATION

s0(A) pseudo-spectral bound of A . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Subsets of Rn or C

C+ open right half-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

C− open left half-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

T unit circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

N set of positive integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

N0 set of non-negative integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

∂Ω topological boundary of Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

R+ set of non-negative real numbers . . . . . . . . . . . . . . . . . . . . . . . . 13

Σα sector of angle α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Transformations

f reflection of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

f , T Laplace or Carleman transform of f or T . . . . . . 27, 32, 295

F Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44, 487

L Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

LS Laplace-Stieltjes transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

F conjugate Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

dF Laplace-Stieltjes transform of F . . . . . . . . . . . . . . . . . . . . . . . 55

Cauchy Problems

(ACP0) homogeneous abstract Cauchy problem . . . . . . . . . . . . . . . . 108

(ACPf ) inhomogeneous abstract Cauchy problem . . . . . . . . . . . . . 117

(ACPk+1) (k + 1)-times integrated abstract Cauchy problem . . . . 129

ACP0(R) abstract Cauchy problem on the line . . . . . . . . . . . . . . . . . . 118

D(ϕ) Dirichlet problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

P∞(u0, ϕ, f) inhomogeneous heat equation . . . . . . . . . . . . . . . . . . . . . . . . . 415

Pτ (u0, ϕ) heat equation with inhomogeneous boundary conditions 408,412

Page 67: Vector-valued Holomorphic Functions

NOTATION 531

Other Notation

(Hr) growth hypothesis for symbols . . . . . . . . . . . . . . . . . . . . . . . . . 439

Freq(x),Freq(f) set of frequencies of vector x or function f . . 267, 293, 315

dN(x) subdifferential of the norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

supp support of a function or distribution . . . . . . . . . . . . . . . . . . 318

B(x, ε) closed ball, centre x, radius ε . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

D closure of a set D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

B(x, ε) open ball, centre x, radius ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

m(Ω) Lebesgue measure of Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Mηx,Mηf mean of vector x or function f at η . . . . 266, 293, 308, 315

x · ξ scalar product of x and ξ in Rn . . . . . . . . . . . . . . . . . . 430, 487

x ≤ y ordering in a Banach space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

X+ positive cone in X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Zd↪→ X continuous dense embedding . . . . . . . . . . . . . . . . . . . . . 184, 418

Z ↪→ X continuous embedding of Z in X . . . . . . . . . . . . . . . . . . . . . 184

Page 68: Vector-valued Holomorphic Functions

Index

AAbel-convergence, 244, 257Abel-ergodic, 263Abelian theorem, 243, 245abscissa

of boundedness, 33, 285of convergence, 27, 31, 56, 58of holomorphy, 33

absolutelycontinuous, 15, 18convergent, 14regular, 486

adjoint, 472, 473almost periodic

function on the half-line, 307function on the line, 292orbits, 294vector, 290, 361

almost separably valued, 7analytic

Radon-Nikodym property, 61representation, 84

antiderivative, 15antidual, 420, 422antilinear, 420approximate

eigenvalue, 469point spectrum, 469unit, 23

approximation theorem, 41, 67asymptotically

almost periodic, 307, 365norm-continuous, 389

BB-convergence, 244Banach lattice, 478band, 479Bernstein, 90, 100, 435Beurling spectrum, 322

Bochner, 9integrable, 9integral, 9

boundarygroup, 172semigroup, 171

boundedabove, 214, 474holomorphic semigroup, 150semivariation, 48variation, 15, 48

Brenner, 450, 452

CCarleman

spectrum, 295spectrum and C0-groups, 295transform, 295

Cauchy problemabstract, 108inhomogeneous, 117on the line, 118

Cesaro-convergence, 244Cesaro-ergodic, 262character, 289classical solution, 108, 117, 203closable operator, 467closed operator, 467closure, 467Coifman-Weiss, 175compact resolvent, 470complete orbit, 120completely monotonic, 90, 106complex

inversion, 75, 259representation, 81Tauberian condition, 247

cone, 477converges

in the sense of Abel, 244in the sense of Cesaro, 244

Page 69: Vector-valued Holomorphic Functions

534 INDEX

convex, 91convolution, 21, 24, 26, 486core, 468cosine function, 203countable spectrum, 374, 385countably valued, 6

DDa Prato-Sinestrari, 142Datko, 340densely defined, 467Desch-Schappacher, 161Dirac’s equation, 456Dirichlet

boundary conditions, 140, 423kernel, 257Laplacian, 424problem, 401regular, 402

dissipative, 137distribution, 485, 487

semigroup, 231dominated convergence, 11dual cone, 478Dunford-Pettis

property, 270theorem, 19

Eeigenvalue, 469elliptic

equation, 170maximum principle, 402operator, 425, 431polynomial, 431

ergodic vector, 266eventually differentiable, 284exponential growth bound, 29, 30, 338

FFattorini, 227feebly oscillating, 249Fejer, 257

kernel, 258

first order perturbation, 160form domain, 420Fourier

coefficients, 257inversion theorem, 45, 487multiplier, 489sums, 257transform, 44, 487type, 61, 387

fractional powers, 163frequencies, 267, 293, 311Fubini, 12function

absolutely continuous, 15, 18absolutely regular, 486almost separably valued, 7asymptotically almost periodic,

307Bochner integrable, 9completely monotonic, 90convex, 91countably valued, 6feebly oscillating, 249holomorphic, 461Laplace transformable, 28Lipschitz continuous, 15locally bounded, 462measurable, 6normalized, 100of bounded semivariation, 48of bounded variation, 15, 48of weak bounded variation, 48Riemann integrable, 50Riemann-Stieltjes integrable, 49simple, 6slowly oscillating, 247step, 6strongly continuous, 24test, 15, 485, 487totally ergodic, 296, 308, 315uniformly ergodic, 296, 308, 328weakly measurable, 7

fundamental theorem of calculus, 18

Page 70: Vector-valued Holomorphic Functions

INDEX 535

GGaussian semigroup, 150, 153, 156,

170, 172, 183Gelfand, 280generating cone, 477generator

infinitesimal, 114of C0-group, 119of C0-semigroup, 112of cosine function, 205of integrated semigroup, 122of semigroup, 126of sine function, 218

Glicksberg-deLeeuw, 389graph norm, 468Grothendieck space, 270group

C0, 119, 295boundary, 172integrated, 179

HHormander, 173half-line spectrum, 272, 310, 315Hardy, 256Hardy-Littlewood, 253Hilbert transform, 198, 491Hille-Yosida

operator, 141theorem, 134

holomorphicfunction, 461semigroup, 148

hyperbolicequation, 427semigroup, 388system, 449

hypoelliptic, 431

Iideal, 192, 478identity theorem, 462

imaginary localresolvent set, 371spectrum, 371

improper integral, 13infinitesimal generator, 114Ingham, 327integral

absolutely convergent, 14Bochner, 9improper, 13Laplace, 27Laplace-Stieltjes, 55Riemann, 50Riemann-Stieljes, 49

integrated semigroup, 122integration by parts, 50intermediate points, 49interpolation property, 90inversion

complex, 75, 259Phragmen-Doetsch, 73Post-Widder, 42, 73

invertible, 468irreducible, 394

Jjump, 99

KKadets, 300Karamata, 251Katznelson-Tzafriri, 317, 391KB-space, 479kernel, 261, 394, 467Krein-Smulyan, 464

LL-space, 359Laplace

integral, 27, 32transform, 63, 110transformable, 28

Page 71: Vector-valued Holomorphic Functions

536 INDEX

Laplace-Stieltjesintegral, 55transform, 63

Laplacianand boundary group, 173and boundary integrated group,

183and cosine functions, 448first order perturbation, 160generates Gaussian semigroup, 150on continuous functions, 403square root, 170with Dirichlet boundary condi-

tions, 140, 424with inhomogeneous boundary con-

ditions, 408largest lower bound, 478lattice, 478least upper bound, 478Lebesgue point, 16Lipschitz continuous, 15local

integrated semigroup, 232spectrum, 299, 371

locally bounded, 462Loomis, 297Lotz, 272Lumer-Phillips, 139

MMaxwell’s equations, 455mean-ergodic, 262measurable, 6Mikhlin, 491mild solution, 108, 117, 119, 203, 368,

408, 413, 415mollifier, 23, 319multi-index, 485multiplication operator, 419, 473

NNewtonian potential, 404non-resonance, 380normal cone, 477

normalization, 100normalized

antiderivative, 28function, 100

norming, 462

Ooperator

adjoint, 472, 473associated with form, 418closable, 467closed, 467elliptic, 425, 431Hille-Yosida, 141invertible, 468kernel, 394multiplication, 419, 473Poisson, 404positive, 478pseudo-differential, 430resolvent positive, 188Riesz, 72Riesz-Stieltjes, 66sectorial, 162selfadjoint, 150, 473symmetric, 474

ordercontinuous norm, 479interval, 477

ordered Banach space, 477

PPaley-Wiener, 46parabolic

domain, 412equation, 427maximum principle, 410problem, 408

part, 471partitioning points, 49period, 292periodic vector, 290

Page 72: Vector-valued Holomorphic Functions

INDEX 537

perturbationcompact, 161first order, 160of C0-semigroup, 144of cosine function, 210, 213of Hille-Yosida operator, 143, 144of integrated semigroup, 187, 232of resolvent positive operator, 195of selfadjoint operator, 420, 423of sine function, 220relatively bounded, 159

Petrovskii correct systems, 232Pettis, 7phase space, 210Phragmen-Doetsch, 73Phragmen-Lindelof, 176Plancherel, 45point spectrum, 469Poisson

equation, 404operator, 404semigroup, 152, 170, 447

positivecone, 477element, 477functional, 477operator, 478

Post-Widder, 42, 73Pruss, 82primitive, 15principal

part, 431, 449value, 13

proper cone, 477pseudo-differential operator, 430pseudo-resolvent, 470pseudo-spectral bound, 345

RRadon-Nikodym property, 19, 72range, 261, 467real

Banach lattice, 478ordered Banach space, 477

representation, 69, 78Tauberian condition, 247

realization, 430regular point, 295, 310regularized semigroup, 232relatively compact orbit, 288relatively dense, 288, 310representation

analytic, 84complex, 81Paley-Wiener, 46real, 69, 78Riesz-Stieltjes, 66

resolvent, 335, 468compact, 470equation, 470identity, 470positive, 188set, 468

Riemannintegrable, 50integral, 50sum, 50

Riemann-Lebesgue, 45Riemann-Liouville semigroup, 175Riemann-Stieltjes

integrable, 49integral, 49sum, 49

Riesz operator, 72Riesz-Stieltjes

operator, 66representation, 66

Ssandwich theorem, 185Schwartz space, 318, 485sectorial operator, 162selfadjoint operator, 150, 473semigroup, 126

C-, 232C0, 111Abel-ergodic, 263

Page 73: Vector-valued Holomorphic Functions

538 INDEX

asymptotically almost periodic,365

asymptotically norm-continuous,388

boundary, 171bounded holomorphic, 150Cesaro-ergodic, 262distribution, 231eventually differentiable, 284Gaussian, 150, 153, 156, 170, 172,

183holomorphic, 148hyperbolic, 388irreducible, 394k-times integrated, 122local integrated, 232norm-continuous, 201once integrated, 122Poisson, 152, 170, 447regularized, 232Riemann-Liouville, 175smooth distribution, 232totally ergodic, 266, 373

separating, 8, 262, 464sesquilinear form, 420similar operators, 144simple

function, 6pole, 269

sine function, 206, 218slowly oscillating, 247smooth distribution semigroup, 232smoothing effect, 158Sobolev space, 488spectral

projection, 472bound, 188, 343, 469radius, 475synthesis, 291, 293, 391theorem, 474

spectrum, 468approximate point, 469Beurling, 322Carleman, 295

half-line, 272, 310, 315imaginary local, 371local, 299point, 469weak half-line, 325

square root, 164step function, 6strong convergence, 31strong splitting theorem, 364strongly continuous, 24subdifferential, 137sublattice, 478sun-dual, 137support, 318symbol, 430symmetric, 474

TTauberian

condition, 243, 247theorem, 88, 243, 247

temperate distribution, 485tempered integrated semigroup, 232test function, 15, 485, 487Theorem

Abel, 247Analytic Representation, 84Approximation, 41, 67Bernstein, 100Bochner, 9Brenner, 450, 452Coifman-Weiss, 175Complex Inversion, 75Complex Representation, 81Countable spectrum, 374Da Prato-Sinestrari, 142Datko, 340Desch-Schappacher, 161Dominated Convergence, 11Dunford-Pettis, 19Fattorini, 227Fejer, 257Fubini, 12Gelfand, 280

Page 74: Vector-valued Holomorphic Functions

INDEX 539

Glicksberg-deLeeuw, 389Hormander, 173Hardy, 256Hardy-Littlewood, 253Hille-Yosida, 134Identity, 462Ingham, 327Kadets, 300Karamata, 251Katznelson-Tzafriri, 317, 391Krein-Smulyan, 464Loomis, 297Lotz, 272Lumer-Phillips, 139Mikhlin, 491Non-resonance, 380Paley-Wiener, 46Pettis, 7Phragmen-Doetsch Inversion, 73Phragmen-Lindelof, 176Plancherel, 45Post-Widder Inversion, 42, 73Real Representation, 69, 78Riesz-Stieltjes Representation, 66Sandwich, 185Spectral, 474Splitting, 364, 368, 389Tauberian, 88Trotter-Kato, 146Uniqueness, 40, 294Vitali, 463

totally ergodicfunction, 296, 308, 315semigroup, 266, 373vector, 266, 290, 361

transference principle, 175trigonometric polynomial, 292, 365Trotter-Kato, 146

UUMD-space, 198unconditionally bounded, 304, 481uniform ellipticity, 425

uniformlyconvex, 303ergodic, 296, 308, 328

unimodular eigenvector, 361uniqueness

sequence, 40theorem, 40, 294

unitarily equivalent, 474

Vvariation of constants formula, 118,

158Vitali, 463

Wwave equation, 170, 332, 425, 455weak

bounded variation, 48half-line spectrum, 325splitting theorem, 368

weaklyalmost periodic, 294almost periodic in the sense of

Eberlein, 294asymptotically almost periodic,

334holomorphic, 461measurable, 7regular point, 325

Weierstrass formula, 216well-posed, 115

YYoung’s inequality, 22, 24