Top Banner
Vanquish Thy Troughs: Targeting AUC/MIC for Vancomycin Dosing Jasmin Badwal, PharmD PGY1 Pharmacy Resident Department of Pharmacotherapy and Pharmacy Services, University Health System Pharmacotherapy Division, The University of Texas at Austin College of Pharmacy Pharmacotherapy Education and Research Center, UT Health San Antonio March 9, 2018 At the end of this session, the learner will be able to: 1. Summarize pharmacokinetic and pharmacodynamic parameters of vancomycin 2. Analyze current guideline recommendations for vancomycin dosing and monitoring 3. Evaluate the utility and effectiveness of AUC/MIC vs trough guided vancomycin dosing and monitoring on safety and clinical outcomes
20

VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

May 16, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

Vanquish  Thy  Troughs:  Targeting  AUC/MIC  for  Vancomycin  Dosing  

Jasmin  Badwal,  PharmD  PGY-­‐1  Pharmacy  Resident  

Department  of  Pharmacotherapy  and  Pharmacy  Services,  University  Health  System  Pharmacotherapy  Division,  The  University  of  Texas  at  Austin  College  of  Pharmacy  

Pharmacotherapy  Education  and  Research  Center,  UT  Health  San  Antonio  March  9,  2018  

At  the  end  of  this  session,  the  learner  will  be  able  to:  1. Summarize  pharmacokinetic  and  pharmacodynamic  parameters  of  vancomycin2. Analyze  current  guideline  recommendations  for  vancomycin  dosing  and  monitoring3. Evaluate  the  utility  and  effectiveness  of  AUC/MIC  vs  trough  guided  vancomycin  dosing  and

monitoring  on  safety  and  clinical  outcomes

Page 2: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

   Badwal  2  

Assessment  Questions  

1. Which  of  the  following  describes  the  mechanism  leading  to  vancomycin  resistance?A.   Target  alteration  B.   Beta-­‐lactamase  production  C.   Increased  cell  wall  thickness  D.   All  of  the  above  E.   A  and  C  only  

2. Which  pharmacodynamic  parameter  best  correlates  with  vancomycin  clinical  efficacy?A.   T>MIC  B.   AUC/MIC  C.   Cmax/MIC  D.   Cmax  

3. True/False:  Current  guidelines  recommend  targeting  vancomycin  troughs  of  15-­‐20  mg/L  forMRSA  bacteremia.

A.   True  B.   False  

4. Which  of  the  following  is  NOT  a  potential  benefit  of  targeting  AUC/MIC  when  dosingvancomycin?

A.   Lower  risk  of  nephrotoxicity  B.   Reduced  vancomycin  exposure  C.   Lower  risk  of  resistance  D.   More  efficient  serum  concentration  sampling  

***  To  obtain  CE  credit  for  attending  this  program  please  sign  in.    Attendees  will  be  emailed  a  link  to  an  electronic  CE  Evaluation  Form.    CE  credit  will  be  awarded  upon  completion  of  the  electronic  form.    If  you  do  not  receive  an  email  within  72  hours,  please  contact  the  CE  Administrator  at  ana.franco-­‐martinez@uhs-­‐sa.com  ***  

Faculty  (Speaker)  Disclosure:    Jasmin  K.  Badwal  has  indicated  she  has  no  relevant  financial  relationships  to  disclose  relative  to  the  content  of  her  presentation  

Page 3: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  3  

Background  

 I.   Discovery1  

a.   Eli  Lilly  based  program  in  1950s  with  goal  of  discovering  antibiotics  against  penicillin-­‐resistant  staphylococcus  

b.   Compound  “05865”  i.   Discovered  in  dirt  sample  sent  from  Borneo  in  1952  ii.   Produced  by  Streptomyces  orientalis  iii.   Dubbed  “Mississippi  mud”  due  to  characteristic  brown  color  and  required  significant  

purification  prior  to  use  in  clinical  trials  iv.   Resulting  drug  was  named  “vancomycin”  from  the  word  “vanquish”  

c.   Approved  by  the  Food  and  Drug  Administration  (FDA)  in  1958  II.   Delayed  use1  

a.   Methicillin  was  preferred  over  vancomycin  due  to  safety  and  efficacy  concerns  i.   Initial  use  reserved  for  resistance  or  severe  beta  lactam  allergy  

b.   Dramatic  increase  in  vancomycin  was  seen  in  the  1980s  with  its  role  in  pseudomembranous  enterocolitis  and  the  emergence  of  methicillin-­‐resistant  Staphylococcus  aureus  (MRSA)  

c.   Now  one  of  the  most  widely  used  antibiotics  for  the  treatment  of  serious  gram-­‐positive  infections  

III.   Rate  of  MRSA  at  University  Hospital2                      

Vancomycin  overview  

 I.   Class  and  chemical  structure3  

a.   Large,  tricyclic  glycopeptide  (molecular  weight  1485.73  Da)  II.   Mechanism  of  action  (MOA)3-­‐5  

a.   Bacterial  cell  wall  synthesis  inhibitor  i.   Forms  complexes  with  two  peptidoglycan  precursors  

(D-­‐alanyl-­‐D-­‐alanine)  via  5  hydrogen  bonds  ii.   Blocks  incorporation  (transpeptidation)  of  these  

subunits  into  peptidoglycan    

           

Figure  2.  Chemical  structure  of  vancomycin3  

0

10

20

30

40

50

60

70

80

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

% M

ethi

cilli

n R

esis

tan

t

Year

Figure  1.  MRSA  Rates  at  University  Hospital  1999-­‐20162  

Figure  3.  MOA  of  vancomycin5  

Page 4: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  4  

Red  man  syndrome Nephrotoxicity Ototoxicity Local phlebitis Hypersensitivity Thrombocytopenia

III.   Spectrum  of  activity3  a.   Gram  positive  organisms    

         

     

 

b.   Gram  negative  organisms:  nongonococcal  Neisseria  spp.,  Chryseobacterium  meningosepticum  c.   Intrinsically  resistant  organisms:  Leuconostoc  spp.,  Pediococcus  spp.,  Erysipelothrix  

rhusiopathiae,  Lactobacillus  spp.  IV.   Mechanism  of  resistance  (MOR)3,5-­‐7  

a.   Alteration  of  target  i.   D-­‐alanyl-­‐D-­‐alanine    à  -­‐D-­‐lactate  or  -­‐D-­‐serine    ii.   Results  in  loss  of  H-­‐bond  and  decreased  vancomycin  binding  affinity  iii.   Examples:    vancomycin-­‐resistant  enterococcus  (VRE)  and  S.  aureus  (VRSA)  

b.   Increased  thickness  of  cell  wall  i.   Excessive  production  of  D-­‐alanyl-­‐D-­‐alanine  ii.   Vancomycin  trapped  by  excess  and  cannot  reach  target  site  (division  septum)  iii.   Example:  vancomycin-­‐intermediate  S.  aureus  (VISA)  

c.   Concern  of  increased  incidence  of  resistance  due  to  extensive  use                

 V.   Adverse  effects4            

VI.   Vancomycin  induced  nephrotoxicity8-­‐11  a.   Generally  mild-­‐moderate  and  reversible  b.   Controversy  whether  cause  or  effect  of  impaired  renal  function  c.   Infectious  Diseases  Society  of  America  (IDSA):  ≥  2  consecutive  documented  increases  in  

serum  creatinine  (of  ≥  0.5  mg/dL  or  ≥  50%  from  baseline)  after  several  days  of  vancomycin  therapy  

d.   Zasowski  EJ,  et  al.  (2017)  i.   Nephrotoxicity  was  significantly  higher  in  patients  with  greater  area  under  the  curve  

(AUC)  and  trough  values  1.    AUC0-­‐48  ≥  1218  mg⋅h/L,  AUC0-­‐24  ≥  677  mg⋅h/L,  and  trough24  ≥  18.8  mg/L  

Staphylococcus Enterococcus Streptococcus Bacillus   Corynebacterium

Clostridium Pepto-­‐streptococcus Actinomyces Propioni-­‐

bacterium   Nocardia

Figure  4.  MORs  of  vancomycin5,7  

Page 5: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  5  

ii.   Daily  AUC  values  between  600-­‐800  mg⋅h/L  during  the  first  48  hours  were  associated  with  a  3-­‐4  x  increased  risk  of  nephrotoxicity  

VII.  Common  clinical  uses3    

 

Skin  and  soft  tissue   Endocarditis   Meningitis   Pseudomembranous  colitis  

Bacteremia   Pneumonia   Ventriculitis   Osteomyelitis  

 Vancomycin  pharmacokinetics  

 I.   Pharmacokinetics  (PK)4,9,12  

a.   Absorption  i.   Poor  systemic  absorption  with  oral  administration  ii.   Time  to  peak:  immediate  after  intravenous  infusion  

b.   Distribution  i.   Volume  of  distribution  (Vd):  0.4  –  1  L/kg  ii.   Cerebrospinal  fluid  (CSF)  concentrations  increase  with  inflammation  iii.   Distribution  phase:  30  minutes  –  1  hour    iv.   Protein  binding:  ~50  -­‐  55%  

c.   Metabolism:  potential  increased  half-­‐life  and  decreased  clearance  in  impaired  liver  function  d.   Half-­‐life  elimination  

i.   Adults:  6-­‐12  hours  (prolonged  with  renal  impairment)  ii.   End-­‐stage  renal  disease  (ESRD):  7.5  days  

e.   Excretion:    glomerular  filtration  (75%  as  unchanged  drug)    Vancomycin  pharmacodynamics  

 I.   General  pharmacodynamic  (PD)  properties13,14  

a.   Area  under  the  curve  (AUC)  vs  trough    i.   AUC:  cumulative  exposure  of  agent  over  a  defined  time  

period  ii.   Trough:  single  point  exposure  measurement  at  the  end  of  the  dosing  interval  

b.   MIC:  lowest  concentration  of  antimicrobial  that  will  visually  inhibit  growth  after  18-­‐24  hours  of  incubation  i.   Breakpoint  is  determined  by  the  Clinical  and  Laboratory  Standards  Institute  (CLSI)    

 c.   Concentration  vs  time  dependent  killing  

i.   Three  major  measures  of  efficacy    1.   T>MIC:  time  above  MIC  2.   AUC/MIC:  area  under  the  curve  over  MIC  3.   Cmax/MIC:  maximum  concentration  over  MIC  

AUC  =  F  x  D  /  Cl  F  =  bioavailability,  D  =  Dose,    

Cl  =clearance  

Susceptible

• Isolates  inhibited  by  usually  achievable  concentrations• Likely  clinical  efficacy

Intermediate

• Isolates  with  MICs  that  approach  attainable blood  and  tissue  levels• Response  rates  may be  lower• Clinical  efficacy  varies  dependingon  site  and  dose

Resistant

• Isolates  not  inhibited  by  usually  achievable  concentrations• MICs or  diameters  in  range  where  resistance  mechanisms  are  likely• Clinical  efficacy  not likely

Page 6: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  6  

II.   Vancomycin  specific  pharmacodynamics  a.   Method  of  action  à  “slowly”  bactericidal9,10  

i.   Dependent  on  site  of  infection,  bacterial  inoculum  size,  MIC,  and  organism  

b.   Optimal  parameter8-­‐10  i.   AUC/MIC  shown  to  be  best  predictor  of  

clinical  outcomes  ii.   In-­‐vitro  studies  showed  that  increasing  24-­‐

hour  AUC/MIC  values  had  the  highest  correlation  with  decreasing  bacterial  counts  

 

c.   MIC  breakpoints6,14-­‐16  i.   Lowering  of  S.  aureus  susceptibility  breakpoints  in  2006  due  to:  

1.   Association  between  higher  vancomycin  MICs  with  treatment  failure  2.   Increased  incidence  of  heteroresistant  strains  

ii.   Heterogenous  vancomycin-­‐intermediate  S.  aureus  (hVISA)  1.   MIC  is  within  susceptibility  range  but  some  of  the  cells  present  are  in  the  

intermediate  range  iii.    MIC  creep  

1.   Increasing  vancomycin  MICs  over  time  however  exact  mechanism  is  unknown  2.   Associated  with  poor  outcomes,  even  with  susceptible  MICs  

iv.   MIC  >  1  of  S.  aureus  has  been  reported  as  independent  predictor  of  treatment  failure,  however  this  is  controversial  

   

 

d.   Controversy  in  susceptibility  testing17  i.   Significant  concern  with  ability  to  differentiate  MIC  1  vs  2  ii.   Standard  used  by  CLSI  is  the  broth  microdilution  (BMD)  reference  method  iii.   Comparison  vs  BMD  testing  

1.   Etest®  and  Microscan  systems  are  more  likely  to  overcall  MICs  2.   BD  Phoenix™  and  Vitek®  2  systems  are  more  likely  to  under-­‐call  MICs  

 

       Current  guideline  recommendations  

 I.   Background8  

a.   First  and  only  guideline  on  vancomycin  therapeutic  dose  monitoring  (TDM)  published  in  2009  b.   Supported  by  American  Society  of  Health  System  Pharmacists  (ASHP),  Infectious  Diseases  

Society  of  America  (IDSA),  and  Society  of  Infectious  Disease  Pharmacists  (SIDP)  c.   Guideline  is  currently  in  the  process  of  being  updated  

   

 

  Susceptible  (S)   Intermediate  (I)   Resistant  (R)  S.  aureus   ≤  2  µg/mL   4-­‐8  µg/mL   ≥  16  µg/mL  Coagulase  negative  Staphylococcus   ≤  4  µg/mL   8-­‐16  µg/mL   ≥  32  µg/mL  Enterococcus  spp.   ≤  4  µg/mL   8-­‐16  µg/mL   ≥  32  µg/mL  

  Etest   MicroScan   Vitek  2   Phoenix  Absolute  agreement   36.7%   61.8%   54.3%   66.2%  

Vancomycin Pharmacokinetics/Pharmacodynamics • CID 2006:42 (Suppl 1) • S37

Figure 2. Relationship between pharmacokinetic/pharmacodynamic indices for vancomycin and bacteriologic efficacy against methicillin-susceptibleStaphylococcus aureus. This plot, which delineates the change in colony-forming units (cfu) in an experimental mouse infection model 3 differentways, suggests that the area under the curve divided by the MIC (AUC/MIC) is the most valuable pharmacokinetic/pharmacodynamic parameter forpredicting the activity of vancomycin against methicillin-susceptible S. aureus. Peak/MIC, peak serum concentration divided by the MIC. Data are fromEbert [23].

Moise-Broder et al. [26] examined the relationship between thevancomycin AUC/MIC and the outcomes of 108 patients withmethicillin-resistant S. aureus pneumonia. An AUC/MIC valueof !400 was associated with a successful outcome, whereas anAUC/MIC value of !400 was associated with a lower eradi-cation rate and a higher mortality rate ( ) [26]. A recentP p .005study examined the relationship between the AUC/MIC valueand a successful outcome in 168 patients with S. aureus bac-teremia. The MIC50 was 0.5 mg/L (range, 0.25–1.0 mg/L), andthe median AUC/MIC value was 1072. Overall, in this study,no relationship was found between successful outcome and aspecific AUC/MIC value [27].

The development of staphylococcal resistance to vancomycinhas been associated with prolonged exposure to low serumconcentrations of the drug. GISA infection and subsequentfailure of vancomycin therapy have been reported since themiddle of the 1990s. By definition, these strains have a van-comycin MIC of 8–16 mg/L. The majority of cases of GISAinfection have occurred among patients receiving peritonealdialysis or hemodialysis who had received suboptimal, pro-longed, and repeated courses of vancomycin [28]. Most casesof GISA infection have involved serum concentrations of van-comycin that were consistently "10 mg/L. Although the num-ber of cases of GISA infection has remained low, there appearsto be some evidence that this type of resistance has occurredin the past but may have been underreported because of ourinability to detect these strains in the clinical laboratory [29].The Centers for Disease Control and Prevention recommendsthe use of vancomycin screening plates of 6 mg/L, which mayincrease our ability to detect these strains [30]. S. aureus strains

that display heteroresistance to glycopeptides (i.e., heterores-istant GISA strains) have also been reported to be associatedwith vancomycin therapy failure [30, 31]. These strains typicallyhave an MIC of 1–4 mg/L but contain a subpopulation of cellsthat exhibit higher MIC values when plated onto agar platescontaining vancomycin or when tested with a heavy inoculaby use of the Etest (AB BIODISK) methods for antimicrobialsusceptibility. Similar to GISA strains, these organisms are dif-ficult to detect in the clinical laboratory, and their prevalencemay be underreported [32]. Recent in vitro evaluations havedemonstrated a relationship between exposure to low vanco-mycin serum concentrations and the development of hetero-resistant GISA [33]. However, because of the difficulty in de-tecting these strains clinically, the overall prevalence and clinicalsignificance of heteroresistant GISA have not been established[32, 34].

TOXICITY

In recent years, there appears to be less controversy with regardto the relationship between serum vancomycin concentrationsand toxicity. Historically, vancomycin toxicities were related toimpurities in the manufacturing process [1]. Although mostanimal studies have not found that vancomycin causes ne-phrotoxicity, there have been a number of studies involvinghumans that have attempted to link elevated serum vancomycinserum concentrations with renal damage [35–39]. Most of thesestudies are retrospective, and definitions for nephrotoxicity arehighly variable. In many cases, serum vancomycin concentra-tions were measured after an elevation in serum creatinine

Downloaded from https://academic.oup.com/cid/article-abstract/42/Supplement_1/S35/275535by gueston 15 January 2018

Figure  5.  Vancomycin  bacteriologic  efficacy  against  MSSA8  

Table  1.    2016  CLSI  MIC  breakpoints  for  vancomycin14  

Table  2.    MIC  testing  comparison17  

Page 7: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  7  

II.   Dosing  and  monitoring  recommendations8    

                                         

Evidence  basis  for  dosing  and  monitoring  recommendations  

 I.   Clinical  effectiveness  of  AUC/MIC  ≥  400  target  

 

 II.   Troughs  as  “surrogate  markers”    

a.   Many  studies  have  shown  that  lower  troughs  (<  15  mg/L)  are  able  to  achieve  goal  AUC/MIC  ≥  400  mg⋅h/L  

b.   Targeting  AUC/MIC  ≥  400  mg⋅h/L  may  reduce  unnecessary  vancomycin  exposure  and  lower  nephrotoxicity  risk  

 

Study   Design   Results  Moise-­‐Broder  PA,  et  al.  (2004)18  

Retrospective  review  n  =  108  patients  S.  aureus  respiratory  tract  infection  

•   AUC/MIC  ≥  400  associated  with  superior  clinical  and  bacteriological  response  (p  =  0.0046),  and  more  rapid  bacterial  eradication  (p  =  0.0402)  vs  %  time/MIC  

Holmes  NE,  et  al.  (2013)19  

Observational  study  n  =  182  patients  S.  aureus  bacteremia  

•   AUC/MIC  >  373  (not  ≥  400)  using  BMD  was  associated  with  reduced  mortality  (P  =  0.043)  

Prybylski  JP,  et  al.  (2015)20  

Meta-­‐analysis  –  14  cohort  studies  n  =  1677  patients    S.  aureus  bacteremia  

•   Higher  AUC/MIC  associated  with  reduced  treatment  failure  (OR  0.41,  CI  0.31–0.53),  persistent  bacteremia  (OR  0.53,  CI  0.33–0.86),  and  mortality  (OR  0.47,  CI  0.33–0.65)  

•   Troughs  ≥  15  mg/L  were  not  associated  with  the  above  •   Regression  analysis  mean  AUC/MIC  =  418  

Men  P,  et  al.  (2016)21  

Meta-­‐analysis  –  9  cohort  studies  S.  aureus  infections  High  (≥  400)  vs  low  (<400)  AUC/MIC  

•   Lower  mortality  [RR  =  0.47  (95%  CI  0.31  –  0.70),  p  <  0.001]  and  treatment  failure  [RR  =  0.39(0.28–0.55),  p  =  0.001]  with  high  AUC/MIC    

• Optimal  PD parameter  is  AUC/MIC,  however  lack  of  consensus  on  ideal  calculation• Troughs recommended  as  "surrogate"  markers  for  AUC

TDM  parameters

• Obtained  at  steady  state  (prior  to  4th  dose)• Monitoring  recommended  for  patients  with  high  risk  of  nephrotoxicity,  unstable  renal  function,  or  receiving  prolonged courses  of  therapy  (  >  3-­‐5  days)• Once-­‐weekly  monitoring  recommended  in  stable  patients  with  long-­‐term  treatment

Trough  monitoring

• Troughs  should  always  be  >  10  mg/L  to  avoid  development  of  resistance• If  MIC  =  1  mg/L,  minimum  trough  concentration  should  be  at  least  15  mg/L  to  achieve  target  AUC/MIC• Trough  concetrations  of  15-­‐20  mg/L  are  recommended  in  complicated  infections

Optimal  trough  concentration

• Loading  dose  (LD)    =  25-­‐30  mg/kg  x  1;  Maintenace dosing (MD)  =  15-­‐20  mg/kg every  8-­‐12  hours• All  dosing  based  on  actual  body  weight  (ABW)

Adult  dosing  regimen

Table  3.    Literature  review  of  outcomes  associated  with  AUC/MIC  target  

Page 8: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  8  

   

 

III.   Support  for  suggested  targets  a.   Troughs  <  10  mg/L  are  associated  with  increased  resistance  development  

 

 

b.   Very  limited  clinical  data  to  support  the  goal  range  of  15-­‐20  mg/L    à  goal  is  to  have  a  higher  likelihood  of  achieving  target  AUC/MIC  

   

 

c.   Even  when  targeting  troughs  of  15-­‐20  mg/L,  PK  data  has  shown  that  AUC/MIC  >  400  mg⋅h/L  is  not  likely  to  be  achieved  if  MIC  ≥  2  mg/L  for  S.  aureus22  

                   

Study   Design   Results  Patel  N,  et  al.  (2011)22  

Monte  Carlo  simulation  Probability  of  target  attainment  (PTA)  of  AUC/MIC  ≥  400    

•   With  troughs  15-­‐20,  all  regimens  produced  PTA  of  100%  at  MIC  ≤  1  •   With  trough  10-­‐15,  all  three  regimens  of  1g,  1.5g,  and  2g  every  12  hrs  

produced  PTA  >  70%  when  MIC  ≤  1  

Neely  MN,  et  al.  (2014)23  

Pharmacokinetic  data  analysis  from  3  studies    n  =  47  patients  

•   Trough-­‐only  and  peak-­‐trough  data  sets  underestimated  true  AUCs  vs  full  data  set:  23%  (11-­‐33%;  P  =  0.0001)  and  14%  (7-­‐19%;  p  <  0.0001)    

•   Normal  renal  function,  therapeutic  AUC  of  ≥  400,  and  MIC  =  1  o   ~  60%  were  expected  to  have  a  trough  <  15  vs  ~  32%  a  trough  <  10    

Bel  Kamel  A,  et  al.  (2017)24  

Retrospective  analysis  n  =  88  elderly  patients  Assumed  MIC  =  1  

•   AUC24  and  Cmin  correlation  (R2  =  0.51)  

•   AUC24  was  ≥  400  in  95%  (53/88)  of  cases  when  Cmin  ≥  15,  37%  (35/88)  when  Cmin  <  15,  and  76%  (81/88)  when  Cmin  ≥  10  

•   Logistic  regression:  Cmin  of  10.8  mg/L  optimal  predictor  of  AUC24  >  400    

Study   Design   Results  Howden  BP,  et  al.  (2004)25  

Retrospective  review    n  =  25  reduced  vancomycin  susceptibility  S.  aureus  (SA-­‐RVS)  

•   Vancomycin  failure:  16  patients  (76%)  •   80%  patients  with  recorded  vancomycin  levels  had  a  low  trough    

(<10  mg/L)  during  the  first  week  of  therapy  Charles  PG,  et  al.  (2006)26  

Retrospective  review  MRSA  (n  =  53)  vs  hVISA  (n  =  5)  bacteremia    

•   hVISA  group  was  more  likely  to  have:  •   High  bacterial  load  infections  (p  =  0.001),  vancomycin  treatment  

failure  (p  <0.001),  initial  trough  levels  <10  µg/mL  (p  =  0.006)  

Study   Design   Results0  Kullar  R,  et  al.  (2011)15  

Retrospective  review  Single-­‐center  n  =  320  with  MRSA  bacteremia    

•   Vancomycin  failure  =  52.5%  •   Troughs  15-­‐20  associated  with  lower  failure  rates  (39.5%  vs  57.8%)  •   CART  analysis:  higher  failure  with  AUC24  <  421  (61.2%  vs  48.6%,  p  =  0.038)  •   Independent  predictors  of  failure:    endocarditis,  initial  trough  <  15,  and  

MIC  >  1  by  E  test  Zelenitsky  S,  et  al.  (2013)27  

Retrospective  review  Multicenter  n  =  35  with  MRSA  septic  shock    

•   Survival  rate  was  2.5x  higher  with  initial  troughs  ≥  15  [70.6%  (12/17)  vs.  27.8%  (5/18);  p  =  0.001]  

•   CART  analysis:  greater  survival  seen  with  AUC24/MIC  ≥  451  (p  =  0.006)  and  ≥  578  (p  =  0.012)  

≤1 mg/L. However, while trough concentrations of 15–20 mg/L ensureAUC values of at least 400 mg∗L/h, there is considerable variability inthe upper range of AUC values. This can be shown through a MonteCarlo simulation (n = 5000) of the vancomycin concentration-timeprofile based on the administration of a 1 g every 8 hour regimenusing a well-established population PKmodel [13,24,25].When one ex-amines the relationship between the trough concentration after thethird dose and AUC24 (Fig. 2), a trough concentration will not explainmore than approximately 50% of the inter-individual variability in theAUC (R2= 0.409). Therefore, one cannot rely solely on the vancomycin“15–20 mg/L” trough concentration range to achieve an AUC/MICBMD

ratio ≥400 for S. aureus isolates with MIC values in excess of 1 mg/L.

4. Concerns of acute kidney injury with trough vancomycinconcentrations of 15–20 mg/L

Due to the reluctance to estimate AUC values at the bedside, the lim-ited data in support of the 15–20 mg/L range for vancomycin serumtrough concentrations has raised the question of whether we need tomaintain even higher trough values in clinical practice. There are twothings to consider when evaluating drug therapy. First, the drug mustbe efficacious. Second, the drug must be non-toxic. While maintenance

of trough concentrations in excess of 20mg/Lwill ensure a higher prob-ability of achieving anAUC/MICBMD ratio N400 for S. aureus isolates withMIC values N1 mg/L, this may not be possible without subjectingpatients to an increased risk of vancomycin-related toxicities, mostnotably AKI [6–9,11,19,20,26–55]. Nephrotoxicity is a long-standing,yet highly debated, adverse effect associatedwith vancomycin adminis-tration [56,57]. To date, 14 studies [6–9,11,20,22,26,27,30,32–34,36,47]of note have comparatively assessed the AKI potential of maintaininghigher vancomycin trough concentrations (N15 mg/L) relative tolower troughs (b15 mg/L) in clinical practice and the results of thesestudies are well summarized in the systematic literature review byVan Hal et al. [12]. Overall, maintaining trough concentrations in excessof 15mg/L was found to substantially increase the risk of a nephrotoxicevent (OR 2.74; 95% CI 1.94–3.88, p b 0.01) relative to trough concentra-tionsb15mg/L. The probability of a nephrotoxic eventwas also found toincrease as a function of treatment duration, with most episodes occur-ring after seven days of therapy [12]. Collectively, these data stronglysuggest that adherence to the recommendations for vancomycinserum trough concentrations in recent expert guidelines [3,4] may re-sult in an elevated risk of vancomycin-induced AKI.

As noted above, there is a high degree of inter-individual variabilitybetween a measured trough concentration and the actual AUC value[13]. Therefore, it is difficult to estimate the degree of AKI associatedwith a given trough concentration due to the wide range of AUC valuesassociated with it. There have been limited attempts in the literature toquantify the relationship between AUC and the probability of AKI [32,58]. While data are scant, an AUC range of 700–1300 mg h/L has beensuggested to increase the risk of nephrotoxicity [14,32,58,59]. Suzukiet al. [58], compared the mean vancomycin AUC in patients who werenephrotoxic and non-nephrotoxic in a recent case–control study. Mostpatients in the nephrotoxic group had AUC24 values between 600 and800 mg∗h/Lwhile thosewho remained non-nephrotoxic were between400 and 600 mg∗h/L (p= 0.014). Our group also recently examined therelationship between AUC and occurrence of AKI among hospitalizedpatients receiving vancomycin [32]. In contrast to Suzuki et al. [58],we found that the probability of AKI increased 2.5-fold among patientswith AUCs above 1300 mg∗h/L compared with those below (30.8% vs.13.1%, p = 0.02) [32]. Interestingly, although AUC values in excess of1300 mg∗h/L were associated with a substantial increase in AKI, anAUC exposure-response relationship appeared to exist (Fig. 3) [59]. Inparticular, the probability of a nephrotoxic event increased as a functionof the AUC and patient's body weight [59]. Collectively, these limiteddata suggest that vancomycin-induced AKI occurs along a continuumand that certain populations may be at particular risk.

Fig. 1. Probability of achieving an AUC/MIC ratio≥400 for vancomycin dosing regimens ofvarying intensity when trough vancomycin concentrations are between 15 and 20 mg/L.

Fig. 2. Scatter and linear fit plot of vancomycin area under the curve over 24 h (AUC24)versus trough vancomycin concentration from 5000 subject Monte Carlo simulation.

Fig. 3. Probability of nephrotoxicity versus vancomycin area under the curve from time 0to 24 h (AUC0–24) by body weight breakpoint.

52 M.P. Pai et al. / Advanced Drug Delivery Reviews 77 (2014) 50–57

Table  5.    Literature  review  of  trough  levels  associated  with  resistance  

Table  6.    Literature  review  of  trough  goal  15-­‐20  mg/L  

Table  4.    Literature  review  of  trough  and  AUC/MIC  correlation  

Figure  6.  PTA  of  AUC/MIC  >  400  with  target  troughs  15-­‐20  in  S.  aureus  infections22    

Page 9: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  9  

Calculation  methodologies  for  AUC/MIC  

 I.   Equation-­‐based  approach28  

a.   Methods  i.   Based  on  first-­‐order  pharmacokinetic  equations  to  estimate  the  AUC  value    ii.   Requires  collection  of  two  timed  steady-­‐state  vancomycin  concentrations  iii.   No  consensus  recommendation  on  single,  validated  method  iv.   Trapezoidal  equations  are  one  of  the  most  commonly  used  methods  (Appendix  B)  

 

b.   Availability  à  Free  online  calculators  (Appendix  C)    

 

                       

II.   Bayesian  approach23,28,29  a.   Methods  

i.   Software  based  program  using  population  modeling  to  optimize  vancomycin  dosing    ii.   Only  one  vancomycin  concentration  required  (not  at  steady  state)  iii.   Based  on  Bayes’  theorem  

1.   Patient’s  PK  parameter  values  (volume  or  clearance)  prior  to  administering  the  drug  based  on  how  drug  has  behaved  in  prior  patients  (“Bayesian  prior”)  

2.   Measured  drug  concentrations  collected  from  patient  after  administration  of  drug  regimen  

3.   Revised  probability  distribution  of  patient’s  PK  based  on  their  dosing  and  drug  concentration  data  (“Bayesian  conditional  posterior”)  a.   Allows  estimation  of  vancomycin  AUC  value  with  low  bias  and  computes  

further  AUC-­‐optimized  dosing  recommendations  b.   Availability  

i.   “BestDose”  program  from  University  of  Southern  California  ii.   Free  online  download  for  Windows  only  (Appendix  D)  iii.   In  process  of  updating  to  new  web-­‐based  program    

               III.   Correlation  between  methods  

a.   Neely  MN,  et  al.  (2014)23  i.   Pharmacokinetic  data  analysis  from  combination  of  three  studies  (total  n  =  47  adults)  ii.   Bayesian  vs  trapezoidal  

1.   Use  of  trough-­‐only  data  to  calculate  AUC  with  Bayesian  program  allowed  for  97%  (95%  CI  93  –  102%,  p  =  0.23)  accurate  estimation    

Pros   Cons  Manually  and/or  electronically  calculated  Can  be  programed  into  Microsoft  Excel  or  EMR  Allows  prediction  of  next  dose  

Complex  formulas  Population-­‐based  assumptions  Time  and  workflow  commitment  Non-­‐adaptive  to  physiologic  changes  Requires  2  levels  at  steady  state    

Pros   Cons  Free,  available  software  Only  one  level  required  (no  steady  state  requirement)  Adaptive  to  physiologic  changes  Quick  prediction  of  next  dose  and  level  

Electronic  calculation  only  Training,  time,  and  workflow  commitment  Patient  data  security  Unknown  cost/extent  of  next  update  

Table  7.    Application  of  equation-­‐based  approach  

Table  8.    Application  of  Bayesian  approach  

Page 10: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

   Badwal  10  

b. Kishk  OA,  et  al.  (2017)29

i. Study  comparing  three  different  AUC  calculation  methods  (Trapezoidal,  Chang,  and  Le)in  pediatric  patient  population1. Likelihood  of  achieving  AUC/MIC  >  400  varied  from  16.4%  to  90.9%2. Trapezoidal  method:  r2  =  0.59,  median  AUC/MIC  447.4  (IQR  296.56-­‐619.01)3. Chang  method:  median  AUC/MIC  160.81  (IQR  97.98-­‐291.96)4. Le  method:  median  AUC/MIC  743.29  (IQR  586.65-­‐950.2)

Clinical  Question  

 

I.   Hale  CM,  et  al.    (2017)30  Are  vancomycin  trough  concentrations  of  15-­‐20  mg/L  associated  with  increased  attainment  of  an  AUC/MIC  ≥  400  in  patients  with  presumed  MRSA  infection?  Objective   To  determine  whether  there  is  an  association  between  different  target  ranges  of  

vancomycin  trough  concentrations  and  attainment  of  a  calculated  AUC/MIC  ≥  400  Methods  

Design   • Retrospective  chart  analysis• 472-­‐bed,  tertiary  care  academic  medical  center  (November  2013  –  January  2015)

Patient  population  

• 100  patients• Stratified  by  their  initial  troughs  (<10,  10-­‐14.9,  15-­‐20,  and  >20  mg/L)

Inclusion  criteria   Exclusion  criteria  • Positive  MRSA  culture• Steady  state  vancomycinconcentration

• Inappropriately  timed  troughs• Unstable  renal  function  or  HD• Vancomycin  doses  based  on  each  level

Outcomes   Primary   Secondary  • Association  between  goal  trough  andreaching  calculated  AUC/MIC  ≥  400

• Corrected  average  trough  associatedwith  development  of  acute  kidney  injury

Calculations  and  definitions  

• AUC  =  TDDvanc  /Clvanc• Estimated  Clvanc  =  (CrCl  x  0.79  +  15.4)  x  0.06• CrCl  =  creatinine  clearance  (mL/min)o Cockcroft-­‐Gault  equation  on  date  of  admit  (capped  at  120  mL/min)

• AUC/MIC  =  calculated  AUC  divided  by  MIC  of  isolated  MRSA  (by  VITEK®  2)• Acute  kidney  injury  (AKI)  =  increase  in  SCr  by  0.5  mg/dL  or  a  50%  increase  frompretreatment  levels

• Average  vancomycin  trough  =  ([trough  1  x  number  of  days]  +  [trough  2  x  number  ofdays]  +  [trough  n  x  number  of  days])  /  (total  number  of  days  on  vancomycin)

Statistics   • Categorical  variables  à  Chi-­‐square  test  or  Fisher  exact  test• Continuous  variables  à  Student  t  test  or  Mann-­‐Whitney  U  test• All  tests  were  two-­‐tailed  and  p  <  0.05  was  considered  significant

Results  Baseline  characteristics  

Characteristic   Value   Characteristic   Value  Mean  age,  years  (SD)   59.2  (17.1)   MIC  =  1,  n(%)   94  (94)  Non-­‐ICU,  n(%)   86  (86)   MIC  =  2,  n(%)   1  (1)  

Should  AUC/MIC  be  the  preferred  method  for  vancomycin  therapeutic  drug  monitoring?

Page 11: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  11  

             

Median  SCr,  (IQR)   0.7  (0.5  –  0.9)   Median  AUC/MIC  (IQR)   378  (305  –472)  Median  CrCl,  (IQR)   102  (74.5  –  120)   Mean  weight-­‐based  dose,  

mg/kg/day  (SD)   26.3  (9.4)  

Mean  24-­‐hour  dose,  mg/day  (SD)   2133.7  (820.3)   Mean  weight-­‐based  dose,  

mg/kg  (SD)   15.3  (3.1)  

Culture  source   Value   Culture  source   Value  Wound,  n(%)   32  (32)   Biopsy/tissue,  n(%)   18  (18)  Sputum,  n(%)   23  (23)   Blood,  n(%)   13  (13)  

Primary  outcome  

•   Patients  that  met  goal  AUC/MIC  (%)  =  42  (42%)  •   Troughs  <  10  mg/L  had  73%  decreased  likelihood  of  attaining  goal  vs  troughs  ≥  10  mg/L  (OR  0.27,  95%  CI:  0.01-­‐0.75,  P  =  0.018)  

•   Statistically  significant  difference  between  trough  <  10  mg/L  and  ≥  10  mg/L  groups  for  median  AUC/MIC  (367  [IQR  303.5-­‐384.5]  vs  404.5  [IQR  305.5-­‐509.5];  P  =  0.041)    

•   No  difference  in  target  attainment  between  troughs  10-­‐14.9  mg/L  and  15-­‐20  mg/L  •   Trough  >20  mg/L  group  had  significantly  lower  mean  age,  higher  mean  weights,  and  higher  median  CrCl  

Secondary  outcomes  

•   Only  97/100  patients  had  assessable  renal  function  •   AKI  analysis:  9/97  (9.3%)  developed  AKI  within  first  10  days  of  treatment  

o   Corrected  average  vancomycin  trough  was  significantly  higher  in  patients  who  developed  AKI  (19.5  +/-­‐  3.6  vs  14.5  +/-­‐  4.2  mg/L,  P  <  0.001)  

Author’s  conclusions  

•   Limited  association  between  higher  serum  vancomycin  trough  concentrations  and  attaining  goal  AUC/MIC  ≥  400  when  troughs  are  above  10  mg/L  

•   Findings  consistent  with  current  recommendations  of  maintaining  troughs  above  10  mg/L  to  achieve  target    

•   Significantly  higher  correct  average  vancomycin  troughs  were  associated  with  development  of  AKI,  however  other  causes  of  nephrotoxicity  were  not  assessed  

Reviewer’s  critique  Strengths   •   Outcome  comparison  between  different  trough  ranges  

•   All  levels  at  steady  state  •   Variety  of  infection  sites  

Limitations   •   Retrospective  study  •   Limited  patient  population  •   Trough  timing  and  dosing  deviations  •   Exclusion  of  patients  with  AKI/renal  dysfunction  

•   Non-­‐standardized  AUC/MIC  calculation  •  Majority  skin  and  soft  tissue  infections  •  Majority  non-­‐critically  ill  patients  •   No  analysis  of  concomitant  nephrotoxins  •   No  analysis  of  clinical  outcomes  

Overall    conclusion  

•   Overall  higher  likelihood  of  achieving  goal  AUC/MIC  with  troughs  >  10  mg/L,  but  troughs  in  15-­‐20  mg/L  range  were  not  associated  with  increased  target  attainment  as  suggested  by  guidelines  

•   No  direct  comparison  of  dosing  methodologies  on  clinical  outcomes  à  unable  to  recommend  AUC/MIC  based  dosing  over  trough  based,  however  general  trough  goal  >  10  mg/L  may  be  appropriate  

Abbreviations:    MRSA  =  methicillin  resistant  Staphylococcus  aureus,  SCr  =  serum  creatinine,  AUC  =  area  under  the  curve,  MIC  =  minimum  inhibitory  concentration;  TDDvanc  =  total  daily  dose  of  vancomycin,  Clvanc  =  estimated  vancomycin  clearance,  CrCl  =  creatinine  clearance  (mL/min),  AKI  =  acute  kidney  injury,  HD  =  Hemodialysis,  SD  =  standard  deviation,  IQR  =  interquartile  range,  CI  =  confidence  interval            

Page 12: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  12  

II.   Neely  MN,  et  al.  (2017)31    

A  prospective  trial  on  the  use  of  trough  concentration  versus  area  under  the  curve  (AUC)  to  determine  therapeutic  vancomycin  dosing  Objective   To  test  hypothesis  that  dosing  vancomycin  to  target  troughs  >  15  mg/L  leads  to  more  

overdosing  in  adult  patients  compared  to  AUC-­‐guided  dosing  Methods  

Design   •   3  year,  prospective,  serial  cohort  study  •   Los  Angeles  County  –  University  of  Southern  California  Medical  Center  

Patient  population    

•   252  adult  patients  (n)  à  Year  1  (n  =  75);  Year  2  (n  =  88);  Year  3  (n  =  89)  Inclusion  criteria   Exclusion  criteria  

•   ≥  18  years  old  •   IV  vancomycin  with  ≥  1  concentration  •   Therapy  ≥  48  hours  

•   Any  form  of  renal  replacement  •   Expected  survival  of  <  72  hours  

Intervention   •   Controls  =  Year  1  =  dosing  on  targeted  troughs  of  10-­‐20  mg/L    •   Cohort  =  dosing  based  on  target  AUC/MIC  ≥  400  to  max  800  

o  Year  2  =  use  of  BestDose  Bayesian  software  (MM  BestDose)  o  Year  3  =  use  of  BestDose  Bayesian  software  (MMopt  BestDose)  

§   Additional  functionality  to  calculate  most  optimal  date/time  for  next  level  Calculations   •   Site-­‐specific  validated  non-­‐parametric  population  model    

•   BestDose  Bayesian  software  à  trapezoidal  approximation  to  calculate  AUC  Outcomes   Primary   Secondary  

•   Proportion  of  all  available  troughs  that  were  therapeutic  vs  proportion  of  all  corresponding  AUCs  

•   Vancomycin  TDM  •   Treatment  outcomes  •   Nephrotoxicity  

Statistics   •   Alpha  =  5%  and  power  =  80%  à  required  sample  size  of  90  patients  in  each  group  •   Univariate  analysis  à  Mann-­‐Whitney  test  and  Student’s  t-­‐test  •  Multivariate  analysis  à  Kruskal-­‐Wallis  test  and  linear  regression  •   Categorical  data  à  Fisher’s  exact  or  chi-­‐square  tests  •   All  tests  were  two-­‐tailed  and  p  <  0.05  was  considered  significant  

Results  Baseline  characteristics  

•   No  significant  differences  in  age,  weight,  serum  creatinine,  or  CrCl  •  Most  common  infection  =  SSTIs  (46%)  •   Year  3  had  more  pneumonia  (6%  vs  10%  vs  27%,  p  =  0.0002)  and  bacteremia  (5%  vs  8%  vs  19%,  p  =  0.006)  

•  Most  common  isolated  organism  =  S.  aureus  (n  =  54)  •  MRSA  isolates  à88%  had  MIC  ≤  1  mg/L  

Primary  outcome                  

•   19%  of  troughs  vs  70%  of  associated  AUCs  were  therapeutic  (P  <  0.001)  •   40/128    (31%)  AUCs    ≥  400  mg⋅h/L  were  associated  with  trough  concentration  <  10  mg/L,  and  87/128  (68%)  were  associated  with  troughs  <15  mg/L  o   Close  to  simulation  in  previous  study28  

  Year  1  (n  =  233)   Year  2  (n  =  189)   Year  3  (n  =  201)   p-­‐value  “Appropriate”  trough   84  (36%)   87  (46%)   43  (21%)   0.02  #  per  conc  range  (mg/L)                                                                                          

<10  10  -­‐  <15  15-­‐20  >20  

 40  (47%)  14  (17%)  22  (26%)  8  (10%)  

 61  (70%)  19  (22%)  5  (6%) 2  (2%)  

 17  (40%)  20  (46%)  4  (9%) 2  (5%)  

<  0.0001  

Page 13: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

   Badwal  13  

%  within  target  trough  Overall  

Target  10-­‐<15  Target  15-­‐20  

28%  13%  15%  

13%  11%  2%  

15%  9%  6%  

0.04  

% within  target  AUC/MIC  Overall  

≥  400  and  <800  300-­‐400  and  <800  

75%  68%  7%  

63%  56%  7%  

73%  70%  3%  

0.21  

Secondary  outcomes  

Vancomycin  therapy:      mean  (min  –  max)  or  median  (IQR  =  25th,  75th  percentile)Year  1  (n  =  75)   Year  2  (n  =  88)   Year  3  (n  =  89)   p-­‐value  

Avg  daily  dose  (mg)   1818  (275–2760)   1750  (700–3360)   1577  (750–4300)   0.46  Year  1  (n  =  44)   Year  2  (n  =  51)   Year  3  (n  =  56)   p-­‐value  

Days  of  vancomycin   7.8  (4.1,  14.3)   5.4  (4,  8.6)   4.7  (3.2,  8.7)   0.05  #  samples/patient   3.6  (1-­‐15)   2.1  (1-­‐8)   2.4  (1-­‐12)   0.007  Trough  conc  (mg/L)   14.4  (3.8  –  27.2)   9.7  (4.5  –  29.6)   10.9  (3.5  –  25.8)   0.005  Daily  AUC  (mg⋅h/L)   510  (160  –  1050)   459  (154  –  975)   459  (194  –  890)   0.29  Treatment  outcomes  • Resolved:  59  (71%)  vs  60  (67%)  vs  66(74%)

• Relapsed:    1  (1%)  vs  0  vs  0

• Toxicity:  2  (2%)  vs  0  vs  0• Failure  or  Death:    0  vs  0  vs  0

Nephrotoxicity  • Mean  SCr  in  each  arm  was  0.76,  1.05,  and  1.2  (p  <  0.0001)• Vancomycin-­‐associated  nephrotoxicity:  6  (8%)  vs  0  vs  2  (2%)  (p  =  0.01)o Median  concentration  was  15.7  mg/L  in  nephrotoxicity  group  vs  8.7  mg/Lo Median  length  of  stay  was  higher  in  nephrotoxicity  group  (20  vs  6  days,  p  =  0.002)

Author’s  conclusions  

• More  patients  achieved  “therapeutic  success”  when  AUC/MIC  was  targeted• Trough  targeting  was  associated  with  a  higher  risk  of  nephrotoxicity• No  difference  in  clinical  treatment  outcomes  between  any  of  the  groups• Trough-­‐guided  dosing  should  be  replaced  by  Bayesian  AUC-­‐guided  dosing

Reviewer’s  critique  Strengths   • Direct  comparison  between  trough  vs  AUC  targeted  dosing

• Similar  results  with  trough  and  AUC  association  as  seen  in  prior  studyLimitations   • Single-­‐center

• Unclear  trough-­‐based  dosing• Did  not  meet  sample  size  requirement• Creators  of  Bayesian  dosing  program• Multiple  MIC  methodologies

• No  comparison  of  baseline  severity  ofillness  or  concomitant  nephrotoxins

• Less  than  half  of  patients  haddocumented  positive  cultures

• Conclusions  not  supported  by  outcomesOverall  conclusion  

• There  was  no  difference  in  target  AUC  obtainment  nor  treatment  outcomesbetween  all  three  groups

• In  most  cases  goal  AUC  can  be  achieved  with  troughs  <  15  mg/L• Nephrotoxicity  conclusions  based  on  limited  occurrence  and  no  in  depth  of  analysisof  any  concomitant  causes

• Bayesian  methodology  was  associated  with  lower  average  duration  and  decreasednumber  of  blood  samples  however  not  clinically  significant

• Final  conclusion  was  not  supported  by  any  primary  or  secondary  endpointsAbbreviations:    conc  =  concentrations,  TDM  =  therapeutic  drug  monitoring,  h  =  hours,  SCr  =  serum  creatinine,  CrCl  =  creatinine  clearance,  VAN  =  vancomycin,  d/c  =  discharge,  #  =  number,  SSTI  =  skin  and  soft  tissue  infections,  IQR  =  interquartile  range  

Page 14: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  14  

III.   Finch  NA,  et  al.  (2017)32    

A  quasi-­‐experiment  to  study  the  impact  of  vancomycin  area  under  the  concentration-­‐time  curve-­‐guided  dosing  on  vancomycin-­‐associated  nephrotoxicity  Objective   To  assess  the  impact  of  switching  from  trough  to    AUC-­‐guided  dosing    

Methods  Design   •   Single-­‐center,  retrospective  quasi-­‐experiment  

•   Detroit  Medical  Center  (DMC)  à  January  2014  –  December  2015  •   Recent  switch  to  target  AUC24  of  400-­‐600  mg⋅h/L  

Patient  population  

•   1280  patients  •   546  patients  in  trough  group  vs  734  patients  in  AUC  group  

Inclusion  criteria   Exclusion  criteria  •   Documented  or  suspected  infection  •   IV  vancomycin  for  ≥  72  hours  and  level  drawn  ≤  96  hours  of  therapy  

•   Trough  group:  ≥  1  near  steady  state    •   AUC  group:  ≥  2  concentrations  

•   Treatment  of  meningitis,  SSTIs  without  concomitant  bacteremia,  UTIs,  or  surgical  prophylaxis  

•   Concomitant  piperacillin-­‐tazobactam  (pip-­‐tazo)  

Calculations   •   Trapezoidal  Rule  AUC  Calculations  o   AUCinf  =  [(Cmax+  Cmin)/2]  x  time  of  infusion;    AUCelim  =  (Cmax    +  Cmin)/Ke    o   AUCdose  =  AUCinf  +  AUCelim;    AUC24  =  AUCdose  x  Number  of  daily  doses  

Outcomes   Primary   Secondary  •   Incidence  of  nephrotoxicity    (3  different  definitions)  

•   Impact  on  vancomycin  exposures  (dose,  AUC,  and  troughs)  

Statistics   •   Chi-­‐square/Fisher  exact  test  or  the  Student  t  test/Mann-­‐Whitney  U  test    •  Multivariable  logistic  and  Cox  proportional  hazards  regression  •  Model  fit  was  assessed  with  the  Hosmer-­‐Lemeshow  goodness-­‐of-­‐fit  test  •   All  tests  were  two-­‐tailed  and  p  ≤  0.05  associated  with  significance    

Results  Baseline  characteristics  

•   No  difference  in  age,  SCr,  or  CrCl  Variable   Trough  (n  =  546)   AUC  (n  =  734)   p-­‐value  

Median  (IQR)  APACHE  II  score   12  (7—17)   14  (9-­‐22)   <0.001  Nephrotoxins,  n  (%)   324  (59.4)   476  (64.9)   0.048  

IV  contrast   46  (8.4)   93  (12.7)   0.016  Furosemide   187  (34.4)   309  (42.1)   0.004  

Indication,  n  (%)  Pneumonia   198  (36.3)   369  (50.3)   <0.001  Bacteremia   77  (14.1)   88  (12)   0.264  

Sepsis  of  unknown  source   70  (12.8)   107  (14.6)   0.368  Bone/joint   68  (12.5)   83  (11.3)   0.529  

Other   86  (15.8)   50  (6.8)   <0.001  Outcomes     Trough  (n  =  546)   AUC  (n  =  734)   p-­‐value  

Vancomycin  exposure  (median  (IQR))  Median  (IQR)  cumulative  vancomycin  dose  (mg)  

0  –  24  h          0  –  48  h          0  –  72  h  

3250  (2438–4250)  5250  (4000–7500)  7500  (5438-­‐10250)  

3000  (2000–3750)  5000  (3750–6500)  7000  (5000–9250)  

<0.001  <0.001  <0.001  

Median  (IQR)  days  of  VAN   5.6  (4.1–7.3)   5.3  (4.0–7.1)   0.076  Median  (IQR)  trough  conc  (mg/L)   15.0  (10.8–19.5)   12.0  (8.4–15.7)   0.076  Median  (IQR)  AUC24  (mg⋅h/L)   Not  calculated   471.5  (361.5–576.7)   -­‐-­‐-­‐  

Page 15: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  15  

Nephrotoxicity,  n(%)  2009  guideline  definition   54  (9.9)   54  (5.4)   0.107  

Akin  Stage  1  or  worse  2  or  worse  

3  

106  (19.4)  64  (11.7)  17  (3.1)  

132  (18)  65  (8.9)  22  (3)  

0.515  0.092  0.905  

Rifle  category  

Risk  or  worse    Injury  or  worse            

Failure  

99  (18.1)  38  (7)  17  (3.1)  

139  (18.9)  43  (5.9)  22  (3)  

0.714  0.423  0.905  

Time  to  nephrotoxicity  by  Cox  proportional  hazards  regression   Multivariable  logistic  regression  

     

•   Adjustments  for  severity  of  illness,  comorbidity,  duration  of  therapy,  concomitant  receipt  of  nephrotoxins  on  guideline-­‐defined  nephrotoxicity  

•   After  correction,  AUC-­‐guided  dosing  was  associated  with  less  frequent  nephrotoxicity  (adjusted  OR  0.514;  95%  CI  0.332-­‐0.794,  [p  =  0.0013])        

Bayesian  estimated  vancomycin  exposure  profile  (subgroup  analysis)  

Variable   Trough  (n  =  150)  (median,  IQR)  

AUC  (n  =  150)    (median,  IQR)   p-­‐value  

AUC0-­‐24  (mg⋅h/L)   705  (540-­‐883)   474  (360-­‐611)   <0.001  AUC24-­‐48  (mg⋅h/L)   663  (538-­‐857)   532  (406-­‐667)   <0.001  

Author’s  conclusions  

•   AUC-­‐guided  dosing  was  associated  with  significantly  reduced  nephrotoxicity  after  controlling  for  clinical  differences  

•   AUC-­‐guided  dosing  was  associated  with  lower  total  daily  vancomycin  doses,  AUC  values,  and  trough  concentrations  

•   This  approach  shows  promise  in  reducing  vancomycin-­‐associated  nephrotoxicity,  however  additional  studies  are  required  to  examine  impact  on  clinical  efficacy  against  invasive  S.  aureus  infections  

Reviewer’s  critique  Strengths   •  Well  defined  nephrotoxicity  outcomes  and  comparisons  of  different  definitions  

•   Analysis  of  concomitant  nephrotoxins  •   Assessment  and  correction  of  differences  in  baseline  characteristics  •   Greater  sample  size  than  previous  studies  

Limitations   •   Single-­‐center  •   Limited  external  validity  -­‐-­‐  exclusion  of  pip/tazo  and  SSTIs  

•   No  assessment  of  clinical  outcomes  •   Baseline  MICs  not  reported  •   Non-­‐standardized  AUC  calculation  

Overall  conclusion  

•   Supports  idea  that  current  trough-­‐based  goals  increase  vancomycin  exposure  and  further  increase  risk  of  nephrotoxicity  à  troughs  >15  mg/L  not  required  to  reach  goal  AUC/MIC  

•   AUC/MIC  targeted  dosing  was  associated  with  less  nephrotoxicity  after  adjusting  for  baseline  characteristics  

•   Agree  with  final  conclusion  that  additional  studies  are  required  to  compare  clinical  success  as  primary  outcome  

 Abbreviations:  inf  =  infusion,  elim  =  elimination,  conc  =  concentration,  SCr  =  serum  creatinine  (mg/dL),  CrCl  =  creatinine  clearance  (mL/min),  VAN  =  vancomycin,  pip/tazo  =  piperacillin/tazobactam,  SSTI  =  skin  and  soft  tissue  infections,  IQR  =  interquartile  range,  CI  =  confidence  interval  

Page 16: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  16  

Summary  

 

   Conclusions  

 I.   Correlation  

a.   Troughs  ≥  15-­‐20  are  not  more  likely  to  achieve  goal  AUC/MIC  than  troughs  ≥  10-­‐15  b.   Limited  evidence  behind  maintaining  higher  trough  concentration  for  extended  duration  even  

in  the  most  invasive  infections  II.   Importance  of  reaching  target  AUC/MIC  

a.   Mortality  benefit  only  assessed  with  MRSA  bacteremia  and  pneumonia  b.   Unclear  applicability  to  other  organisms  and  sites  of  infection  

III.   Practicality  a.   New  online  programs  add  simplicity  to  AUC/MIC  calculations  b.   Significant  variation  in  calculation  methodologies  still  exist  c.   Switch  to  AUC/MIC-­‐targeted  dosing  would  require  significant  workflow  changes  and  

education  IV.   Safety  

a.   Trough-­‐targeted  dosing  associated  with  higher  risk  of  nephrotoxicity  vs  AUC/MIC    b.   Vancomycin-­‐induced  nephrotoxicity  is  controversial,  yet  can  be  managed  with  simple  dose  

adjustments  c.   Dependent  on  concomitant  nephrotoxins  and  duration  of  therapy,  which  majority  of  studies  

did  not  assess  V.   Efficacy  

a.   Only  one  study  attempted  assessing  treatment  success  as  a  secondary  endpoint  and  found  no  significant  differences  between  different  targets  

b.   Future  studies  need  to  be  designed  to  evaluate  this  as  a  primary  outcome    

 

  Hale  2017   Neely  2017   Finch  2017  Design   Retrospective  

Single-­‐center  Prospective,  Serial  cohort  

Single-­‐center  Retrospective,  Quasi  

Single-­‐center  Population   n  =  100  patients  

Stratified  based  on  trough  level  

n  =  252  patients    Years  1  (n=75),  2  (n=88),    

3  (n=  89)  

n  =  1280  patients    Trough  (n=546)  vs    

AUC  (n=734)  Baseline   86%  non-­‐ICU  

94%  MIC  =  1  50%  SSTI,  13%  bacteremia  

88%  MIC  ≤  1  46%  SSTI  

Higher  APACHE  II  score,  furosemide  use,  and  

pneumonia  in  AUC  group     Outcomes  

Correlation   %  @goal  AUC/MIC  ≥  400:  Troughs  10-­‐14.9  =  51.6%  Troughs  15-­‐20  =  45.7%  No  significant  difference  

%  @goal  AUC/MIC  ≥  400:  Troughs  <  15  =  68%  

No  significant  difference  

Median  trough  of  12  associated  with  median  AUC  

471.5  mg⋅h/L  

Nephrotoxicity   Higher  troughs  associated  with  increased  AKI  risk   Trough  >  AUC/MIC   Trough  >  AUC  

Clinical  Efficacy   -­‐-­‐   No  difference  in  resolution,  

relapse,  failure,  or  death   -­‐-­‐  

Page 17: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  17  

Final  recommendations  

 I.   AUC/MIC-­‐targeted  dosing  should  not  yet  replace  all  trough-­‐based  guideline  recommendations  

a.   No  validated  calculation  method  b.   Unclear  recommendations  for  non-­‐studied  indications  and  non-­‐MRSA  organisms  c.   Difference  in  clinical  outcomes  not  supported  by  current  studies  

II.   Future  studies  are  still  needed  before  current  vancomycin  dosing  protocols  are  changed  III.   Recommended  trough  goal  adjustment  

a.   General  trough  target  of  10-­‐20  mg/L  is  appropriate  for  most  patients  regardless  of  indication  b.   If  patient  is  not  clinically  improving  on  vancomycin,  then  trough  target  should  be  reassessed  

or  alternative  therapies  should  be  evaluated            

       

                                                   

 

Page 18: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  18  

Appendices  

 Appendix  A.    Abbreviations    AUC   area  under  the  curve   mg   milligrams  AUCinf   area  under  the  curve  for  infusion   MIC   minimum  inhibitory  concentration  AUCelim   area  under  the  curve  for  elimination   MOA   mechanism  of  action  avg   average   MOR   mechanism  of  resistance  BMD   broth  microdilution   MRSA   methicillin  resistance  S.  aureus  CART   classification  and  regression  tree  analysis   MSSA   methicillin  susceptible  S.  aureus  Cmax   maximum  concentration   PD   pharmacodynamics  Cmin   minimum  concentration   PK   pharmacokinetics  Conc   concentration   PTA   probability  of  target  attainment  CrCl   creatinine  clearance  (mL/min)   S.  aureus   Staphylococcus  aureus  CSF   cerebrospinal  fluid   SCr   serum  creatinine  d/c   discharge   SSTI   skin  and  soft  tissue  infection  ESRD   end  stage  renal  disease   T   time  h  or  hrs   hours   TDM   therapeutic  drug  monitoring  HD   hemodialysis   UTI   urinary  tract  infection  hVISA   heterogeneous  vancomycin-­‐intermediate  

S.  aureus  VAN   vancomycin  

g   grams   Vd   volume  of  distribution  kg   kilograms   VISA   VAN-­‐intermediate  S.  aureus  L   liters   VRE   VAN-­‐resistant  enterococcus  LD   loading  dose   VRSA   VAN-­‐resistant  S.  aureus  MD   maintenance  dosing   #   number  

   Appendix  B.    Trapezoidal  AUC  calculation  formulas28  1.   Calculation  of  elimination  rate  constant  (Ke)  

o  C1  =  peak,  C2  =  trough  o   t  =  difference  in  time  between  C1  and  C2  

2.   Back-­‐  extrapolation  and  forward-­‐extrapolation  to  compute  theoretical  concentrations  o  Ceoi’  =  concentration  at  end  of  infusion  =  Cmax  o  Csoi  ‘=  concentration  at  start  of  infusion  o  Ct  =  trough  concentration  =  Cmin  o   t’  =  infusion  time,  t1  =  time  of  end  of  infusion,  t2  =  time  of  end  of  dosing  interval  

3.   AUC  calculation  o  Scenario  1:  estimating  Ceoi’  and  assuming  Csoi’=  Ct,  or  samples  can  be  collected  prior  to  dose  (trough)  and  after  dose  (peak)  

§   Under-­‐predicts  true  AUC  at  end  of  infusion  and  ignores  alpha-­‐phase  

o  Scenario  2:  back-­‐extrapolate  the  concentration  to  Csoi’    §   Slightly  over-­‐predicts  true  AUC  at  start  of  infusion  

o  Final  AUC  calculation:    

relies on fewer assumptions and provides a “real world” snapshot of thepatient-level information for rapid clinical translatability. The majorlimitation of this approach is that it is not adaptive like the Bayesianapproach, and can only provide a snapshot of the AUC for the samplingperiod. This AUC calculation will not be correct if a physiologic changesuch as renal dysfunction occurs during or after the sampling period.

The equations to compute AUC from two samples are based in parton an original approach proposed by Begg, Barclay, and Duffull for ami-noglycosides [66] and modified by Pai and Rodvold [15]. This approachhas recently been validated for computation of daptomycin AUC [65].However, these previous investigations are based on the assumptionthat these agents are administered using a once-daily approach. This isoften not the case for vancomycin because twice daily and thrice dailydosing in patients with good kidney function is common. The AUCcomputation may be modified based on two concentrations as follows.

Fig. 4 reflects the concentration-timeprofile of vancomycin based onthe administration of 1000 mg every 8 h (1-hour infusion) and focuseson theprofilewhere TDM is often employed (around the3rd or 4th dose[at 24 h to 32 h time points of therapy]). As illustrated, the “true” vanco-mycin concentration follows at least a bi-exponential decline (2-compartment model). It is not possible to accurately characterize theinitial (α-phase) concentration-time profile without measurement ofa concentration between the end of infusion and the moment in thecurve that occurs 2–3 h from the start of infusion. Because two concen-trations may be measured during the same phase (β-phase) of theconcentration–time decline, it is possible to fit a mono-exponentialdecline function to characterize this profile from the start of infusion(artificial time) to the end of the dosing interval. This fit is also illustratedin Fig. 4.

The Sawchuk–Zaske method [67] can be used for this mono-exponential fit by computing the elimination rate constant (Ke) usingthe following equation.

Ke ¼Ln

C1C2

! "

tð1Þ

where, C1 is thefirst concentration after the dose thatmay be referred toas the “peak” concentration, C2 is the second concentration collectedtoward the end of the dosing interval or “trough” concentration, and tis the difference in time between these two concentrations. Once theKe is computed, this information can be used to compute theoreticalconcentrations through back-extrapolation (end of infusion or start of

infusion value). This method can also be used to forward-extrapolateconcentrations to the “true” trough concentration (Ct) at the end ofthe dosing interval. This may be necessary because it is often not clini-cally possible to measure the trough concentration exactly at the endof the dosing interval.

Once the theoretical (i.e., notmeasured) concentrations at the end ofinfusion (Ceoi), start of infusion (Csoi), and Ct are known, AUC can becalculated using arithmetic functions. In the first scenario (Fig. 5), theend of infusion concentration is estimated. The start of infusion andtrough concentration can be assumed to be the same because they areat near-steady state (Fig. 4), which permits superposition. Alternatively,samples may be collected prior to the dose (trough) and after the dose(peak) to expedite AUC calculation (instead of waiting until the end ofthe dosing interval).

The area between the start (same as Ct) and theoretical end ofinfusion (Ceoi′) for a given infusion time (t′) can be related as the areaof a trapezoid:

AUCt0−t1 ¼ Ceoi 0 þ Ct# $

% 0:5% t0 ð2Þ

The area under a mono-exponential curve from the time of the endof infusion (t1) to the time of the end of the dosing interval (t2) is:

AUCt1−t2 ¼Z infinity

t1Ceoi0 & e−Ke& tð Þdt−

Z infinity

t2Ct & e−Ke& tð Þdt

AUCt1−t2 ¼ Ceoi0− CtKe

:

ð3Þ

So the area under scenario 1 can be simplified to

AUCt0−t2 ¼t0 % Ceoi 0 þ Ct

# $

2þ Ceoi 0−Ct

Ke: ð4Þ

As shown by Fig. 5, this approach captures a majority of the area butwill under-predict the true AUC as the rise in concentration to the end ofinfusion is not entirely linear and theα-phase is ignored by thismethod.An alternative to overcome this limitationwould be to back-extrapolatethe concentration to the theoretical start of infusion (Csoi′). Under thissecond scenario (Fig. 6), the equation can be simplified to:

AUCt0−t2 ¼Z infinity

t0Csoi0 & e−Ke& tð Þdt−

Z infinity

t2Ct & e−Ke& tð Þdt

AUCt0−t2 ¼ Csoi 0− CtKe

ð5Þ

Fig. 4. Expected concentration-time profile after administration of the 4th dose of a 1000mg every 8 hour regimen of vancomycin with a peak and trough concentration fit with amono-exponential decline function.

Fig. 5. Expected area under the curve captured using Eq. (4) based on an expected vanco-mycin concentration time profile.

54 M.P. Pai et al. / Advanced Drug Delivery Reviews 77 (2014) 50–57

relies on fewer assumptions and provides a “real world” snapshot of thepatient-level information for rapid clinical translatability. The majorlimitation of this approach is that it is not adaptive like the Bayesianapproach, and can only provide a snapshot of the AUC for the samplingperiod. This AUC calculation will not be correct if a physiologic changesuch as renal dysfunction occurs during or after the sampling period.

The equations to compute AUC from two samples are based in parton an original approach proposed by Begg, Barclay, and Duffull for ami-noglycosides [66] and modified by Pai and Rodvold [15]. This approachhas recently been validated for computation of daptomycin AUC [65].However, these previous investigations are based on the assumptionthat these agents are administered using a once-daily approach. This isoften not the case for vancomycin because twice daily and thrice dailydosing in patients with good kidney function is common. The AUCcomputation may be modified based on two concentrations as follows.

Fig. 4 reflects the concentration-timeprofile of vancomycin based onthe administration of 1000 mg every 8 h (1-hour infusion) and focuseson theprofilewhere TDM is often employed (around the3rd or 4th dose[at 24 h to 32 h time points of therapy]). As illustrated, the “true” vanco-mycin concentration follows at least a bi-exponential decline (2-compartment model). It is not possible to accurately characterize theinitial (α-phase) concentration-time profile without measurement ofa concentration between the end of infusion and the moment in thecurve that occurs 2–3 h from the start of infusion. Because two concen-trations may be measured during the same phase (β-phase) of theconcentration–time decline, it is possible to fit a mono-exponentialdecline function to characterize this profile from the start of infusion(artificial time) to the end of the dosing interval. This fit is also illustratedin Fig. 4.

The Sawchuk–Zaske method [67] can be used for this mono-exponential fit by computing the elimination rate constant (Ke) usingthe following equation.

Ke ¼Ln

C1C2

! "

tð1Þ

where, C1 is thefirst concentration after the dose thatmay be referred toas the “peak” concentration, C2 is the second concentration collectedtoward the end of the dosing interval or “trough” concentration, and tis the difference in time between these two concentrations. Once theKe is computed, this information can be used to compute theoreticalconcentrations through back-extrapolation (end of infusion or start of

infusion value). This method can also be used to forward-extrapolateconcentrations to the “true” trough concentration (Ct) at the end ofthe dosing interval. This may be necessary because it is often not clini-cally possible to measure the trough concentration exactly at the endof the dosing interval.

Once the theoretical (i.e., notmeasured) concentrations at the end ofinfusion (Ceoi), start of infusion (Csoi), and Ct are known, AUC can becalculated using arithmetic functions. In the first scenario (Fig. 5), theend of infusion concentration is estimated. The start of infusion andtrough concentration can be assumed to be the same because they areat near-steady state (Fig. 4), which permits superposition. Alternatively,samples may be collected prior to the dose (trough) and after the dose(peak) to expedite AUC calculation (instead of waiting until the end ofthe dosing interval).

The area between the start (same as Ct) and theoretical end ofinfusion (Ceoi′) for a given infusion time (t′) can be related as the areaof a trapezoid:

AUCt0−t1 ¼ Ceoi 0 þ Ct# $

% 0:5% t0 ð2Þ

The area under a mono-exponential curve from the time of the endof infusion (t1) to the time of the end of the dosing interval (t2) is:

AUCt1−t2 ¼Z infinity

t1Ceoi0 & e−Ke& tð Þdt−

Z infinity

t2Ct & e−Ke& tð Þdt

AUCt1−t2 ¼ Ceoi0− CtKe

:

ð3Þ

So the area under scenario 1 can be simplified to

AUCt0−t2 ¼t0 % Ceoi 0 þ Ct

# $

2þ Ceoi 0−Ct

Ke: ð4Þ

As shown by Fig. 5, this approach captures a majority of the area butwill under-predict the true AUC as the rise in concentration to the end ofinfusion is not entirely linear and theα-phase is ignored by thismethod.An alternative to overcome this limitationwould be to back-extrapolatethe concentration to the theoretical start of infusion (Csoi′). Under thissecond scenario (Fig. 6), the equation can be simplified to:

AUCt0−t2 ¼Z infinity

t0Csoi0 & e−Ke& tð Þdt−

Z infinity

t2Ct & e−Ke& tð Þdt

AUCt0−t2 ¼ Csoi 0− CtKe

ð5Þ

Fig. 4. Expected concentration-time profile after administration of the 4th dose of a 1000mg every 8 hour regimen of vancomycin with a peak and trough concentration fit with amono-exponential decline function.

Fig. 5. Expected area under the curve captured using Eq. (4) based on an expected vanco-mycin concentration time profile.

54 M.P. Pai et al. / Advanced Drug Delivery Reviews 77 (2014) 50–57

relies on fewer assumptions and provides a “real world” snapshot of thepatient-level information for rapid clinical translatability. The majorlimitation of this approach is that it is not adaptive like the Bayesianapproach, and can only provide a snapshot of the AUC for the samplingperiod. This AUC calculation will not be correct if a physiologic changesuch as renal dysfunction occurs during or after the sampling period.

The equations to compute AUC from two samples are based in parton an original approach proposed by Begg, Barclay, and Duffull for ami-noglycosides [66] and modified by Pai and Rodvold [15]. This approachhas recently been validated for computation of daptomycin AUC [65].However, these previous investigations are based on the assumptionthat these agents are administered using a once-daily approach. This isoften not the case for vancomycin because twice daily and thrice dailydosing in patients with good kidney function is common. The AUCcomputation may be modified based on two concentrations as follows.

Fig. 4 reflects the concentration-timeprofile of vancomycin based onthe administration of 1000 mg every 8 h (1-hour infusion) and focuseson theprofilewhere TDM is often employed (around the3rd or 4th dose[at 24 h to 32 h time points of therapy]). As illustrated, the “true” vanco-mycin concentration follows at least a bi-exponential decline (2-compartment model). It is not possible to accurately characterize theinitial (α-phase) concentration-time profile without measurement ofa concentration between the end of infusion and the moment in thecurve that occurs 2–3 h from the start of infusion. Because two concen-trations may be measured during the same phase (β-phase) of theconcentration–time decline, it is possible to fit a mono-exponentialdecline function to characterize this profile from the start of infusion(artificial time) to the end of the dosing interval. This fit is also illustratedin Fig. 4.

The Sawchuk–Zaske method [67] can be used for this mono-exponential fit by computing the elimination rate constant (Ke) usingthe following equation.

Ke ¼Ln

C1C2

! "

tð1Þ

where, C1 is thefirst concentration after the dose thatmay be referred toas the “peak” concentration, C2 is the second concentration collectedtoward the end of the dosing interval or “trough” concentration, and tis the difference in time between these two concentrations. Once theKe is computed, this information can be used to compute theoreticalconcentrations through back-extrapolation (end of infusion or start of

infusion value). This method can also be used to forward-extrapolateconcentrations to the “true” trough concentration (Ct) at the end ofthe dosing interval. This may be necessary because it is often not clini-cally possible to measure the trough concentration exactly at the endof the dosing interval.

Once the theoretical (i.e., notmeasured) concentrations at the end ofinfusion (Ceoi), start of infusion (Csoi), and Ct are known, AUC can becalculated using arithmetic functions. In the first scenario (Fig. 5), theend of infusion concentration is estimated. The start of infusion andtrough concentration can be assumed to be the same because they areat near-steady state (Fig. 4), which permits superposition. Alternatively,samples may be collected prior to the dose (trough) and after the dose(peak) to expedite AUC calculation (instead of waiting until the end ofthe dosing interval).

The area between the start (same as Ct) and theoretical end ofinfusion (Ceoi′) for a given infusion time (t′) can be related as the areaof a trapezoid:

AUCt0−t1 ¼ Ceoi 0 þ Ct# $

% 0:5% t0 ð2Þ

The area under a mono-exponential curve from the time of the endof infusion (t1) to the time of the end of the dosing interval (t2) is:

AUCt1−t2 ¼Z infinity

t1Ceoi0 & e−Ke& tð Þdt−

Z infinity

t2Ct & e−Ke& tð Þdt

AUCt1−t2 ¼ Ceoi0− CtKe

:

ð3Þ

So the area under scenario 1 can be simplified to

AUCt0−t2 ¼t0 % Ceoi 0 þ Ct

# $

2þ Ceoi 0−Ct

Ke: ð4Þ

As shown by Fig. 5, this approach captures a majority of the area butwill under-predict the true AUC as the rise in concentration to the end ofinfusion is not entirely linear and theα-phase is ignored by thismethod.An alternative to overcome this limitationwould be to back-extrapolatethe concentration to the theoretical start of infusion (Csoi′). Under thissecond scenario (Fig. 6), the equation can be simplified to:

AUCt0−t2 ¼Z infinity

t0Csoi0 & e−Ke& tð Þdt−

Z infinity

t2Ct & e−Ke& tð Þdt

AUCt0−t2 ¼ Csoi 0− CtKe

ð5Þ

Fig. 4. Expected concentration-time profile after administration of the 4th dose of a 1000mg every 8 hour regimen of vancomycin with a peak and trough concentration fit with amono-exponential decline function.

Fig. 5. Expected area under the curve captured using Eq. (4) based on an expected vanco-mycin concentration time profile.

54 M.P. Pai et al. / Advanced Drug Delivery Reviews 77 (2014) 50–57

Cp  =  C0  x  e(-­‐kt)  Ct  =  Ceoi  x  e-­‐k  (T  –  t)  

AUC24  =  AUCt0-­‐t2  x  (#  doses/day)  

Page 19: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

 

   Badwal  19  

 Appendix  C.    Vancomycin  AUC/MIC  online  calculators  

1.   https://www.vancomycin-­‐calculator.com/  2.   http://clincalc.com/vancomycin/  3.   https://www.pharmacyjoe.com/vancomycin-­‐aucmic-­‐estimator/  

     Appendix  D.    Bayesian  AUC/MIC  online  program  

1.   http://www.lapk.org/bestdose.php#top      Appendix  E.    Nephrotoxicity  outcome  definitions32  

 

necessary. In January 2015, the institutional guidelines for vancomycin dosing for the treatment ofinvasive infections were revised to target an AUC24 of 400 to 600 mg · h/liter. The upper end of the AUC24

target range was selected on the basis of data suggesting an association between an AUC24 of !600 mg ·h/liter and an increased risk of nephrotoxicity (11). In order to calculate patient-specific AUC24 values, twopostinfusion serum vancomycin concentrations were measured. AUC24 was calculated by estimating theAUC during the infusion by use of the trapezoidal rule (AUCinf " Cmax # Cmin/2 · time of infusion, whereAUCinf is the AUC from time zero to infinity and Cmax is the maximum concentration) and the AUC duringthe elimination phase (AUCelim) via the logarithmic trapezoidal rule (AUCelim " Cmax $ Cmin/eliminationrate constant). The AUC for a given dose was then calculated by adding AUCinf and AUCelim. Finally, AUC24

was calculated by multiplying this number by the number of daily doses.Outcomes. The primary outcome in this analysis was the comparative rate of acute kidney injury,

assessed by three different definitions of vancomycin nephrotoxicity (Table 4). The baseline SCr wasdefined as the SCr immediately preceding the first dose of vancomycin, if available. In cases in which thesample in which SCr was determined was drawn after the first vancomycin dose, the first SCr immediatelyafter the initial vancomycin dose was considered the baseline SCr. Secondary endpoints were measuresof vancomycin exposure, including the total daily vancomycin dose, AUC, and trough concentration.

Data analysis. In the primary analysis, the independent association between the vancomycin dosingstrategy and nephrotoxicity, as defined by the vancomycin consensus guidelines, was examined. Patientswho developed acute kidney injury were first compared to those who did not in a bivariate analysis usingthe chi-square/Fisher exact test or the Student t test/Mann-Whitney U test as appropriate. Multivariablelogistic regression analysis was then used to evaluate the independent predictors of nephrotoxicity. Thevariables associated with nephrotoxicity with biological plausibility in bivariate analysis (P % 0.1) weresimultaneously entered into candidate regression models and removed individually using a backwardelimination procedure until only variables with an adjusted P value of %0.1 remained. Vancomycinexposure variables (total daily dose, AUC, trough concentration) were not candidates for the regressionanalysis because they lie in the causal pathway between the monitoring strategy and nephrotoxicity.Model fit was assessed with the Hosmer-Lemeshow goodness-of-fit test; models with a nonsignificantresult were considered adequate. The multicolinearity of candidate regression models was assessed byuse of the variance inflation factor, with values of %3 considered acceptable. The association betweenthe monitoring approach and the time to nephrotoxicity was also assessed via Cox proportional hazardsregression, constructed in the same backward elimination approach as the logistic regression. Due tounanticipated differences in the severity of illness between the treatment groups, post hoc matchedanalyses were also performed with patients matched on APACHE II score &3.

As a secondary analysis, the vancomycin exposures achieved with the two monitoring approacheswere compared. First, the total daily vancomycin dose and clinically measured steady-state troughconcentrations were compared between the two groups in the entire cohort. AUC24 values could not bedirectly calculated for the trough concentration-guided dosing period due to a lack of multiple serumvancomycin concentrations per dose interval. As such, it was not possible to directly compare thecalculated AUC24 values for the entire cohort. In order to allow a comparison of AUC exposures betweenthe two dosing strategies, a subgroup analysis was performed using a Bayesian estimation on 300patients with a bacteremia or pneumonia indication. Patients with these indications from each groupwere first matched on indication and APACHE II score &3. One hundred fifty pairs were then randomlyselected for comparison. The concentration-time profiles for these patients were estimated via themaximum a posteriori probability (MAP) Bayesian function of the ADAPT V program using a previouslypublished 2-compartment population pharmacokinetic model as the Bayesian prior (32, 33). Thisapproach has been previously validated for estimation of the vancomycin AUC using trough-only serumconcentration sampling (3). Day 1 and 2 AUC values (AUC0 –24 and AUC24 – 48, respectively) and day 1 and2 trough concentrations ([Cmin24] and [Cmin48], respectively) were then compared between groups usingthe Mann-Whitney U test.

All statistical tests were two-sided, and P values of !0.05 were considered statistically significant.Statistical analyses were performed using SPSS (version 24.0) software (SPSS, Armonk, NY).

TABLE 4 Nephrotoxicity outcome definitionsa

Outcome Definition2009 vancomycin consensus guideline SCr increase of "0.5 mg/dl and "50% the baseline SCr for "2 consecutive measurements

Akin stage1 SCr increase of "0.3 mg/dl or "1.5 times baseline SCr2 SCr increase of "0.5 mg/dl or "2 times baseline SCr3 SCr increase of "3 times baseline SCr or acute increase of 0.5 mg/dl if SCr is "4 mg/dl

Rifle categoryRisk SCr increase of "1.5 times baseline SCr or CLCR decrease of !25%Injury SCr increase of "2 times baseline SCr or CLCR decrease of !50%Failure SCr increase of "3 times baseline SCr or CLCR decrease of !75%

aThe baseline SCr was defined as the SCr value immediately preceding the first dose of vancomycin, if available. In cases in which SCr was determined after the firstvancomycin dose, the first SCr value immediately after the initial vancomycin dose was considered the baseline SCr.

Finch et al. Antimicrobial Agents and Chemotherapy

December 2017 Volume 61 Issue 12 e01293-17 aac.asm.org 8

on Decem

ber 10, 2017 by WAYN

E STATE UN

IVERSITY

http://aac.asm.org/

Dow

nloaded from

Page 20: VanquishThyTroughs:Targeting AUC/MIC …sites.utexas.edu/pharmacotherapy-rounds/files/2018/...VanquishThyTroughs:Targeting AUC/MIC forVancomycinDosing ) Jasmin)Badwal,)PharmD) PGYE1Pharmacy)Resident)

   Badwal  20  

References  

1. Levine  DP.  Vancomycin:  a  history.  Clin  Infect  Dis.  2006;42  Suppl  1:S5-­‐12.2. University  Health  System.  Inpatient  antibiogram.  Rates  of  MRSA  (1999  -­‐  2016).  Accessed  February  5,  2018.3. Murray  BE,  Arias  CA,  Nannini  EC.  Glycopeptides  (vancomycin  and  teicoplanin),  streptogramins  (quinupristin-­‐dalfopristin),  lipopeptides

(daptomycin),  and  lipoglycopeptides  (telavancin).    In:  Mandell  GL,  Bennett  JC,  Dolin  R,  editors.  Principles  and  practice  of  infectious  diseases.  8th  ed.  Philadelphia,  PA:  Elsevier/Saunders;  2015.  ClinicalKey  website.  Available  at:  https://www-­‐clinicalkey-­‐com.proxy.lib.wayne.edu/#!/content/book/3-­‐s2.0-­‐B9780323401616000309?scrollTo=%23hl0000114.  Accessed  January  7,  2018.  

4. Vancomycin.  Lexi-­‐Drugs  Online™.  Lexi-­‐Comp  Online™.  Wolters  Kluwer  Health,  Inc.  Riverwoods,  IL.    Availableat:    http://online.lexi.com.    Accessed  January  7,  2018.  

5. Lowy  FD.  Antimicrobial  resistance:  the  example  of  Staphylococcus  aureus.  J  Clin  Invest.  2003;111(9):1265-­‐73.6. Howden  BP,  Davies  JK,  Johnson  PD,  et  al.  Reduced  vancomycin  susceptibility  in  Staphylococcus  aureus,  including  vancomycin-­‐intermediate

and  heterogeneous  vancomycin-­‐intermediate  strains:  resistance  mechanisms,  laboratory  detection,  and  clinical  implications.  Clin  Microbiol  Rev.  2010;23(1):99-­‐139.  

7. Mirza  HC.  Glycopeptide  Resistance  in  S.  aureus.  In:  Enany  S,  eds.    Immunology  and  Microbiology  “The  rise  of  virulence  and  antibioticresistance  in  staphylococcal  aureus”.  INTECH;  2017.    Available  at  https://www.intechopen.com/books/the-­‐rise-­‐of-­‐virulence-­‐and-­‐antibiotic-­‐resistance-­‐in-­‐staphylococcus-­‐aureus/glycopeptide-­‐resistance-­‐in-­‐s-­‐aureus.  Accessed  March  1,  2018.  

8. Rybak  M,  Lomaestro  B,  Rotschafer  JC,  et  al.  Therapeutic  monitoring  of  vancomycin  in  adult  patients:  a  consensus  review  of  the  American  Society  of  Health-­‐System  Pharmacists,  the  Infectious  Diseases  Society  of  America,  and  the  Society  of  Infectious  Diseases  Pharmacists.  Am  JHealth  Syst  Pharm.  2009;66(1):82-­‐98.  

9. Rybak  MJ.  The  pharmacokinetic  and  pharmacodynamic  properties  of  vancomycin.  Clin  Infect  Dis.  2006;42  Suppl  1:S35-­‐9.10. Álvarez  R,  López  cortés  LE,  Molina  J,  et  al.  Optimizing  the  clinical  use  of  vancomycin.  Antimicrob  Agents  Chemother.  2016;60(5):2601-­‐9.11. Zasowski  EJ,  Murray  KP,  Trinh  TD,  et  al.  Identification  of  vancomycin  exposure-­‐toxicity  thresholds  in  hospitalized  patients  receiving

intravenous  vancomycin.  Antimicrob  Agents  Chemother.  2018;62(1).  12. Brown  N,  Ho  DH,  Fong  KL,  et  al.  Effects  of  hepatic  function  on  vancomycin  clinical  pharmacology.  Antimicrob  Agents  Chemother.

1983;23(4):603-­‐9.  13. Levison  ME,  Levison  JH.  Pharmacokinetics  and  pharmacodynamics  of  antibacterial  agents.  Infect  Dis  Clin  North  Am.  2009;23(4):791-­‐815.14. CLSI.  Performance  standards  for  antimicrobial  susceptibility  testing.  Clinical  and  Laboratory  Standards  Institute.  2016;26.15. Kullar  R,  Davis  SL,  Levine  DP,  et  al.  Impact  of  vancomycin  exposure  on  outcomes  in  patients  with  methicillin-­‐resistant  Staphylococcus

aureus  bacteremia:  support  for  consensus  guidelines  suggested  targets.  Clin  Infect  Dis.  2011;52(8):975-­‐81.  16. Van  hal  SJ,  Lodise  TP,  Paterson  DL.  The  clinical  significance  of  vancomycin  minimum  inhibitory  concentration  in  Staphylococcus  aureus

infections:  a  systematic  review  and  meta-­‐analysis.  Clin  Infect  Dis.  2012;54(6):755-­‐71.  17. Rybak  MJ,  Vidaillac  C,  Sader  HS,  et  al.  Evaluation  of  vancomycin  susceptibility  testing  for  methicillin-­‐resistant  Staphylococcus  aureus:

comparison  of  Etest  and  three  automated  testing  methods.  J  Clin  Microbiol.  2013;51(7):2077-­‐81.  18. Moise-­‐broder  PA,  Forrest  A,  Birmingham  MC,  et  al.  Pharmacodynamics  of  vancomycin  and  other  antimicrobials  in  patients  with

Staphylococcus  aureus  lower  respiratory  tract  infections.  Clin  Pharmacokinet.  2004;43(13):925-­‐42.  19. Holmes  NE,  Turnidge  JD,  Munckhof  WJ,  et  al.  Vancomycin  AUC/MIC  ratio  and  30-­‐day  mortality  in  patients  with  Staphylococcus  aureus

bacteremia.  Antimicrob  Agents  Chemother.  2013;57(4):1654-­‐63.  20. Prybylski  JP.  Vancomycin  trough  concentration  as  a  predictor  of  clinical  outcomes  in  patients  with  Staphylococcus  aureus  bacteremia:  a  

meta-­‐analysis  of  observational  studies.  Pharmacotherapy.  2015;35(10):889-­‐98.  21. Men  P,  Li  HB,  Zhai  SD,  et  al.  Association  between  the  AUC0-­‐24/MIC  ratio  of  vancomycin  and  its  clinical  effectiveness:  a  systematic  review

and  meta-­‐analysis.  PLoS  ONE.  2016;11(1):e0146224.  22. Patel  N,  Pai  MP,  Rodvold  KA,  et  al.  Vancomycin:  we  can't  get  there  from  here.  Clin  Infect  Dis.  2011;52(8):969-­‐74.23. Neely  MN,  Youn  G,  Jones  B,  et  al.  Are  vancomycin  trough  concentrations  adequate  for  optimal  dosing?  Antimicrob  Agents  Chemother.

2014;58(1):309-­‐16.  24. Bel  Kamel  A,  Bourguignon  L,  Marcos  M,  et  al.  Is  Trough  Concentration  of  Vancomycin  Predictive  of  the  Area  Under  the  Curve?  A  Clinical

Study  in  Elderly  Patients.  Ther  Drug  Monit.  2017;39(1):83-­‐87.  25. Howden  BP,  Ward  PB,  Charles  PG,  et  al.  Treatment  outcomes  for  serious  infections  caused  by  methicillin-­‐resistant  Staphylococcus  aureus

with  reduced  vancomycin  susceptibility.  Clin  Infect  Dis.  2004;  38:521-­‐8.  26. Charles  PG,  Ward  PB,  Johnson  PD,  Howden  BP,  Grayson  ML.  Clinical  features  associated  with  bacteremia  due  to  heterogeneous

vancomycin-­‐intermediate  Staphylococcus  aureus.  Clin  Infect  Dis.  2004;38(3):448-­‐51.  27. Zelenitsky  S,  Rubinstein  E,  Ariano  R,  et  al.  Vancomycin  pharmacodynamics  and  survival  in  patients  with  methicillin-­‐resistant  

Staphylococcus  aureus-­‐associated  septic  shock.  Int  J  Antimicrob  Agents.  2013;41(3):255-­‐60.  28. Pai  MP,  Neely  M,  Rodvold  KA,  Lodise  TP.  Innovative  approaches  to  optimizing  the  delivery  of  vancomycin  in  individual  patients.  Adv  Drug

Deliv  Rev.  2014;77:50-­‐7.  29. Kishk  OA,  Lardieri  AB,  Heil  EL,  et  al.  Vancomycin  AUC/MIC  and  corresponding  troughs  in  a  pediatric  population.  J  Pediatr  Pharmacol  Ther.

2017;22(1):41-­‐47.  30. Hale  CM,  Seabury  RW,  Steele  JM,  et  al.  Are  vancomycin  trough  concentrations  of  15  to  20  mg/L  associated  with  increased  attainment  of

an  AUC/MIC  ≥  400  in  patients  with  presumed  MRSA  infection?  J  Pharm  Pract.  2017;30(3):329-­‐335.  31. Neely  MN,  Kato  L,  Youn  G,  et  al.  Prospective  trial  on  the  use  of  trough  concentration  versus  area  under  the  curve  to  determine  

therapeutic  vancomycin  dosing.  Antimicrob  Agents  Chemother.  2018;62(2).  32. Finch  NA,  Zasowski  EJ,  Murray  KP,  et  al.  The  impact  of  vancomycin  area  under  the  concentration-­‐time  curve-­‐guided  dosing  on

vancomycin-­‐associated  nephrotoxicity:  a  quasi-­‐experiment.  Antimicrob  Agents  Chemother.  2017;61(12).