Top Banner
Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.) J. Silman (Tel-Aviv Univ.) Quantum Information Theory: Present Status and Future Directions Aug. 23-27 2004, INI, Cambridge
36

Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Jan 01, 2016

Download

Documents

Dina Allison
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Vacuum Entanglement

B. Reznik (Tel-Aviv Univ.)

A. Botero (Los Andes. Univ. Columbia.)J. I. Cirac (Max Planck Inst., Garching.)A. Retzker (Tel-Aviv Univ.)J. Silman (Tel-Aviv Univ.)

Quantum Information Theory: Present Status and Future DirectionsAug. 23-27 2004, INI, Cambridge

 

Page 2: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Vacuum Entanglement

Motivation: QI

Fundamentals: SR QM QI: natural set up to study Ent.causal structure ! LO.H1, many body Ent.

.Q. Phys.: Can Ent. shed light on “quantum effects”? (low temp. Q. coherences, Q. phase transitions, DMRG, Entropy Area law.)

A

B

See also Latorre’s, Verstraete’s & Plenio’s talks

Page 3: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Continuum results :BH Entanglement entropy:Unruh (76), Bombelli et. Al. (86), Srednicki (93), Callan & Wilczek (94). Albebraic Field Theory :

Summers & Werner (85), Halvarson & Clifton (00).Entanglement probes:

Reznik (00), Reznik, Retzker & Silman (03).

Discrete models:Harmonic chains: Audenaert et. al (02), Botero & Reznik (04).Spin chains: Wootters (01), Nielsen (02), Latorre et. al. (03).Linear Ion trap: Retzker, Cirac & Reznik (04).

Background

Page 4: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

AA

BB

)I (Are A and B entangled?

)II (Are Bell’s inequalities violated?

)III (Where does ent. “come from?”

)IV (Can we detect it?

Page 5: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

AA

BB

)I (Are A and B entangled? Yes, for arbitrary separation.

") Atom probes.(”

)II (Are Bell’s inequalities violated? Yes, for arbitrary separation .

) Filtration, “hidden” non-locality .(

)III (Where does it “come from?” Localization, shielding.

(Harmonic Chain).

)IV (Can we detect it? Entanglement Swapping.

)Linear Ion trap.(

Page 6: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Plan:

)1 .(Field entanglement: local probes. Reznik (00), Reznik, Retzker, Silman (03).

)2 .(Harmonic chain: spatial structure of ent. Botero, Reznik (04).

)3 .(Linear Ion trap: detection of ground state ent. Retzker, Cirac, Reznik (04).

Page 7: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

A

B

A pair of causally disconnected localized detectorsA pair of causally disconnected localized detectors

Probing Field Entanglement

RFT! Causal structure

QI ! LOCC

L> cT

B. Reznik quant-ph/0008006,0112044B. Reznik, A. Retzker & J. Silman quant-ph/0310058

Page 8: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Causal Structure + LO

For L>cT, we have [A,B]=0Therefore UINT=UA­ UB

ETotal =0, butEAB >0. (Ent. Swapping)

Vacuum ent ! Detectors’ ent .Lower bound.

LO

Page 9: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

0E

1EE

Note: we do not use the rotating wave approximation.

Field – Detectors Interaction

Window Function

Interaction:

HINT=HA+HB

HA=A(t)(e+i t A+ +e-i tA

-) (xA,t)

Initial state:

|(0) i =|+Ai |+Bi|VACi

Two-level system

Unruh (76), B. Dewitt (76), particle-detector models .

Page 10: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Probe Entanglement

Calculate to the second order (in the final state,and evaluate the reduced density matrix.

Finally, we use Peres’s (96) partial transposition criterion to check inseparability and use the Negativity as a measure.

?

AB(4£ 4) = TrF (4£1)

i pi A(2£2)­B

(2£2)

Page 11: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

21(1 ' )(...)

2Interaction A B A A AU U U i dtH T dtdt H H

( ) 0Interaction A BT U

Page 12: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

21(1 ' )(...)

2Interaction A B A A AU U U i dtH T dtdt H H

( ) 0Interaction A BT U

2

52

2

1 0

0( ) ( )

AB

AB AB

AB

A A B

B A B

X

X XT O

E E E

E E E

0 0 2,

0 1,

AB A B

A A

X or photons

E photon

** ++ +* *+

Page 13: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

21(1 ' )(...)

2Interaction A B A A AU U U i dtH T dtdt H H

( ) 0Interaction A BT U

2

52

2

1 0

0( ) ( )

AB

AB AB

AB

A A B

B A B

X

X XT O

E E E

E E E

0 0 2,

0 1,

AB A B

A A

X or photons

E photon

P.T,

P.T.

** ++ +* *+

Page 14: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Emission < Exchange

|++i + h XAB|VACi |**i…”+“ XAB

||EA||||EB||< ||h0|XABi||

2

0 0[ ( )] (( ) ) ( )A BSin L

dd

L

Off resonance Vacuum “window function”

Superocillatory functions (Aharonov (88), Berry(94)) .

Page 15: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

We can tailor a superoscillatory window function for every Lto resonate with the vacuum “window function”

Entanglement for every separation

sin( )L

Superocillatory window function

VacuumWindow function

Exchange term / exp(-f(L/T))

Page 16: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Bell’s Inequalities

No violation of Bell’s inequalities .

But, by applying local filters

Maximal EntMaximal Ent..

Maximal violationMaximal violation

N­N­(())

M­M­(())

| ++i + h XAB|VACi |**i…”+“ ! |+i|+i + h XAB|VACi|*i|*i…”+“

CHSH ineq. Violated iffM­()>1, (Horokecki (95).)

“Hidden” non-locality. Popescu (95). Gisin (96).

NegativityNegativity

FilteredFiltered

Reznik, Retzker, SilmanReznik, Retzker, Silman 0310058

Page 17: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Summary (1)

1 (Vacuum entanglement can be distilled!

2( Lower bound: E ¸ e-(L/T)2

) possibly e-L/T(

3 (High frequency (UV) effect: ¼ L2 .

4 (Bell inequalities violation for arbitrary separation maximal “hidden” non-locality .

Reznik, Retzker, Silman Reznik, Retzker, Silman 0310058

Page 18: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Spatial structure of entanglement in theHarmonic Chain

A. Botero & B. Reznik 0403233

Page 19: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

The Harmonic Chain model

Hchain! Hscalar field

=s (x)2+(5)2+m22(x))dx

chain/ e-qi Q-1 qj/4

I) Gaussian state ! Exact

calculation of Ent.

II) Mode-wise decomposition !

Identify spatial Ent. Structure

AA BB

11

Circular Harmonicchain

A. Botero & B. Reznik 0403233

Page 20: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Gaussian (pure) Entanglement

A Covariance Matrix M Second moments h qi qji, h pi pji

SymplecticSpectrum

EntanglementEntropy

i

The reduced density matrix of a Gaussian stateIs a Gaussian density matrix.

AB

E= (+1/2)log(+1/2) – (-1/2)log(-1/2)

Page 21: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Entanglement: block vs. the rest

))Log-2 scaleLog-2 scale((

weak

strong

E' 1/3 lnNb +Ec(,Nb)

c=1, bosonic 1-d FT

Page 22: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Mode-Wise decomposition theorem

Botero, Reznik 02090260209026 (bosonic modes)Botero, Reznik 0404176 0404176 (fermionic modes)

A B A B

AB= 1122…kk 0..,

kk / e-k n|ni|ni

Two modes squeezed state

qi

pi

Qi

Pi

AB = ci|Aii|Bii

Schmidt Mode-Wise decomposition

Local U

Local U

Page 23: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Spatial Entanglement Structure

qi ! Qm= ui qi

pi !­­­­ Pm= vi pi

AA BB

qqii, p, pii

quantifies the contribution of local (qi, pi) oscillators

to the collective coordinates (Qi,Pi)

Circular Harmonicchain

local collective

Participation function : Pi=ui vi, Pi=1

Page 24: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Site Participation Function

Weakcoupling

Strongcoupling

N=32+48 osc. Modes are ordered in decreasingEnt. Contribution, from front to back.

Page 25: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Mode Shapes

strongweak

Outer modes

Inner modes

continuum

Solid – u Dashed -v

Page 26: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Entanglement Contribution

Entanglement as a function of mode number decays exponentially.

Page 27: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Logarithmic dependence in the continuum limit with the overall 1/3 coefficient as predicted by conformal field theory .

Inclusion of an ultraviolet cutoff leads to Localization of the highest frequency inner modes .

Mode shape hierarchy with distinctive layered structure ,with exponential decreasing contribution of the innermost modes.

Summary (2)

Page 28: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Can we detect Vacuum Entanglement?

Page 29: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Detection of Vacuum Entanglement

in a Linear Ion Trap

Paul Trap

AB

Internal levels

H0=z(zA+z

B)+n any an

Hint=(t)(e-i+(k)+ei-

(k))xk

H=H0+Hint

A. Retzker, J. I. Cirac, B. Reznik 0408059

1/z << T<<1/0

Page 30: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Entanglement in a linear trap

Entanglement between symmetric groups of ions as a function of the total number (left) and separation of finite groups (right).

|vaci=|0ci|0bi/ n e- n|niA|niB

Page 31: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Causal Structure

UAB=UA­ UB + O([xA(0),xB(T)])

Page 32: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Two trapped ions

Final internal state

Eformation(final) accounts for 97% of the calculatedEntantlement: E(|vaci)=0.136 e-bits.

|vaci|++i­ !­­|i(|**i+ e-|++i)

“Swapping” spatial ! internal states

U=(ei x x ­ ei p y) ...

U

Page 33: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Long Ion Chain

A B

But how do we check that ent. is not due to “non-local” interaction?

Page 34: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Long Ion Chain

A B

But how do we check that ent. is not due to “non-local” interaction?

Htruncated=HA© HB

We compare the cases with a truncated and free Hamiltonians

HAB !

Page 35: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Long Ion Chain

L=6,15, N=20 L=10,11 N=20

denotes the detuning, L the locations of A and B.

exchange/emission >1 , signifies entanglement.

Page 36: Vacuum Entanglement B. Reznik (Tel-Aviv Univ.) A. Botero (Los Andes. Univ. Columbia.) J. I. Cirac (Max Planck Inst., Garching.) A. Retzker (Tel-Aviv Univ.)

Summary

Atom Probes :Vacuum Entanglement can be “swapped” to detectors.Bell’s inequalities are violated (“hidden” non-locality).Ent. reduces exponentially with the separation .High probe frequencies are needed for large separation.

Harmonic Chain:Persistence of ent. for large separation is linked with localization of the interior modes. This seems to provide a mechanism for

“shielding” entanglement from the exterior regions .

Linear ion trap: -A proof of principle of the general idea is experimentally feasible for

two ions .-One can entangle internal levels of two ions without performing gate

operations.