Top Banner
V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking Back to the Future Antoine Kahn Department of Electrical Engineering Princeton University, Princeton, NJ 08540 Tel Aviv University October 10, 2004 S S S S S S c c c c N o o N N N O O N O N N Al
38

V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

Jul 14, 2018

Download

Documents

truonghanh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Electronic Structure of Organic Semiconductor Interfaces: Looking Back to the Future

Antoine Kahn

Department of Electrical EngineeringPrinceton University, Princeton, NJ 08540

Tel Aviv University October 10, 2004

SS

SS

SS

c

c

c

c

N

o

o N

N

N

OO

N O

N

N

Al

Page 2: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Outline

• Interest in organic materials and thin films

• Outstanding metal-organic interface issues

• Re-visiting key concepts– Surface photovoltage– Interface formation

o S-parameterso Defectso Induced density of interface states

• Doping as a means of enhancing charge injection

Page 3: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

• PTCDA (3,4,9,10 perylenetetracarboxylic dianhydride)

• Alq3 (tris(8-hydroxy-quinoline)aluminum) (ET material; EL in green)

• α-NPD (N,N’-diphenyl-N,N’-bis(l-naphthyl)-l,l’biphenyl-4,4’’diamine ( HT material)

OO

N O

N

N

AlNN

• MPcM-phthalocyanine(M=Cu, Zn)

C

C

C

C

o

o

o

o

o

o

IE = 5.5 eVEopt = 3.1 eV

IE = 5.8 eVEopt = 2.7 eV

IE = 5.1 eVEopt = 1.6 eV

IE = 6.7 eVEopt = 2.2 eV

C CNC

NC

NC

NC

F F

F F

• F4-TCNQ (tetrafluoro-tetracyano-quinodimethane); p-dopant

IE = 8.34 eV

ZnN

N

NN

NN

N N

1st layer

2nd layer

[10]

[01]

20 nm x 20 nm

V = -1.58 V, I = 0.10 nAS

~ 2 A

2 ML of PTCDA on Au(111)

I. Chizhov et al. J. Cryst. Growth 208, 449 (2000)

π-conjugated molecules

Page 4: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM Ultra-flat, ultra high work function,

patterned surface

Page 5: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Organic Light-Emitting Device (OLED)

-

+

----

+

Cathode:low workfunction

EF

Anode:Indium-Tinoxide (ITO)transparent

HOMOLUMOVacuum Level

ITO/glass

α-NPD

Alq3

Mg:Ag (40:1)1000 Å

C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)

Red, green and blue OLEDsHigh quantum efficiencyBrightness > 105 cd/m2 demonstrated (~ 100 cd/m2 for displays → 10~50 µA/mm2)low operating voltages (3 V @ 100cd/m2)stability: depends critically on how hard OLED is driven;

Page 6: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

SONY BEGINS MASS PRODUCTION OF FULL-COLOR ORGANIC LIGHT EMITTING DIODE (OLED) DISPLAYSNew Thin Screens for Mobile Devices Realize CRT-Quality Picture Clarity and Color Gamut

TOKYO, Japan, Sept. 14, 2004 - This month, Sony Corporation will commence mass production of a full-color Organic Light Emitting Diode (hereafter OLED) display……….

OLED display introduced in CLIE 'PEG-VZ90' handheld

Sony/Kodak prototype high resolution Display (2001)

2.2”; 512x218 AMOLED

Kodak Digital Camera (2003)

15”; 1280x720 white OLED

Organic Light-Emitting Devices (OLED)

Page 7: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Organic Field Effect Transistor (OFET)

Pentacene OFET• Small molecule organic SC; Low-T deposition• Gate dielectric treated with octadecyltrichlorosilane• Thin film µ > 3cm2/V-s, ~1cm2/V-s typical (single transistor)• Ion/Ioff=108

Statistics on 1cm2 200 OFETs array• Average µ=0.81cm2/V-s; competitive with a-Si• Average Ion/Ioff=106-107

T.N. Jackson, ACS ProsPective, Jan. 04

Page 8: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Organic Photovoltaics

CuPc

C60 BCP5.2 eV

3.5 eV

6.2 eV

4.5 eV

3.5 eV

7.0 eV

ITO4.8 eV

Al4.2 eV

5.3 eV

PEDOT

After Peumans et al., APL 79, 126 (2001)

ITO/PEDOT/200Å CuPc/400Å C60/150Å BCP/800Å Al

Page 9: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

• Quasi-infinite number of molecules and derivatives, with wide span of electronic properties

• Electronic and optical properties of the films determined in first approximation by the molecular moiety

• System more tolerant of defects (not electronically active); no dangling bonds!⇒ great flexibility on choice of substrates

• Control of molecular deposition down to the fraction of molecular plane• Unmatched freedom for device architecture

Advantages of π-conjugated molecular films

• Ability to modify materials with “optical” or “electrical” dopants for wave length shift or enhancing conductivity

• Excellent optical emission properties

ITO; metal; conducting polymer; insulator

Page 10: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

ITO α-NPD PtOEPin Alq3

BCP Alq3 Mg:Ag

0.25 eV 0.6 eV

EF

EF

0.15 eV

0.65 eV

Device engineering: the “hole-blocker“

EVACEVAC

+++++

- --- -

Hole injection Electron injection

Recombination zone

Blockingbarrier

Page 11: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Molecular level alignment

HOMO

LUMO

IE

EA

EF

φM

∆= 0EvacEvac

Metal Semiconductor

EF

Do separately determined material parameters, e.g., φM, IE, EA, define the real energetics of metal-organic interfaces?

Schottky-Mott model

Metal

?

dipole barrier

φM

∆Evac(O)

EF

φBn

Evac

Metal

LUMO

HOMO

• Ishii et al, IEEE Trans. Electron Devices, 44, 1295 (1997)• Hill et al., Appl. Phys. Lett. 73, 662 (1998)

Page 12: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Key questions concerning metal-organic interfaces

• Origin(s) of interface dipoles

• Mechanism(s) of molecular level alignment

• “Engineering” of metal-organic interfaces

Page 13: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Experimental approach

• Growth of molecular layers and metal deposition in UHV (10-10 Torr)• Incremental build-up of interface and (mostly amorphous) films• ultraviolet photoemission spectroscopy (UPS) and inverse photoemission

spectroscopy (IPES) for valence and empty state• X-ray core level spectroscopy (XPS) for interface chemistry• Kelvin probe for contact potential difference (CPD) and surface photovoltage• In-situ current-voltage measurements (I-V)

Substrate (Au/Si)

Metal (20nm)

Evac (M)

φM

Dipole barrier ∆Evac (O)

EA

IE

LUMO

HOMO

φBe

φBh

EFUPS

IPES

CPD (with KP)

XPS (interface chemistry)

Page 14: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

B in d in g e n e rg y (e V )

-1 0 -8 -6 -4 -2 0 2 4 6 8

Inte

nsity

(arb

. uni

ts)

UPS/IPES picture of electronic structure

HOMO

LUMO

Evac

UPS: h+ transport levelUPS: vacuum levelIPES: e- transport level

HOMO LUMO

UPSoccupied states

IPESempty states

5.4eV

Alq3

EF

-18 -17 -16

Onset of photoemission

Evac

IE

EA

Et

I.G. Hill et al., Chem. Phys. Lett. 317, 444 (2000)

Page 15: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

UPS on metal/organic interface

EF

LUMO

HOMO

0.76eV

5.14eV

0.90eV

5.28eV

Evac

Au

+-

ZnPcnarrower gap at metal interface due to polarization effect

-4 -3 -2 -1 0 1

Binding Energy to EF(eV)

128Å ZnPc

-18 -17 -16 -15

ZnPc on Auhv=21.2eV

clean Au

4Å ZnPc

8Å ZnPc

16Å ZnPc

32Å ZnPc

64Å ZnPc128Å ZnPc

0.76eV4Å ZnPc

8Å ZnPc

32Å ZnPc

64Å ZnPc

16Å ZnPc

EF

ZnPc on Auhv=21.2eV

clean Au

Binding energy to EF(eV)

metal-organic interface

• Is the interface dipole real?• Are the molecular levels flat away from the interface?• Do interface barriers correlate with current injection?

Page 16: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Re-visiting old demons !Stiles and KahnPRL 60, 440 (1988)LT

RT

+adsorbates

GaAs (110)

EC

EV

EF

EVAC

Transition between single-metal-atom induced states and metal-induced states?

To some extend, yes; but not entirely!

Mao et al., JVST B9, 2083 (1991)

SPV

Alonso, Cimino et al.Surface Photovoltage!

Could SPV be affecting photoemission results on wide gap organic semiconductors?

Page 17: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Re-visiting old friends !

Page 18: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Interface dipole: UPS vs. CPD

• α-NPD on Au

• Excellent agreement between results of two techniques involving radically different measurement concepts

α-NPDAu

IE=5.4 eV

E vac

EF

5.2 eV

HOMO

LUMO

3.1 eV

1.4 eV

- +

Hole injection

barrier

Interface dipole∆

UPS

62 64 66 68 70 72 74 76 78 80 82

4Å α-NPD on Au

clean Au

Kinetic energy (ev)

10Å α-NPD on Au

20Å α-NPD on Au

α-NPD on Auhν= 82 eV

0 1 2 3 4 5clean Au

4 Å α-NPD/ Au

Kinetic energy (eV)

10 Å α-NPD/ Au

Inte

nsity

(arb

. uni

ts) 20 Å α-NPD/ Au

α-NPD on Auhν=82 eV

EF

0 20 40 60 80 100 120 140 160 180

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

pure a-NPD on Au

φ re

lativ

e to

sub

stra

te (e

V)

Film Thickness (Å)

KP UPS

Kelvin probe CPD

NN

Page 19: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

4.8 eV

0.3 eV

0.8 eV

Contaminated

Au α-NPD

5.3 eV5.4 eV

1.3 eV

1.2 eV

Sputtered clean

Au α-NPD

5.3 eV

Correlation between dipole, barrier and current

Evac Evac

EFEF

HOMO

HOMO

Au/Cr/Si400Å Au

α-NPD

400Å Au

NN

Page 20: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Mechanisms of dipole formation(I) EA > φM

EFMLUMO

HOMO

EFMLUMO

HOMO

e-

Charge transfer from metal to empty molecular states; raises organic molecular levels to stop electron transfer

φM EA

Ex: F16CuPc on Mg and Al; PTCBI on Mg and Ag; PTCDA on Mg, In and Sn

-4 -3 -2 -1 0 1

Energy Relative to EF (eV)

PTCBI on AgHe I

EF

64Å32Å16Å8Å4ÅAg

PTCBIHOMO

-18 -17 -10 -5 0

Energy Relative to EF (eV)

EF

PTCBI on AgHe I, -3V bias

64Å32Å

16Å8Å4Å

Ag0.2 eV

Charge transfer

Polaron + bipolaronlocalized at the interface

I. Hill et al., Organic Electronics, 1, 5 (2000)

Page 21: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

-14 -12 -10 -8 -6 -4 -2 0 2

0.6 eV

x3

x3

Mg on Alq3He I (21.22eV)

E F

128A

64A

32A

16A

8A

4A2A0A

Inte

nsity

(a.u

.)

B inding Energy (eV)

Chemistry-induced gap states

C. Shen et al, J. Appl. Phys. 89, 449 (2001) S. Meloni et al., J. Am. Chem. Soc. 125, 7808 (2003)

Mg- (Al-) + Alq3 →organo-metallic complex

(II) EA < φM < IE and reactive interface

EFM

LUMO

HOMO

Chemical reaction induces filled and empty states which “pin” EFO, leading to charge exchange to align EFO and EFM

EFMLUMO

HOMO

EFO

e-

Ex: Alq3 and Mg or Al

“defects”

Mechanisms of dipole formation

Page 22: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

(III) EA < φM < IE and non-reactive interface

EFM

LUMO

HOMO

Compression of metal surface charge density; lowers the metal work function

EFMLUMO

HOMO

Ex: α-NPD on Au; Alq3 on Ag or Au; CBP on Ag or Au

+

r

-

+

r

-

surface surface

organic molecules

Ishii et al., Advanced Materials, 11, 605 (1999)X. Crispin, et al., J. Am. Chem. Soc. 124, 8131 (2002)

Large work function metals have strong surface dipole components

Mechanisms of dipole formation

Page 23: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

General approach for organic/metal interfaces

• Interfaces formed by gentle deposition of large organic molecules on clean metal surfaces

• Ideal to test models based on “intrinsic” aspects of interfaces, in particular the modification of the semiconductor interface electronic structure by the continuum of the metal.

Abrupt interface →

Page 24: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

S - interface parameter for metal-organics

0.80.60.50.370.25~ 0~ 0~ 0S

3.43.33.22.32.32.22.11.8Et (eV)

Alq3CBPα-NPDPentaceneZnPcPTCDAPTCBIF16-CuPcOrganic

dipole barrier

φM

∆Evac(O)

EF

φBn

Evac

Metal

LUMO

HOMOM e ta l w o r k fu n ctio n (e V )

Inte

rfa c

eE

Fpo

s itio

n( e

V)

Alq3IE = 5.8 eV

Au

MgS=0.8

3.5 4.5 5.5

1.0

3.0

2.0

0

AgAl

ZnPcIE = 5.2 eV

3.5 4.5 5.5

AuMgS~0.25

m

Bn

ddSφφ

=

• S = 0: Fermi level pinned• S = 1: Schottky-Mott limit

LUMO

HOMO

φBn

Interfacedipole

• Ishii et al, IEEE Trans. Electron Devices, 44, 1295 (1997)• Hill et al., Appl. Phys. Lett. 73, 662 (1998)

Page 25: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Induced Density of Interface States (IDIS) model

• Proposed for Inorganic Semiconductor/metal interfaces.

Induced interface states pin the Fermi level

Charge Neutrality Level (CNL)

Aδ)D(Eeπ411

dΦdES

F2

M

F

+==

S ≡ Interface Slope Parameter:

V. Heine, Phys. Rev. 138, A1689 (1965)S.G. Louie and M.L. Cohen, Phys. Rev. B 13, 2461 (1976)C. Tejedor, F. Flores and E. Louis, J. Phys. C: Solid St. Phys. 10, 2163 (1977)J. Tersoff, Phys. Rev. Lett. 52, 465 (1984)

Page 26: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Back of the envelope application to MO interfaces

~0~00.370.250.800.580.600.50Sexp

0.290.280.310.320.490.460.460.54Scal

2.562.202.601.943.704.704.004.00Eg (eV)

Dgs (cm-2eV-1)

PTCBIPTCDApentaceneZnPcAlq3BCPCBPα-NPD

121017.7 × 121068.9 × 121081.9 × 121014.9 × 12104.17 × 12102.18 × 12105.21 × 12105.20 ×

m

Bn

ddSφφ

=Slope parameter

density of interface states per unit energy at ECNLgsD

gsD = molecular area density4x energy gap

— S.G. Louie and M.L.. Cohen, Phys. Rev. B 13, 2461 (1976)

1

0

221

+=

εεδ

i

itgsDe

itδ − average molecule-metal distance

Page 27: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

IDIS and CNL for unreactive MO interfaces

1. Electronic structure of isolated molecule. Ab-initio DFT calculation + correlation.

2. Interaction with metal broadens molecular levels.

3. CNL: The induced density of states up to the CNL integrates to the number of electrons in the isolated molecule.

ΦM )(Eρ|T||c|π2

)Eδ(E|T|π2Γ

iαα,αj,

2αj,

2ji,

iυυ

2iυi

∑=

=−=

N e- in isolated molecule

Ti,υ

IDIS

H. Vázquez et al., Europhys. Lett. 65 802 (2004)

Page 28: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

The CNL tends to align with the metal Fermi level

HOMOLUMO

π statesσ states ΦM (Au) EF CNL

S (ΦM – CNL)

PTCDA

Induced DOS, CNL and interface EF

H. Vázquez et al., Europhys. Lett. 65 802 (2004)

Page 29: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

S - Interface slope parameter at MO interfaces

Aδ)D(Eeπ411

dΦdES

F2

M

F

+==

0.25 (ZnPc)

0.25

CuPc/Au

0.6

0.5

CBP/Au

0.37

0.2

Pent/Au

0.00.0S (exp)

0.13 (d=3.0Å)0.2S (theory)

PTCDA/AuPTCBI/Au

PTCDAIE= 6.8 eV

AuMg In

3.5 4.5 5.5

Sn

S=0

Schottky-Mott limit

PTCBIIE= 6.2 eV

3.5 4.5 5.5

AuMg AgS~0

S=1

1.0

3.0

2.0

0

Inte

r fac

eEF

p osit

ion

(eV

)

Metal work function (eV)3.5 4.5 5.5

CBPIE = 6.2 eV

Au

MgAg S=0.6

ZnPcIE = 5.2 eV

3.5 4.5 5.5

AuMgS~0.25

PentaceneIE = 5.0 eV

3.5 4.5 5.5

AuS~0.37

Sm

Page 30: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Modifying interface barriers

• Interface dipole approach: changing the work function of the substrate– I. Campbell et al., Appl. Phys. Lett. 71, 3528 (1997)

• Stepping-stone approach: ultra-thin interlayer– I.G. Hill et al. J. Appl. Phys. 86, 2116 (1999)

• Interface doping

-

+

-

+

-

+

-

+

-

+

α-NPD

CuPc

EF

Evac

EF

- +

Page 31: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

LUMO

HOMO

LUMO

HOMO

+

EF

EF

EF

EF

p-doped region

tunneling

++

Control of injection via electrical doping

+

Create a narrow depletion region for carrier tunneling

Page 32: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Electronic structure of ZnPc and F4-TCNQ

W. Gao and A. Kahn, Appl.Phys.Lett., 79, 4040 (2001)

-1 0 -8 -6 -4 -2 0 2 4 6 8

ZnP c

IP E SU P SH e I In

tens

ity (a

.u.)

1 .9 4 e V

2 .9 8 e V

E n erg y R e la tive to E F (eV )

5.28eV

EF

3. 34eVLUMO

HOMO

Evac

Zn

N

N

NN

NN

N N

Zn

N

N

NN

NN

N N

ZnPc

Evac-10 -8 -6 -4 -2 0 2 4 6 8

F 4-TCNQ

4 .35eV

3 .10eV

IP E SU P SH eI

Inte

nsity

(a.u

.)

Energy R elative to E F(eV)

EF

5.24eV

LUMO

HOMO

8.34eV

Evac

C CNC

NC

CN

CNF F

F FC C

NC

NC

CN

CNF F

F F

F4-TCNQ

Evac

e-

Page 33: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Depletion region at the doped ZnPc/Au interface

ZnPc on Au ZnPc:3% F4−TCNQ on Au

EF

LUMO

HOMO

0.76eV

5.14eV

0.90eV

5.28eV

Au

Evac0.48eV

EF

0.74eV0.56eV

5.24eV

0.18eV

< 32Å

5.14eV

Au

Evac0.55eV

EF

0.80eV0.38eV

5.24eV

0.42eV

< 128Å

5.14eV

Au

Evac

ZnPc:0.3% F4−TCNQ on Au

W. Gao and A. Kahn, Appl.Phys.Lett., 79, 4040 (2001) and Organic Electronics 3, 53 (2002)

Page 34: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

SPV at doped interface ?

LUMO

0.86eV

5.14eV

5.52eVAu

Evac

EF

HOMO

1.24eV

α-NPD

α-NPD:4% F4-TCNQ

0.68eV

EF

5.56eV

30-40Å

5.14eV

Au

1.10eV0.48eV

0.62eV

Evac

0 20 40 60 80 100 120 140 160 180

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

pure a-NPD on Au

φ re

lativ

e to

sub

stra

te (e

V)

Film Thickness (Å)

KP UPS

PES and CPD in perfect agreement ⇒ no SPV; fast recombination and low carrier mobility likely to prevent charge separation at the interface

0 10 20 30 40 50 60 70-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

a-NPD:0.5%F4-TCNQ on Au

φ re

lativ

e to

sub

stra

te (e

V)

Film Thickness (Å)

KP UPS

0.5% doped α-NPD on Au

Undoped α-NPD on Au

C. Chan et al, J. Vac. Sci. Technol. A 22, 1488 (2004)

Page 35: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

0.1 1 10

Cur

ren

Den

sity

(mA

/cm

2 )

Applied Voltage (V)

104

103

102

101

100

10-1

10-2

10-3

10-4

10-5

10-6

Auα-NPD

Au

substrate

Doping enhancement of hole injection in α-NPD

• Au/ 170nm α-NPD:0.5% F4-TCNQ /Au

α-NPD

Au/ 8nm α-NPD:0.5% F4-TCNQ + 162nm pure α-NPD /Au

α-NPD

Au/ 170nm pure α-NPD/Au

α-NPD

Hole injection enhancement of 4-7 orders of magnitude via tunneling through the depletion region

W. Gao and A. Kahn, J. Appl. Phys., 94, 359 (2003)

Page 36: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Summary

• As for inorganic semiconductors, surface/interface physics has been highly instrumental in advancing basic understanding of organic interface electronic structure

• Organic molecular semiconductors depart in major ways from inorganic counterparts, but key interface concepts developed two or three decades ago are, to the least, extremely useful as guidingprinciples for understanding metal-organic interfaces

Page 37: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM Ultra-flat, ultra high work function,

patterned surface

• Extremely high work function surface (meaning? hard work done on this surface or work function so high that nothing can escape)

• Essentially organic

• Perfectly clean; no apparent contamination, down to the sub-molecular level

• In spite of quasi-regular patterns, extremely small surface corrugation, nearly impossible to measure with scanning probes (Yossi can confirm!)

• Absolutely not able to reproduce in our labs and offices!

Page 38: V Electronic Structure of Organic Semiconductor …shapira/Yoram_NEW/AntoineKahn.pdf · V VET TES EN NOV TAM TVM Electronic Structure of Organic Semiconductor Interfaces: Looking

V

VETTES EN

NOVTAMTVM

Ideal ultra-flat high work function organic surface

Expanding the field of view does reveal some inhomogeneities

חמותוברכותטובמזל