Top Banner
UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon [email protected] In collaboration with Helia Naeimi, Michael Wilson, Charles Lieber, Patrick Lincoln, and John Savage
62

UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon [email protected] In collaboration with Helia Naeimi, Michael Wilson,

Jan 12, 2016

Download

Documents

Jeffrey Walters
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Sub-lithographic Semiconductor Computing

SystemsAndré DeHon

[email protected]

In collaboration with

Helia Naeimi, Michael Wilson, Charles Lieber, Patrick Lincoln, and John Savage

Page 2: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Approaching the Bottom

• In 1959, Feynman pointed out we had– “plenty of room at the bottom”

• Suggested:– wires ~ 10-100 atoms diameter– circuits ~ few thousands angstroms

~ few hundred nm

Page 3: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Approaching the Bottom

• Today we have 90nm Si processes– bottom is not so far away

• Si Atom – 0.5nm lattice spacing– 90nm ~ 180 atoms diameter wire

Page 4: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Exciting Advances in Science

• Beginning to be able to manipulate things at the “bottom” -- atomic scale engineering– designer/synthetic molecules– carbon nanotubes– silicon nanowires– self-assembled mono layers– designer DNA

Page 5: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Question

• Can we build interesting computing systems without lithographic patterning?

• Primary interest:

below lithographic limits

Page 6: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Why do we care?

• Lithographic limitations– Already stressing PSM– …xrays, electron projection…

• Lithographic costs

$0

$10,000,000

$20,000,000

$30,000,000

$40,000,000

$50,000,000

1980 1985 1990 1995 2000 2005

Year

Exp

osur

e to

ol p

rice

Source: Kahng/ITRS2001

Page 7: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Today’s Talk

Bottom up tour: from Si atoms to Computing• Nanowire

– growth– devices– assembly– differentiation– coding

• Nanoscale memories from nanowires• Logic: nanoPLAs• Interconnected nanoPLAs• Analysis

Page 8: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

SiNWGrowth

• Atomic structure determines feature size

• Self-same crystal structure constrains growth

• Catalyst defines/constrains structure

Page 9: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

SiNW Growth

Page 10: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

SiNW Growth

Page 11: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Building Blocks

Page 12: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Semiconducting Nanowires

• Few nm’s in diameter (e.g. 3nm)– Diameter controlled by seed catalyst

• Can be microns long

• Control electrical properties via doping– Materials in environment during growth– Control thresholds for conduction

From: Cui…Lieber APL v78n15p2214

Page 13: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Radial Modulation Doping

• Can also control doping profile radially– To atomic precision– Using time

Lauhon et. al.Nature 420 p57

Page 14: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Devices

Diode and FET Junctions

Doped nanowires give:

Huang…LieberScience 294 p1313

Cui…LieberScience 291 p851

Page 15: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Langmuir-Blodgett (LB) transfer• Can transfer tight-packed, aligned SiNWs

onto surface– Maybe grow sacrificial outer radius, close pack,

and etch away to control spacing

+

Transfer aligned NWs to patterned

substrate

Transfer second layer at right

angle

Whang, Nano Letters 2003 (to appear)

Page 16: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Homogeneous Crossbar

• Gives us homogeneous NW crossbar– Undifferentiated wires– All do the same thing

Page 17: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Control NW Dopant

• Can define a dopant profile along the length of a wire– Control lengths by timed growth– Change impurities present in the

environment as a function of time

Gudiksen et. al. Nature 415 p617

Björk et. al. Nanoletters 2 p87

Page 18: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Control NW Dopant

• Can define a dopant profile along the length of a wire– Control lengths by timed growth– Change impurities present in the

environment as a function of time

• Get a SiNW banded with differentiated conduction/gate-able regions

Gudskien et. al. Nature 415 p617

Björk et. al. Nanoletters 2 p87

Page 19: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Enables: Differentiated Wires

• Can engineer wires– Portions of wire always

conduct) – Portions controllable

Page 20: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Coded Wires

• By selectively making bit-regions on wires either highly or lightly doped– Can give the wire an address

Page 21: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Unique Set of Codes

• If we can assemble a set of wires with unique codes– We have an address

decoder

Page 22: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Unique Set of Codes

• If we can assemble a set of wires with unique codes– We have an address

decoder• Apply a code

– k-hot code

• Unique code selects a single wire

Page 23: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Statistical Coding

• Unique Code set achievable with statistical assembly (random mixing)

• Consider: – Large code space (106 codes)– Large number of wires of each type (1012)– Small array (10 wires) chosen at random

• Likelihood all 10 unique? – Very high! (99.995%)

DeHon et. al. IEEE TNANO v2n3p165

Page 24: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Codespace: How Large?

• How large does code space really need to be?– Addressing N wires – With code space 100N2

– Has over 99% probability of all wires being unique

– For logarithmic decoder:• Need a little over 2 bits of sparse code

Page 25: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Switches / Memories

MolecularSwitches

Collier et. al.Science 289 p1172

Electrostatic Switches

Ruekes et. al.Science 289 p04

Page 26: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Common Switchpoint Properties

• Fit in space of NW crossing

• Hysteretic I-V curves

• Set/reset with large differential voltage across crosspoint

• Operate at lower voltage

Page 27: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Memories

Page 28: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Basis for Sublithographic Memory

Page 29: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Precharge all lines low

Page 30: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Drive Column Read Address

Page 31: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Pulls Single Column Line High

Page 32: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

On xpoint allow to pull Row lines to be pulled high

Assume here: only the two points shown are “on”.i.e. column has 0 1 0 0 1 0

Page 33: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

All Rows Disabled

Read outputnot driven;sees 0

Page 34: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Select Read Row 1010

Read outputnow pulledhigh; sees 1

Page 35: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Select Read Row 1100

Read outputnot driven;sees 0

Page 36: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

…on to Logic…

Page 37: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Diode Logic

• Arise directly from touching NW/NTs

• Passive logic

• Non-restoring

• Non-volatile Programmable crosspoints

Page 38: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Use to build Programmable OR-plane

• But..– OR is not universal– Diode logic is non-restoring no gain, cannot

cascade

Page 39: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

PMOS-like Restoring FET Logic

• Use FET connections to build restoring gates

• Static load– Like NMOS

(PMOS)

• Maybe precharge

Page 40: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Ideal vs. Stochastic Restore

Page 41: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Simple Nanowire-Based PLA

NOR-NOR = AND-OR PLA Logic

Page 42: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Defect Tolerant

All components (PLA, routing, memory) interchangeable;Have M-choose-N propertyAllows local programming around faults

Page 43: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Simple PLA Area• 60 OR-term PLA

– Useable

• 131 raw row wires– Defects

– Misalign

• 171 raw inverting wires– Defects

– Statistical population

• 60M sq. nm.– (2 planes)

90nm support lithography;10nm nanowire pitch

Page 44: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Crosspoint Defects• Crosspoint junctions may be

nonprogrammable– E.g. HPs first 8x8 had 85%

programmable crosspoints

• Tolerate by matching nanowire junction programmability with pterm needs

• Less than ~10% overhead for crosspoint defect rates up to 20%

Naeimi/DeHon, FPT2004

Page 45: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Interconnected nanoPLAs

Page 46: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Tile into Arrays

Page 47: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Manhattan Routing

Page 48: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Manhattan Routing

Page 49: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Tile into Arrays

Page 50: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Complete Substrate for Computing

• Know NOR gates are universal

• Selective inversion• Interconnect structure for

arbitrary routingCan compute any logic

function

• Can combine with nanomemories

Page 51: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Interconnected nanoPLA Tile

Page 52: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Analysis

Page 53: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Ideal vs. Stochastic Restore

Page 54: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Various Area Models

Page 55: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Technology:Lithographic Support

+ Diode Pitch

Page 56: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Area Mapped Logic

• Take standard CAD/Benchmark designs– Toronto20 used for FPGA evaluation

• Map to PLAs

• Place and Route on arrays of various configurations

• Pick Best mapping to minimize Area

Page 57: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Mapped Logic Density (105/10/5)

Page 58: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Cycle Delay:105/10/5/Ideal Restore/Pc=0.95

Page 59: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Power Density (per GHz)

• Vdd=1V• Active Power• Precharge

Page 60: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Construction Review

• Seeding control NW diameter• Timed growth controls doping profile along NW• LB flow to assemble into arrays• Timed etches to separate/expose features• Assemble on lithographic scaffolding• Stochastic construction of address coding allow

micronanoscale addressing• Differentiate at nanoscale via post-fabrication

programming• All compatible with conventional semiconductor

processing – Key feature is decorated nanowires

Page 61: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Summary• Can engineer designer structures at atomic scale• Must build regular structure

– Amenable to self-assembly

• Can differentiate– Stochastically– Post-fabrication programming

• Sufficient building blocks to define universal computing systems without lithography

• Reach or exceed extreme DSM lithography densities– With modest lithographic support

Page 62: UT Oct. 2004 -- DeHon Sub-lithographic Semiconductor Computing Systems André DeHon andre@cs.caltech.edu In collaboration with Helia Naeimi, Michael Wilson,

UT Oct. 2004 -- DeHon

Additional Information

• <http://www.cs.caltech.edu/research/ic/>

• <http://www.cmliris.harvard.edu/>