Top Banner

of 102

UT 25.509 DEPR Revised

Mar 09, 2016

Download

Documents

under tunnel
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • DR.B.R.AMBEDKAR PRANAHITHA-CHEVELLA SUJALA SRAVANTHI

    PACKAGE-21DESIGN OF UNDER TUNNEL AT Km. 25.509

    CONTENTS

    S.No DESCRIPTION Page No

    I NOTE ON DESIGN FEATURES 1

    II DESIGN CALCULATIONS

    1 HYDRAULIC PARTICULARS OF CANAL 4

    2 STREAM PARTICULARS 4

    3 M.F.L & VENTWAY 5

    4 TRANSITIONS 12

    5 TAIL CHANNEL 13

    6 T.E.L.CALCULATIONS 14

    7 DESIGN OF DROPS 21

    8 SCOUR DEPTH 22

    9 DESIGN OF HEAD WALL, WING WALL & RETURNS 23

    10 DESIGN OF BARREL 31

    III DRAWINGS

    1. INDEX & CATCHMENT AREA MAP

    2. PLAN PROFILE

    3. GRID PLAN

    4. LS & CS OF STREAM

    5. GENERAL PLAN & SECTION

    6. R C C DETAILS OF BOX AND SECTIONS

    (Gravity Canal from Kondam Cheruvu to Gadkol)

  • PCSS/P-21/KC-G/GC/UT_3.794 1

    DR.B.R.AMBEDKAR PRANAHITHA-CHEVELLA SUJALA SRAVANTHIPACKAGE-21

    DESIGN OF UNDER TUNNEL AT Km. 25.509NOTE ON DESIGN FEATURES

    1.0 INTRODUCTION:

    2.0 HYDRAULIC PARTICULARS OF CANAL:

    Sl. No. Description Units Particulars1 Discharge (R / D) cumecs 8.492 / 8.5172 Bed Width m 6.200

    3 F.S.D m 1.400

    4 Side Slopes --- 1.5 :1 / 2.0 :1

    5 Bed fall --- 1 in 6000

    6 Value of rugosity --- 0.018

    7 Free board m 0.750

    8 Velocity m/sec 0.733

    9 m 4.0 + Dowel / 2.500

    10 C.B.L m + 421.249

    11 F.S.L m + 422.649

    12 T.B.L m + 423.399

    13 Stream bed level @ crossing m + 415.985

    3. STREAM PARTICULARS

    Sl. No. Description Units Particulars1 Catchment Area Sq.Km 2.724

    2 M.F.D by Dickens formula Cumecs 35.410

    3 Bed level of stream crossing m + 415.985

    4 Bed fall --- 1 in 299

    5 Value of n (assumed) --- 0.030

    6 Avg. depth of flow m 1.620

    7 Avg. velocity m/sec 1.269

    8 MFL's

    i. at crossing m + 418.052

    ii. at 20 m u/s m + 418.172

    ii. at 20m d/s m + 417.746

    4. VENT WAY FOR STREAM FLOW

    The alignment of gravity Canal from Kondam cheruvu to gadkol under DR.B.R.AMBEDKAR PRANAHITHA-CHEVELLA SUJALA SRAVANTHI crosses the stream @ Km.25.509. As seen from the Bed Level of Canal and stream a Under tunnel is feasible. Hence, a Box type Under tunnel is designed with the following Hydraulic Particulars.

    Top Width of banks L/R

    The canal bed level @ crossing is +421.249 and the stream bed level @ crossing is +415.985.There is head way of 5.264 m for stream flow under the canal. Hence Two vents of 2.4 x 1.5 m (RCC box) is proposed. Barrel is of Box type proposed in VRCC M 30. Below the barrel 150 mm thick base in CC M10 is proposed.

  • PCSS/P-21/KC-G/GC/UT_3.794 2

    Canal bed level = + 421.249

    Thickness of roof +Sealing coat = 0.350 + 0.04

    Inside of barrel top slab = + 417.485

    Barrel depth = 1.500

    Barrel floor Level = + 415.985

    5.0 TOTAL ENERGY LEVELS:

    S.No. Description M.F.L. T.E.L1 Section 8-8 (Just outside the transition) 417.555 417.623

    2 Section-7-7 (Just inside the transition) 417.544 417.634

    3 Section-6-6 (Just outside the exit end of barrel) 417.279 417.774

    4 417.965 0

    5 Section-4-4 (Just inside the barrel at entrance) 417.485 418.443

    6 Section-3-3 (Just outside the barrel @ entrance) 418.349 418.548

    7 Section-2-2 (Just inside u/s transition) 418.551 418.585

    8 418.551

    As seen from the above the barrel will partial flow.

    6. DESIGN OF DROP

    The following are the dimensions of drop:

    1. Top Width = 0.500 m

    2. Bottom Width = 0.500 m

    3. Thickness of apron = 0.150 m including 75mm wearing coat

    4. Length of apron = 10.000 m

    7.0 SCOUR DEPTHS:

    8. SUB-STRUCTURE

    The total energy levels are worked out from d/s of the structure. The coefficients for sudden expansion and sudden contraction considered are 0.5 and 0.3 respectively. Similarly the coefficients for gradual expansion and contraction considered as 0.3 and 0.2 respectively. The head over the drop is found by trial and error. The following are T.E.L & MFLs.

    Section-5-5 (Just inside the barrel @ exit end) (Barrel roof level +)

    Section-1-1 (first Drop )

    The difference in barrel floor level and U/s stream bed level is to be negotiated by a drop of -3.03m. The drop crest level considered is stream B.L.at 20m u/s ie., +416.33. The top width and bottom width are calculated by the formula given in the CWC manual on falls. Thickness of apron and length of apron are also calculated by the formula given in the above manual.

    1st Drop

    The drop wall is proposed in VCC M20 and apron is proposed to be constructed in VCC M20 using 40 MSA. Thickness of foundation under the drop is 500 mm in VCC M20.

    The widths of transitions @ entry and exit are 17.14 m and 17.14 m respectively. With silt factor as 1, the maximum scour levels on U/s & D/s works out to + 415.26 & + 414.265 respectively. The foundation of u/s Returns and Drop is proposed @ + 415.41. Hence cut-off on U/s is not required. On D/s the foundation level is + 415.21 However provided 4.9 m cutoff.

  • PCSS/P-21/KC-G/GC/UT_3.794 3

    The Barrel is of R.C.C box type and designed for earth/ water over it and earth pressure on sides. The analysis is done in STAAD Analysis for the different load combinations i.e., U.T barrel full with earth pressure, U.T barrel empty with earth pressure. The stresses and coefficients adopted are,

  • PCSS/P-21/KC-G/GC/UT_3.794 4

    Mix proposed = M30 (As per IS3370 -Part I 2009)

    Stress in concrete = 10 (As per IS3370 -Part II 2009)

    Stress in steel = 1300 (As per IS3370 -Part II 2009)

    Modular ratio = 9.333

    Lever arm coefficient = 0.861

    Neutral axis coefficient = 0.418

    M.R coefficient = 1.798

    STRESS STABLESoil (t/m)

    Max Min

    1 Return wall (u/s) 10.126 5.418

    2 wing wall(U/s) 10.936 4.351

    3 Sloped Wing wall (U/s) 17.197 5.073

    4 sloped wing wall (D/s) 34.920 -4.361

    5 wing wall(D/s) 7.422 4.232

    6 Return wall (D/s) 7.422 4.232

    9. TAIL CHANNEL

    10. LEADING CHANNEL

    Kg/cm2

    Kg/cm2

    Thickness of the top and bottom slabs under the trough and under the bank works out to 35 cm. The thickness of the External wall and internal wall is 30 cm. & 20 cm. It is checked for shear and bond.

    12mm thick expansion joints with 225 wide PVC water stopper are proposed at the interface of the earth bank and the trough. They shall be filled with Asphaltic joint filler.

    The Head wall, Wings & Returns are designed for saturated earth pressures keeping the water face vertical and rear batter and stability calculations are done as per T.V.A procedure.

    The Foundation under the wings and returns is 500 mm in VCC M20 using 40 MSA. The following are the stresses in the Wings and returns.

    Sl. No.

    A tail channel of bed width equal to transition width on d/s is to be excavated till the barrel floor level meets the natural stream bed level. The tail channel is proposed to be protected with 300 mm thick revetment and pitching for bed & sides for a length of 5.0 m . At the ends 450 mm x 450 mm profile wall is proposed in VCCM15

    The stream bed is to be re-graded up to drop wall. The leading channel is also proposed to be protected as in the case of tail channel. Guide bunds to the extent as per site condition may be provided to train the flow

  • PCSS/P-21/KC-G/GC/UT_3.794 4

    DESIGN OF UNDER TUNNEL AT Km. 25.5091. Hydraulic particulars of canal at the location of the structure

    S.No. Description Units Particulars1 Discharge R/D Cumecs 8.492 / 8.5172 Bed Width m 6.2003 Full supply depth m 1.4004 Free board m 0.7505 Bed fall m 1 in 60006 Velocity m/sec 0.7337 Value of 'n' 0.01808 Side slopes (I/O) 1.5 :1 / 2:19 Top width of banks (L/R) m 4.0 + Dowel / 2.510 Canal bed level m + 421.24911 Full supply level m + 422.64912 Top of bank m + 423.39913 GL m + 415.985

    2 Stream Particulars:i)Catchment Area = 2.724 Sq. Km

    ii)Dickens Formula Q =where C = 16.7 for catchment areas from > 2.5 Sq. Kms

    M = is the Catchment areaHence Q = ( 16.7 x 2.724)^ 0.75

    = 35.410 cumecsiii) Stream bed level at crossing = 415.985 miv) Stream bed level at 20m U/s = 416.330 mv) Stream bed level at 20m D/s = 415.841 mvi) Average depth of flow = 1.620 mvii) average velocity = 1.269 m/sec

    3.0. M.F.L. Calculations & Vent way:-3.1 Bed fall of Stream:1. Bed level at Km 0.000 (Crossing) : 415.985

    Slope 1 in 57.9-Bed level at - 299.8 m u/s : 421.158

    2. Bed level at Km 0.000 (Crossing) : 415.985Slope 1 in 110.6

    -Bed level at - 200 m u/s : 417.793

    3. Bed level at Km 0.000 (Crossing) : 415.985Slope 1 in 36.8

    -Bed level at - 100 m u/s : 418.699

    4. Bed level at Km 0.000 (Crossing) : 415.985Slope 1 in 27.6

    -Bed level at -60 m u/s : 418.159

    5. Bed level at Km 0.000 (Crossing) : 415.985Slope 1 in 201.3

    Bed level at 60 m d/s : 415.687

    6. Bed level at Km 0.000 (Crossing) : 415.985Slope 1 in 1492.5

    Bed level at 200 m d/s : 416.119

    7. Bed level at Km 0.000 (Crossing) : 415.985Slope 1 in 187.0

    CM3/4

  • PCSS/P-21/KC-G/GC/UT_3.794 5

    Bed level at 376.7 m d/s : 413.970Slope 1 in 187.0

    Average of 1-7 = ( 57.9 + 110.6 + 36.8 + 27.6+201.3+1492.5+187) = 301.978say 299.000

    Adopt a bed fall of 1 in 299.000 and the value of n as 0.0300

  • PCSS/P-21/KC-G/GC/UT_3.794 5

    3.2 MFL of the Cross sections:M.F.L at 30 m U/S : 418.539M.F.L at 20 m U/S : 418.172M.F.L at Crossing : 417.972M.F.L at 10m D/s : 418.052M.F.L at 20 m D/S : 417.746M.F.L at 30 m D/S : 417.691

    3.2.1 M.F.L at 30 m U/S : Assuming the MFL as 418.539

    M.F.L.Cal

    Depth Distance Area (Sq.m)

    418.539418.539 418.381 418.381 0.16 0.079 0.000 0.000 0.158 -30.000418.539 417.919 417.919 0.62 0.389 10.000 3.895 10.011 -20.000418.539 417.811 417.811 0.73 0.674 10.000 6.745 10.001 -10.000418.539 417.528 417.528 1.01 0.870 10.000 8.700 10.004 .000418.539 418.284 418.284 0.26 0.633 10.000 6.335 10.029 10.000418.539 418.817 418.539 0.00 0.128 4.793 0.612 4.800 20.000418.539 419.092 418.539 0.00 0.000 0.000 0.000 0.000 30.000

    44.793 26.287 45.00

    P = 44.8 + 1.01= 45.805 m

    =

    = ( 26.3 / 45.00= 0.6988 m

    V = 0.699 x 1/ 299.000= 0.030= 1.347 m/sec

    Q = A x V= 26.3 x 1.347= 35.410 cumecs = 35.410 cumecs

    HENCE O.K.

    Stream bed levels

    Average Depth

    Perimeter (m)

    Cross Chainage

    R2/3 (A/P)2/3

    )2/3

    1 x

  • PCSS/P-21/KC-G/GC/UT_3.794 6

    3.2.2 M.F.L at 20 m U/S : Assuming the MFL as 418.172

    M.F.L.Cal

    Depth Distance Area (Sq.m)

    418.172418.172 418.299 418.172 0.000 0.000 0.000 0.000 0.000 -30.000418.172 418.291 418.172 0.000 0.000 0.000 0.000 0.000 -29.800418.172 417.824 417.824 0.348 0.174 7.254 1.263 7.262 -20.074418.172 417.820 417.820 0.352 0.350 0.074 0.026 0.074 -20.000418.172 417.808 417.808 0.364 0.358 0.200 0.072 0.200 -19.800418.172 417.794 417.794 0.378 0.371 9.800 3.639 9.800 -10.000418.172 417.796 417.796 0.376 0.377 0.179 0.068 0.179 -9.821418.172 417.796 417.796 0.376 0.376 0.021 0.008 0.021 -9.800418.172 416.330 416.330 1.842 1.109 9.800 10.871 9.909 .000418.172 418.256 418.172 0.000 0.921 9.565 8.811 9.741 10.000418.172 418.480 418.172 0.000 0.000 0.000 0.000 0.000 20.000

    418.525 418.172 0.000 0.000 0.000 0.000 0.000 30.00036.893 24.756 37.19

    P = 36.9 + 1.84= 38.735 m

    =

    = 24.8 / 38.74= 0.7420 m

    V = 0.742 x 1/ 299.000= 0.03= 1.430 m/sec

    Q = A x V= 24.8 x 1.430= 35.410 cumecs = 35.410 cumecs

    HENCE O.K.

    Stream bed levels

    Average Depth

    Perimeter (m)

    Cross Chainage

    R2/3 (A/P)2/3

    )2/3

    1 x

    -40 -30 -20 -10 10 20 30 40416

    417

    418

    419

    420

    MFL @ 30 m u/sM.F.L. Stream bed levels

    Cross Chainage

    Elevation

  • PCSS/P-21/KC-G/GC/UT_3.794 7

    3.2.3 M.F.L at Crossing : Assuming the MFL as 417.972

    M.F.L.Cal

    Depth Distance Area (Sq.m)

    417.972417.972 418.035 417.972 0.00 0.000 0.000 0.000 0.000 -30.000417.972 418.030 417.972 0.00 0.000 0.000 0.000 0.000 -29.895417.972 417.593 417.593 0.38 0.189 8.255 1.564 8.263 -20.377417.972 417.570 417.570 0.40 0.390 0.377 0.147 0.378 -20.000417.972 417.571 417.571 0.40 0.401 0.105 0.042 0.105 -19.895417.972 417.833 417.833 0.14 0.270 9.829 2.654 9.832 -10.066417.972 417.835 417.835 0.14 0.138 0.066 0.009 0.066 -10.000417.972 417.838 417.838 0.13 0.135 0.105 0.014 0.105 -9.895417.972 415.985 415.985 1.99 1.060 9.895 10.494 10.067 .000417.972 417.836 417.836 0.14 1.061 10.000 10.615 10.170 10.000417.972 417.676 417.676 0.30 0.216 10.000 2.160 10.001 20.000

    417.810 417.810 0.16 0.229 6.602 1.512 6.603 26.602417.812 417.812 0.16 0.161 0.099 0.016 0.099 26.701417.873 417.873 0.10 0.129 3.299 0.427 3.300 30.000

    58.632 29.654 58.99

    P = 58.632 + 1.99= 60.619 m

    Stream bed levels

    Average Depth

    Perimeter (m)

    Cross Chainage

    -40 -30 -20 -10 10 20 30 40415416417418419

    MFL @20 m u/sM.F.L. Stream bed levels

    Cross Chainage

    Elevation

  • PCSS/P-21/KC-G/GC/UT_3.794 8

    == 29.7 / 60.62= 0.6209 m

    V = 0.621 x 1/ 299.000= 0.03= 1.197 m/sec

    Q = A x V= 29.65 x 1.197= 35.491 cumecs = 35.410 cumecs

    HENCE NOT O.K.

    3.2.4 M.F.L at 10m D/s : Assuming the MFL as 418.052

    M.F.L.Cal

    Depth Distance Area (Sq.m)

    418.052418.052 417.852 417.852 0.200 0.000 0.000 0.000 0.200 -30.000418.052 417.616 417.616 0.436 0.318 10.000 3.176 10.003 -20.000418.052 417.609 417.609 0.443 0.439 10.000 4.391 10.000 -10.000418.052 416.954 416.954 1.098 0.770 10.000 7.701 10.021 .000418.052 417.776 417.776 0.276 0.687 9.812 6.737 9.846 9.812418.052 417.797 417.797 0.255 0.265 0.188 0.050 0.189 10.000418.052 417.742 417.742 0.310 0.282 1.257 0.355 1.258 11.257418.052 417.546 417.546 0.506 0.408 8.555 3.487 8.557 19.812418.052 417.551 417.551 0.501 0.503 0.188 0.095 0.188 20.000418.052 417.619 417.619 0.433 0.467 2.615 1.220 2.616 22.615418.052 417.804 417.804 0.248 0.340 7.197 2.448 7.199 29.812418.052 417.808 417.808 0.244 0.246 0.188 0.046 0.188 30.000

    60.000 29.707 60.27

    P = 60.0 + 1.10= 61.098 m

    =

    = 29.7 / 61.10= 0.6183 m

    R2/3 (A/P)2/3

    )2/3

    1 x

    Stream bed levels

    Average Depth

    Perimeter (m)

    Cross Chainage

    R2/3 (A/P)2/3

    )2/3

    -40 -35 -30 -25 -20 -15 -10 -5 5 10 15 20 25 30 35 40414

    416

    418

    420

    MFL @ CrossingM.F.L. Stream bed levels

    Cross Chainage

    Elevation

  • PCSS/P-21/KC-G/GC/UT_3.794 9

    V = 0.618 x 1/ 299.000= 0.03= 1.192 m/sec

    Q = A x V= 29.7 x 1.192= 35.410 cumecs = 35.410 cumecs

    HENCE O.K.

    3.2.5 M.F.L at 20 m D/S : Assuming the MFL as 417.746

    M.F.L.Cal

    Depth Distance Area (Sq.m)

    417.746417.746 417.907 417.746 0.00 0.000 0.000 0.000 0.000 -30.000417.746 417.706 417.706 0.04 0.020 1.966 0.039 1.967 -20.000417.746 417.600 417.600 0.15 0.093 10.000 0.925 10.001 -10.000417.746 415.841 415.841 1.90 1.025 10.000 10.250 10.154 .000417.746 417.097 417.097 0.65 1.277 10.000 12.765 10.079 10.000417.746 417.638 417.638 0.11 0.378 7.337 2.774 7.357 17.337417.746 417.636 417.636 0.11 0.109 0.790 0.086 0.790 18.127417.746 417.631 417.631 0.11 0.112 1.873 0.210 1.873 20.000417.746 417.613 417.613 0.13 0.124 7.882 0.974 7.882 27.882417.746 417.659 417.659 0.09 0.110 1.887 0.207 1.888 29.769417.746 417.661 417.661 0.08 0.086 0.066 0.006 0.066 29.835417.746 417.666 417.666 0.08 0.082 0.165 0.014 0.165 30.000

    51.97 28.25 52.22

    1 x

    Stream bed levels

    Average Depth

    Perimeter (m)

    Cross Chainage

    -40 -30 -20 -10 10 20 30 40416

    417

    418

    419

    MFL @ 10m D/s

    M.F.L. Stream bed levels

    Cross Chainage

    Elevation

  • PCSS/P-21/KC-G/GC/UT_3.794 10

    P = 52.0 + 1.90= 53.871 m== 28.2 / 53.87= 0.6503 m

    V = 0.650 x 1/ 299.000= 0.03= 1.254 m/sec

    Q = A x V= 28.2 x 1.254= 35.410 cumecs = 35.410 cumecs

    HENCE O.K.

    3.2.6 M.F.L at 30 m D/S : Assuming the MFL as 417.691

    M.F.L.Cal

    Depth Distance Area (Sq.m)

    417.691417.691 417.521 417.521 0.17 0.085 0.000 0.000 0.170 -30.000417.691 417.465 417.465 0.23 0.198 10.000 1.978 10.000 -20.000417.691 417.722 417.691 0.00 0.113 8.787 0.992 8.790 -10.000417.691 415.813 415.813 1.88 0.939 9.837 9.236 10.014 .000417.691 416.948 416.948 0.74 1.310 10.000 13.103 10.064 10.000417.691 417.637 417.637 0.05 0.398 10.000 3.983 10.024 20.000417.691 417.685 417.685 0.01 0.030 10.000 0.298 10.000 30.000

    58.623 29.591 59.06

    R2/3 (A/P)2/3

    )2/3

    1 x

    Stream bed levels

    Average Depth

    Perimeter (m)

    Cross Chainage

    -40 -30 -20 -10 10 20 30 40414

    416

    418

    420

    MFL @ 20 m D/SM.F.L.

    Stream bed levels

    Cross Chainage

    Elevation

  • PCSS/P-21/KC-G/GC/UT_3.794 11

    P = 58.6 + 1.88= 60.501 m== 29.6 / 60.50= 0.6208 m

    V = 0.621 x 1/ 299.000= 0.03= 1.197 m/sec

    Q = A x V= 29.6 x 1.197= 35.410 cumecs = 35.410 cumecs

    HENCE O.K.

    R2/3 (A/P)2/3

    )2/3

    1 x

    -40 -30 -20 -10 10 20 30 40414415416417418

    MFL @ 30 m D/SM.F.L. Stream bed levels

    Cross Chainage

    Elevation

  • PCSS/P-21/KC-G/GC/UT_3.794 12

    3.3 Vent Way:

    Max. flood discharge = 35.410 cumecs

    Maximum permissible velocity = 4.000 m/sec (as per Table No.2

    of IS 7784(Part 1):1993 )

    Type of vent way = Barrel

    The area of vent way required

    = 35.410 = 8.853

    4.000

    As per IS 7784 (Part 1):1993, A minimum of 900mm for pipe conduit and 1.2m height for barrel should be provided as per CDO Guidelines.

    Provide 3 vents of R.C.C box of size 2.40 x 1.5 ( including fillets)

    Assuming the barrel will runs full , the area of flow will be = 10.496

    The velocity in the barrel is 3.374 m/sec. < 4.00

    HENCE O.K.Fillet = 0.15 x 0.150 m

    Canal Bed level = + 421.249

    Thickness of roof +SC = 0.35 + 0.040

    Intermediate wall thickness of trough = 0.20 m

    over budren of the barrel 3.72

    Underside of barrel = + 417.485

    Vent height = 1.500 m

    Floor level = + 415.985

    4.0 Transitions:4.1 u/s Transition:

    As per IS 7784 (Part 1):1993 cl 8.1.2, The waterway in drainage channels are generally provided

    by using Laceys formula:

    Lacey's Perimeter =

    Where C = a coefficient varying from 4.5 to 6.3 according to local conditions,

    the usual value adopted being 4.8 for regime channels

    q = design flood in m3/sec

    Lacey's Perimeter = 28.564 m

    Hence, 60 % of Lacey's Perimeter 60% of 28.564 = 17.14 m or say

    However provide the transition width duly considering the permissible velocity

    As per IS 7784 ( Part 2 / Set 5) : 2000 cl: 7.5.3, The transitions should correspond to a minimum splay of 2:1 on the upstream side and 3:1 on the downstream side

    m2

    C Q 0.5

    4.8 Q 0.5

  • PCSS/P-21/KC-G/GC/UT_3.794 13

    Length of U/s transition is proposed as 10.0 The width at the transition end works

    Out to be 17.1 m with a splay of 2 : 1

  • PCSS/P-21/KC-G/GC/UT_3.794 14

    17.140 m 7.6 m

    21

    10.0

    4.2 d/s Transition:Length of d/s transition proposed as 14.50 The width at the transition end works

    Out to be 17.14 m with a splay of 3 : 1

    7.60 m 17.140 m

    3

    1

    14.50

    Q = 1.05

    35.410 = 1.050 x 17.14

    = 1.97

    d = 1.57 m Say D = 1.57 m

    5.0 Tail Channel:Depth in the tail channel @ the exit of D/s transition 1.57 m

    Bed level of tail channel is kept same as the floor level at the end of D/s transition

    = + 415.985

    Side slopes ( for inner side ) are proposed as 1.5 :1

    Maximum flow level = + 415.985 + 1.570 = 417.555

    Bed width is kept same as the width of D/s transition at the end i.e. 17.14

    21.850 417.555

    1.5 : 1

    1.570

    415.985

    17.14 m

    Area of flow = ( 17.140 + 1.5 x 1.570 ) x 1.570

    = 30.607 sq.m.

    The depth of flow at the end of transition arrived is adopting BY WASH WEIR formula.

    d3/2 x Ld3/2 x

    d3/2

  • PCSS/P-21/KC-G/GC/UT_3.794 15

    Velocity (V) = 35.410 / 30.607 = 1.157

    From Manning's formula

    V =

    where n = 0.030

    P 17.14 + 2 3.250 X 1.570

    = 22.801 m

    R = 30.607 / 22.80

    = 1.342 m

    =

    = 1.157 x 0.030

    1.342

    = 0.0285

    S = 0.0008 or 1 in 1234.6

    Say 1 in 1240

    Provide a bed fall of 1 in 1240.0 for the tail channel till it meets the natural stream bed level.

    6.0 T.E.L. Calculations:U/S

    1 2 7

    3 4 5 6

    17.1

    4 FLOW 7.6 m

    2 31 1

    1 2 3 4 5 6 710.00 14.5

    Section 8 - 8 : Just outside the transition( at the exit end)

    + 417.555

    1.570 1.5 : 1

    + 415.985

    17.140 m

    Max. flood discharge = 35.410 cumecs

    Max. Flood Level = 417.555 m

    (1/n) R2/3 S1/2

    S1/2 V x n / R2/3

    2/3

  • PCSS/P-21/KC-G/GC/UT_3.794 16

    Floor level = 415.985 m

    Depth of flow available = 1.570 m

    Area of flow = ( 17.14 + 1.500 x 1.570 ) x 1.570

    = 30.607 sq.m.

    Velocity = 35.410

    30.607

    = 1.157 m/sec

  • PCSS/P-21/KC-G/GC/UT_3.794 17

    = 1.157 / ( 2 x 9.81 )

    = 0.0682 m

    MFL at 8 - 8 = 417.555

    TEL at 8 - 8 = 417.555 + 0.0682

    = 417.623

    Wetted Perimeter = 17.140 + 2 3.250 x 1.570

    = 22.801 m

    Section 7 - 7 : (Just inside the transition at the exit end)

    417.544

    1.559

    415.985

    17.14

    Assume depth of flow = 1.559 m

    A = 17.14 x 1.559 = 26.727 sq.m.

    Wetted Perimeter P = 17.1 + 2 x 1.559

    = 20.259 sq.m. > 17.138 m

    V = 35.410 / 26.7 = 1.325 m/sec

    = 1.325 / ( 2 x 9.81 )

    = 0.0895 m

    Loss of head = 0.5 x ( 0.0895 - 0.0682)

    = 0.0107

    (Due to change in velocity from section 8 - 8 to section 7 - 7)

    TEL@7-7 wrt section 8-8 = 417.623 + 0.0107

    = 417.634

    TEL at section 7 - 7 wrt assumed depth

    = 415.985 + 1.559 + 0.0895

    = 417.634

    HENCE O.K.

    Section 6 - 6 : (Just outside the barrel at the exit end)

    417.279

    1.494

    415.785

    V2/2g

    V2/2g

  • PCSS/P-21/KC-G/GC/UT_3.794 18

    7.60

    Assume depth of flow = 1.494 m

    A = 7.6 x 1.494 = 11.351

  • PCSS/P-21/KC-G/GC/UT_3.794 19

    p = 7.6 + 2 x 1.4935 = 10.59

    =

    V = 35.410 / 11.351 = 3.120

    = 3.120 ( 2 x 9.81 )

    = 0.496

    Friction losses on D/s transition

    average Area = ( 26.727 + 11.351) / 2 = 19.039

    Average Perimeter = ( 20.259 + 10.587) / 2 = 15.423

    Mean Depth R = 19.039 / 15.423 = 1.234

    Velocity = ( 1.325 + 3.120) / 2 = 2.222

    =

    = 2.222 x 0.018

    1.234

    = 0.035

    S = 0.00121 or 1 in 826

    Friction losses = 0.00121 x 14.50

    = 0.0175

    Loss of head due to gradual expansion = 0.3 x (0.4960

    = 0.1220

    (Due to change in velocity from section 7-7 to section 6-6)

    TEL@ 6-6 wrt section 7-7 = = 417.634 + 0.122

    = 417.774

    TEL at section 6-6 wrt assumed depth = 415.785 + 1.494

    = 417.774HENCE O.K.

    Section 5 - 5 : (Just inside the barrel at the exit end)

    7.200

    417.965

    1.980

    415.985

    7.200

    V2/2g 2 /

    S1/2 V x n / R2/3

    2/3

    S1/2

  • PCSS/P-21/KC-G/GC/UT_3.794 20

    417.996

    0.718

    2.0111.294

    415.985

    0.200 150 mm wearing coat415.785

    415.635

    q = 35.410

    7.200

    = 4.918 Cumecs / running metre

    4.918 = 1.705 1.294

    2.8845 = 1.705 + 4.584 x

    2.8845 = + 2.688

    Sloving for h, h = 0.718

    2.8850 = 2.8850 ( LHS =RHS )

    Hence Assumed Depth of flow is Correct

    MFL over the drop wall = 415.985 + 2.0111

    = 417.996 m > + 417.485 Barrel roof levelAs the depth of the flow is more than the obtained depth of flow full area of the barrel; is taken in to consideration

    Assume depth of flow = 1.500 m

    A = ( 7.200 x 1.500 - 3x9 x 0.5 x 0.15 x 0.15 )

    = 10.496 sq.m.

    q = 1.705 h3/2 + 0.8 (2gh)XH

    h3/2 + 0.8 (2g) h1/2 xh3/2

    h3/2 h1/2

  • PCSS/P-21/KC-G/GC/UT_3.794 21

    V = 35.410 / 10.496 = 3.374 m/sec

    = 3.374 ( 2 x 9.81 )

    = 0.580 m

    TEL at section 5- 5 wrt previous section = 417.774 + 0.5800

    = 418.354Section 4 - 4 : (Just inside the barrel at the entrance end)

    7.200

    417.485

    1.500

    415.985

    7.200

    Depth of flow available = 1.500 m

    A = ( 7.200 x 1.500 - 3x9 x 0.5 x 0.15 x 0.15)

    = 10.496 sq.m.

    V = 35.410 / 10.496

    = 3.374 m/sec

    = 3.374 ( 2 x 9.81 )

    = 0.5801 m

    Head loss due to change in velocity = (0.5801 - 0.5800)

    = 0.0000 m/sec

    Friction Losses:A = ( 7.200 x 1.500 - 3x3 x 0.5 x 0.15 x 0.15)

    = 10.699 sq.m.

    V = 35.410 / 10.699

    = 3.310 m/sec

    P = 7.20 x 1 + 6 x 1.500

    = 16.200 m

    R = A/P

    = 10.699 / 16.200 = 0.660

    Length of Barrel = 30.575 m

    n = 0.0180

    V2/2g 2 /

    V2/2g 2 /

  • PCSS/P-21/KC-G/GC/UT_3.794 22

    Running full condition

    =

    Where

    = 0.00316 (1 + 0.03 / 0.660 )

    = 0.003

    = 0.003 x (30.575 / 0.660) x 0.580

    = 0.089

    TEL @ 4 - 4 wrt = 418.354 + 0.089

    to previous section 418.443

    Section 3 - 3 : (Just outside the barrel at the entrance end)

    7.6

    418.349

    2.364

    415.985

    7.6

    Assume depth of flow of = 2.364 m

    A = 7.6 x 2.364

    = 17.965 sq.m.

    P = 7.600 + 2 x 2.3638

    = 12.3276 m

    V = 35.4 / 17.96488

    = 1.971 m/sec

    = 1.971 ( 2 x 9.81 )

    = 0.1990 m

    Loss of head due to sudden contraction

    = 0.3 x ( 0.5801 -

    = 0.1143

    (Due to change in velocity from section 4 - 4 to section 3 - 3)

    TEL at 3 - 3 wrt section 4 4 = 418.443 + 0.114

    = 418.557

    TEL at section 3 - 3 wrt assumed depth = 415.985 + 2.364

    = 418.548NOT O.K.

    f2 x L/R x V2/2ghf f2 x L/R x V

    2/2g

    f2 = a( 1 + b/R)

    V2/2g 2 /

  • PCSS/P-21/KC-G/GC/UT_3.794 23

    Section 2 - 2 : (At the toe wall)

    17.140 418.551

    2.566

    415.985

    17.140

  • PCSS/P-21/KC-G/GC/UT_3.794 24

    Assume a depth of flow of = 2.566 m

    A = 17.140 x 2.57 = 43.981

    P = 17.140 + 2 x 2.566 =

    V = 35.410 / 43.981 = 0.805

    = 0.805 ( 2 x 9.81 )

    = 0.0330 m

    Friction losses on u/s transition

    average Area = ( 17.965 + 43.981) = 30.973

    = 2

    Average Perimeter = ( 12.328 + 22.272) = 17.3002

    Mean Depth R = 30.973 / 17.300 = 1.790

    Velocity = ( 1.971 + 0.805) = 1.388

    = 2

    =

    = 1.388 x 0.018

    1.790

    = 0.017

    S = 0.00029 or 1 in 3448

    Friction losses = 0.00029 x 10.00

    = 0.0029

    Loss of head due to gradual contraction

    = 0.2 x ( 0.1990 - 0.0330

    = 0.0332

    (Due to change in velocity from section 3 - 3 to section 2 - 2)

    TEL at 2 - 2 wrt section 3 - 3 = 418.548 + 0.0332 + 0.0029

    = 418.585

    TEL at section 2 - 2 wrt assumed depth

    = 415.985 + 2.566 +

    = 418.585HENCE O.K.

    Section 1 - 1 : (At the drop wall)

    418.551

    V2/2g 2 /

    S1/2 V x n / R2/3

    2/3

    S1/2

  • PCSS/P-21/KC-G/GC/UT_3.794 25

    2.583 1.5 : 1

    + 415.985

    17.140 m

    Max. flood discharge = 35.410 cumecs

    Max. Flood Level = 418.551 m

    Floor level = 415.985 m

    Depth of flow available = 2.566 m

    Area of flow = ( 17.14 + 1.500 x 2.583 ) x 2.583

    = 54.290 sq.m.

    Velocity = 35.410

    54.290

    = 0.652 m/sec

    = 0.652 / ( 2 x 9.81 )

    = 0.0217 m

    Loss of head = 0.5 x ( 0.0330 - 0.0217)

    = 0.0057

    TEL at 1-1 wrt section 2-2 = 418.585 + 0.006

    = 418.591TEL at section 1-1 wrt assumed depth 415.985 + 2.58+ 0.0217

    = 418.590

    8.0 Scour Depth:a) on u/s side:

    Length of apron = 17.140

    q = 35.410 / 17.140

    = 2.066 cumecs per meter run

    Scour depth (D') =

    where f = silt factor = 1 (adopted from IS 7784 / Part I Para 7.5)

    Nominal scour depth = 1.35

    = 1.35 ( 2.066 / 1

    D' = 2.190 m

    To take care of the probable excessive scour due to restriction of waterway and concentration of flood

    in the same spans, additional factor of safety allowed in the IRC code 78 : 1983 Sec VII and IS 7784

    (Part I) on general requirements for cross drainage works out as follows:

    Condition

    1. In a straight reach 1.25 D' 1.25 D'

    2. At a moderate bend

    for example along apron

    of a guide bund 1.5 D' 1.5 D'

    3. At a severe bend 1.75 D' 1.75 D'

    V2/2g

    1.35 (q2/f)1/3

    (q2/f)1/31/3 )

    Value as per IRC - 78

    Value as per IS 7784

  • PCSS/P-21/KC-G/GC/UT_3.794 26

    4. At right angle bends

    or at noses of piers 2.0 D' 2.0 D'

  • PCSS/P-21/KC-G/GC/UT_3.794 27

    Max. Scour depth = 1.5 D'

    = 1.50 x 2.190

    = 3.285 m Say 3.290 m

    First drop Second drop

    U/s MFL = #REF! 418.551 m

    Scour Level = #REF! 415.260 m

    Floor level = #REF! 415.985 m

    Foundation level = #REF! 415.410 m

    #REF! CHECKb) on D/s side:

    Width of apron at exit = 17.14 m

    q = 35.410 / 17.140

    = 2.066 cumecs/m.run

    Scour depth (D') =

    where f = silt factor = 1 (adopted from IS 7784 / Part I Para 7.5)

    Nominal scour depth = 1.35

    = 1.35 ( ( 2.066 1 ) )1/3

    = 2.190 m

    Maximum Scour depth = 1.5 D'

    = 1.50 x 2.190

    = 3.285 m Say 3.290 mD/s MFL = 417.555 m

    Scour Level = 414.265 m

    Floor level = 415.985 m

    Foundation level = 415.210 m

    Provide cutoff wall up to = 414.490 m CHECK

    1.35 (q2/f)1/3

    (q2/f)1/3

    )2 / (

  • PCSS/P-21/KC-G/GC/UT_3.794 28

    ( including fillets)

    m/sec.

    As per IS 7784 (Part 1):1993 cl 8.1.2, The waterway in drainage channels are generally provided

    a coefficient varying from 4.5 to 6.3 according to local conditions,

    17.14

    As per IS 7784 ( Part 2 / Set 5) : 2000 cl: 7.5.3, The transitions should correspond to a minimum splay of 2:1

    m2

  • PCSS/P-21/KC-G/GC/UT_3.794 29

    The width at the transition end works

  • PCSS/P-21/KC-G/GC/UT_3.794 30

    The width at the transition end works

  • PCSS/P-21/KC-G/GC/UT_3.794 31

    m/sec

    for the tail channel till it meets the natural stream bed level.

    D/S

    8

    17.1

    8

  • PCSS/P-21/KC-G/GC/UT_3.794 32

  • PCSS/P-21/KC-G/GC/UT_3.794 33

  • PCSS/P-21/KC-G/GC/UT_3.794 34

    sq.m.

  • PCSS/P-21/KC-G/GC/UT_3.794 35

    m

    m/sec

    m

    sq.m.

    m

    m/sec

    - 0.089)

    + 0.018

    + 0.4960

  • PCSS/P-21/KC-G/GC/UT_3.794 36

    417.279

    415.985

    Barrel roof level

    As the depth of the flow is more than the obtained depth of flow full area of the barrel; is taken in to consideration

    h1/2

  • PCSS/P-21/KC-G/GC/UT_3.794 37

    m

  • PCSS/P-21/KC-G/GC/UT_3.794 38

    0.1990)

    + 0.199

  • PCSS/P-21/KC-G/GC/UT_3.794 39

  • PCSS/P-21/KC-G/GC/UT_3.794 40

    sq.m.

    22.272

    m/sec

    sq.m.

    m

    m/sec

    )

    0.0330

  • PCSS/P-21/KC-G/GC/UT_3.794 41

    To take care of the probable excessive scour due to restriction of waterway and concentration of flood

    in the same spans, additional factor of safety allowed in the IRC code 78 : 1983 Sec VII and IS 7784

  • PCSS/P-21/KC-G/GC/UT_3.794 42

  • PCSS/P-21/KC-G/GC/UT_3.794 43

  • PCSS/P-21/KC-G/GC/UT_3.794 23

    9 DESIGN OF SECTIONS:

    unit weight of soil 2.00 As per clause 203 of IRC 6: 2010

    unit weight of PCC 2.50 As per clause 203 of IRC 6: 2010

    1.0 DESIGN OF RETURN WALL : U/S (SECTION 1-1 ) (SECTION 2-2 & 3-3)

    418.950

    W3 W1

    W4

    W2 3.040

    0.3 A 1.00 0.750 0.3 415.910

    0.51.75

    B W5 415.410

    2.350

    Taking Moments about (A)

    Load ParticularsForce L.A.

    V H

    W1 0.750 x 3.040 x 2.5 5.700 1.375

    W2 0.5 x 1.000 x 3.040 x 2.5 3.800 0.667

    W3 0.5 x 1.000 x 3.040 x 2.0 3.040 0.333

    Pv 0.0384 x 2.0 x 3.040 ^2 0.710 -

    Ph 0.1340 x 2.0 x 3.040 ^2 2.477 1.2160

    V 13.250

    Lever arm = 14.40 / 13.250 = 1.087 m

    Eccentricity = 1.087 - 0.88 = 0.212 m

    allowable 'e' (b/6) = 0.292 m > 0.212 HENCE OK

    stresses = 13.25 x ( 1 + 6 x 0.212 )

    1.75 1.75

    = 7.57 x ( 1 + 0.725)

    Maximum compressive stress = 13.062Minimum compressive stress = 2.081

    Taking Moments about (B)

    Load ParticularsForce L.A.

    V H

    W1 0.750 x 3.040 x 2.5 5.700 1.675

    W2 0.5 x 1.000 x 3.040 x 2.5 3.800 0.967

    t/m3

    t/m3

    M

    t/m2

    t/m2

  • PCSS/P-21/KC-G/GC/UT_3.794 24

    W3 0.5 x 1.000 x 3.040 x 2.0 3.040 0.633

    W4 0.300 x 3.040 x 2.0 1.824 0.150

    W5 2.350 x 0.500 x 2.5 2.9375 1.175

    Pv 0.0384 x 2.0 x 3.540 ^2 0.962 -

    Ph 0.1340 x 2.0 x 3.540 ^2 3.358 1.416

    V 18.264 M

  • PCSS/P-21/KC-G/GC/UT_3.794 25

    Lever arm = 23.63 / 18.264 = 1.294 m

    Eccentricity = 1.294 - 1.18 = 0.119 m

    allowable 'e' (b/6) = 0.392 m > 0.119 HENCE OK

    stresses = 18.264 x ( 1 + 6 x 0.119 )

    2.35 2.35

    = 7.772 x ( 1 + 0.303 )

    Maximum compressive stress = 10.126Minimum compressive stress = 5.418

    2.0 DESIGN OF HORIZONTAL WING WALL : U/s (SECTION 2-2)

    418.950

    W3

    W4 W1 3.040

    W2

    0.30A 1.00 0.5 0.3 415.910

    1.50.5 B W5 415.410

    2.10

    Taking Moments about (A)

    Load ParticularsForce L.A.

    V H

    W1 0.500 x 3.040 x 2.5 3.800 1.250

    W2 0.5 x 1.000 x 3.040 x 2.5 3.800 0.667

    W3 0.5 x 1.000 x 3.040 x 2.0 3.040 0.333

    Pv 0.0384 x 2.0 x 3.040 ^2 0.710 -

    Ph 0.1340 x 2.0 x 3.040 ^2 2.477 1.216

    11.350 M

    Lever arm = 11.31 / 11.350 = 0.996

    Eccentricity = 0.996 - 0.75 = 0.246

    610.356

    allowable 'e' (b/6) = 0.250 m > 0.246 HENCE OK

    stresses = 11.35 x ( 1 + 6 x

    1.50 1.500

    t/m2

    t/m2

    V

  • PCSS/P-21/KC-G/GC/UT_3.794 26

    = 7.57 x ( 1 + 0.985 )

    Maximum compressive stress = 15.023Minimum compressive stress = 0.110

    t/m2

    t/m2

  • PCSS/P-21/KC-G/GC/UT_3.794 27

    Taking Moments about (B)

    Load ParticularsForce L.A.

    V H

    W1 0.500 x 3.040 x 2.5 3.800 1.550

    W2 0.5 x 1.000 x 3.040 x 2.5 3.800 0.967

    W3 0.5 x 1.000 x 3.040 x 2.0 3.040 0.633

    W4 0.300 x 3.040 x 2.0 1.824 0.150

    W5 2.100 x 0.500 x 2.5 2.625 1.050

    Pv 0.0384 x 2.0 x 3.540 ^2 0.962 -

    Ph 0.1340 x 2.0 x 3.540 ^2 3.358 1.416

    16.051 M

    Lever arm = 19.27 / 16.051 = 1.201

    Eccentricity = 1.201 - 1.05 = 0.151

    allowable 'e' (b/6) = 0.350 m > 0.151 HENCE OK

    stresses = 16.051 x ( 1 + 6 x

    2.10 2.10

    = 7.644 x ( 1 + 0.431 )

    Maximum compressive stress = 10.936Minimum compressive stress = 4.351

    3.0 DESIGN OF SLOPED WING WALL AT THE JUNCTION OF HEAD WALL : U/s (SECTION 3-3)

    420.399

    W3

    W4 W1 4.489

    W2

    0.30 A 1.50 0.75 0.3 415.9100.5 2.25

    B W5 415.410

    2.85

    Taking Moments about (A)

    Load ParticularsForce L.A.

    V H

    W1 0.750 x 4.489 x 2.5 8.420 1.875

    W2 0.5 x 1.500 x 4.489 x 2.5 8.400 1.000

    W3 0.5 x 1.500 x 4.489 x 2.0 6.733 0.500

    Pv 0.0384 x 2.0 x 4.489 ^2 1.548 -

    Ph 0.1340 x 2.0 x 4.489 ^2 5.401 1.7956

    25.101 M

    V

    t/m2

    t/m2

    V

  • PCSS/P-21/KC-G/GC/UT_3.794 28

    Lever arm = 37.25 / 25.101 =

    Eccentricity = 1.484 - 1.13 =

    610.356

    allowable 'e' (b/6) = 0.375 m > 0.359 HENCE OK

  • PCSS/P-21/KC-G/GC/UT_3.794 29

    stresses = 25.10 x ( 1 + 6 x

    2.25 2.250

    = 11.16 x ( 1 +

    Maximum compressive stress = 21.838Minimum compressive stress = 0.474

    Taking Moments about (B)

    Load ParticularsForce L.A.

    V H

    W1 0.750 x 4.489 x 2.5 8.417 2.175

    W2 0.5 x 1.500 x 4.489 x 2.5 8.417 1.300

    W3 0.5 x 1.500 x 4.489 x 2.0 6.733 0.800

    W4 0.300 x 4.489 x 2.0 2.693 0.150

    W5 2.850 x 0.500 x 2.5 3.5625 1.425

    Pv 0.0384 x 2.0 x 4.989 ^2 1.912 -

    Ph 0.1340 x 2.0 x 4.989 ^2 6.671 1.996

    31.735 M

    Lever arm = 53.43 / 31.735 =

    Eccentricity = 1.684 - 1.43 =

    allowable 'e' (b/6) = 0.475 m > 0.259 HENCE OK

    stresses = 31.735 x ( 1 + 6 x

    2.85 2.85

    = 11.135 x ( 1 + 0.544 )

    Maximum compressive stress = 17.197Minimum compressive stress = 5.073

    4 DESIGN OF HEAD WALL ON U/S (SECTION 4-4 )

    423.399

    W3

    W1 2.240

    W2

    A 0.60 0.5 421.1590.3 1.1

    420.859

    Taking Moments about (A)

    Load ParticularsForce L.A.

    V H

    t/m2

    t/m2

    V

    t/m2

    t/m2

  • PCSS/P-21/KC-G/GC/UT_3.794 30

    W1 0.500 x 2.240 x 2.5 2.800 0.850

    W2 0.5 x 0.600 x 2.240 x 2.5 1.700 0.400

    W3 0.5 x 0.600 x 2.240 x 2.0 1.344 0.200

    Pv 0.0384 x 2.0 x 2.240 ^2 0.385 -

    Ph 0.1340 x 2.0 x 2.240 ^2 1.345 0.8960

    6.229 V M

  • PCSS/P-21/KC-G/GC/UT_3.794 31

    Lever arm = 4.53 / 6.229 =

    Eccentricity = 0.728 - 0.55 =

    610.356

    allowable 'e' (b/6) = 0.183 m > 0.178 HENCE OK

    stresses = 6.23 x ( 1 + 6 x

    1.10 1.100

    = 5.66 x ( 1 +

    Maximum compressive stress = 11.155Minimum compressive stress = 0.171

    5 DESIGN OF HEAD WALL ON D/S (SECTION 5-5 )

    423.399

    2 :1

    W4

    2 422.399

    W3 W1

    W2 1.240

    0.10 0.500 421.159

    0.3A 0.6 420.859

    Taking Moments about (A)

    Load ParticularsForce L.A.

    V HW1 0.500 x 1.240 x 2.5 1.550 0.350

    W2 0.5 x 0.100 x 1.240 x 2.5 0.155 0.067

    W3 0.5 x 0.100 x 1.240 x 2.0 0.124 0.033

    W4 0.5 x 0.100 x 2.000 x 2.0 0.200 0.033

    Pv 0.0628 x 2.1 x 1.240 ^2 0.203 -

    Ph 0.2191 x 2.1 x 1.240 ^2 0.707 0.496

    2.232

    Lever arm = 0.91 / 2.232 = 0.410

    Eccentricity = 0.410 - 0.30 = 0.110

    allowable 'e' (b/6) = 0.100 m < 0.110 Revise the section

    t/m2

    t/m2

    V M

  • PCSS/P-21/KC-G/GC/UT_3.794 32

    stresses = 2.23 x ( 1 + 6 x

    0.60 0.60

    = 3.72 x ( 1 + 1.098)

  • PCSS/P-21/KC-G/GC/UT_3.794 33

    Max. compressive stress = 7.803Min. compressive stress = -0.364

    6.0 DESIGN OF SLOPED WING WALL AT THE JUNCTION OF HEAD WALL : D/s (SECTION 6-6)

    422.149

    W3

    W4 W1 6.239

    W2

    0.30 A 1.40 0.75 0.3 415.9102.15

    0.5 B W5 415.410

    2.750

    Taking Moments about (A)

    Load ParticularsForce L.A.

    V H

    W1 0.750 x 6.239 x 2.5 11.700 1.775

    W2 0.5 x 1.400 x 6.239 x 2.5 10.900 0.933

    W3 0.5 x 1.400 x 6.239 x 2.0 8.735 0.467

    Pv 0.0384 x 2.0 x 6.239 ^2 2.989 -

    Ph 0.1340 x 2.0 x 6.239 ^2 10.432 2.496

    34.324 M

    Lever arm = 61.05 / 34.324 = 1.779 m

    Eccentricity = 1.779 - 1.08 = 0.704 m

    allowable 'e' (b/6) = 0.358 m < 0.704 Revise the section

    stresses = 34.32 x ( 1 + 6 x 0.704 )

    2.15 2.150

    = 15.96 x ( 1 + 1.964 )

    Maximum compressive stress = 47.315Minimum compressive stress = -15.385

    Taking Moments about (B)

    Load ParticularsForce L.A.

    V H

    W1 0.750 x 6.239 x 2.5 11.698 2.075

    W2 0.5 x 1.400 x 6.239 x 2.5 10.918 1.233

    W3 0.5 x 1.400 x 6.239 x 2.0 8.735 0.767

    W4 0.300 x 6.239 x 2.0 3.743 0.150

    t/m2

    t/m2

    V

    t/m2

    t/m2

  • PCSS/P-21/KC-G/GC/UT_3.794 34

    W5 2.750 x 0.500 x 2.5 3.4375 1.375

    Pv 0.0384 x 2.0 x 6.739 ^2 3.488 -

    Ph 0.1340 x 2.0 x 6.739 ^2 12.171 2.6956

    42.020 V M

  • PCSS/P-21/KC-G/GC/UT_3.794 35

    Lever arm = 82.53 / 42.020 =

    Eccentricity = 1.964 - 1.38 =

    allowable 'e' (b/6) = 0.458 m < 0.589 Revise the section

    stresses = 42.020 x ( 1 + 6 x

    2.75 2.75

    = 15.280 x ( 1 + 1.285 )

    Maximum compressive stress = 34.920Minimum compressive stress = -4.361

    7.0 DESIGN OF WING WALL : D/s wing &returns (SECTION 7-7 & 8-8 )

    417.960

    W3 W1

    2.250

    W4 W2

    0.3 A 0.600 0.50 0.3 415.710

    0.51.1

    B W5 415.210

    1.700

    Taking Moments about (A)

    Load ParticularsForce L.A.

    V H

    W1 0.500 x 2.250 x 2.5 2.810 0.850

    W2 0.5 x 0.600 x 2.250 x 2.5 1.700 0.400

    W3 0.5 x 0.600 x 2.250 x 2.0 1.350 0.200

    Pv 0.0384 x 2.0 x 2.250 ^2 0.389 -

    Ph 0.1340 x 2.0 x 2.250 ^2 1.357 0.900

    6.249

    Lever arm = 4.56 / 6.249 = 0.730 m

    Eccentricity = 0.730 - 0.55 = 0.180 m

    allowable 'e' (b/6) = 0.183 m > 0.180 m HENCE OK

    stresses = 6.249 x ( 1 + 6 x 0.180 )

    1.100 1.10

    = 5.68 x ( 1 + 0.980 )

    Maximum compressive stress = 11.248Minimum compressive stress = 0.113

    t/m2

    t/m2

    V M

    t/m2

    t/m2

  • PCSS/P-21/KC-G/GC/UT_3.794 36

    Taking Moments about (B)

    Load ParticularsForce L.A.

    V H

    W1 0.500 x 2.250 x 2.5 2.813 1.100

    W2 0.5 x 0.600 x 2.250 x 2.5 1.688 0.700

    W3 0.5 x 0.600 x 2.250 x 2.0 1.350 0.500

    W4 0.300 x 2.250 x 2.0 1.350 0.150

    W5 1.700 x 0.500 x 2.5 2.125 0.850

    Pv 0.0384 x 2.0 x 2.750 ^2 0.581 -

    Ph 0.1340 x 2.0 x 2.750 ^2 2.027 1.1

    9.906

    Lever arm = 9.19 / 9.906 = 0.928

    Eccentricity = 0.928 - 0.85 = 0.078

    allowable 'e' (b/6) = 0.283 m > 0.078 HENCE OK

    stresses = 9.906 x ( 1 + 6 x1.70 1.70

    = 5.827 x ( 1 + 0.274 )

    Maximum compressive stress = 7.422

    Minimum compressive stress = 4.232

    V M

    t/m2

    t/m2

  • PCSS/P-21/KC-G/GC/UT_3.794 37

    (SECTION 2-2 & 3-3)

    Moment

    7.837

    2.533

    1.013-

    3.01214.396

    Moment

    9.547

    3.673

  • PCSS/P-21/KC-G/GC/UT_3.794 38

    1.925

    0.274

    3.452-

    4.75623.627

  • PCSS/P-21/KC-G/GC/UT_3.794 39

    HENCE OK

    Moment

    4.750

    2.533

    1.013-

    3.01211.308

    m

    m

    HENCE OK

    0.246

    1.500

  • PCSS/P-21/KC-G/GC/UT_3.794 40

    0.985 )

  • PCSS/P-21/KC-G/GC/UT_3.794 41

    Moment

    5.890

    3.673

    1.925

    0.274

    2.756-

    4.75619.274

    m

    m

    HENCE OK

    0.151 )

    Moment

    15.788

    8.400

    3.367-

    9.69737.251

  • PCSS/P-21/KC-G/GC/UT_3.794 42

    1.484 m

    0.359 m

    HENCE OK

  • PCSS/P-21/KC-G/GC/UT_3.794 43

    0.359 )2.250

    0.958 )

    Moment

    18.307

    10.942

    5.387

    0.404

    5.077-

    13.31253.428

    1.684 m

    0.259 m

    HENCE OK

    0.259 )2.85

    0.544 )

    Moment

  • PCSS/P-21/KC-G/GC/UT_3.794 44

    2.380

    0.680

    0.269-

    1.2054.534

  • PCSS/P-21/KC-G/GC/UT_3.794 45

    0.728 m

    0.178 m

    HENCE OK

    0.178 )1.100

    0.970 )

    Moment

    0.542

    0.010

    0.004

    0.007

    -

    0.351

    0.915

    m

    m

    Revise the section

  • PCSS/P-21/KC-G/GC/UT_3.794 46

    0.110

    0.60

  • PCSS/P-21/KC-G/GC/UT_3.794 47

    Moment

    20.768

    10.173

    4.076-

    26.03461.051

    Moment

    24.274

    13.466

    6.697

    0.562

  • PCSS/P-21/KC-G/GC/UT_3.794 48

    4.727-

    32.80882.532

  • PCSS/P-21/KC-G/GC/UT_3.794 49

    1.964 m

    0.589 m

    Revise the section

    0.589 )2.75

    1.285 )

    Moment

    2.389

    0.680

    0.270-

    1.2214.560

  • PCSS/P-21/KC-G/GC/UT_3.794 50

    Moment

    3.094

    1.181

    0.675

    0.203

    1.806-

    2.2299.188

    0.078 )1.70

  • 2.621 148253.9315

    30.5757104 2896.0

    10000 0 2500 3225 6200

    (U/s Sloped wing) 2:16000 423.399

    2150418.951(U/s wing& Return) 420.399 423.399 422.649

    418.551 421.159 0.04 421.249

    Sealing 350420.859 300 mm slab 420.859

    416.330-0.808

    1.5419.359

    419.359

    419.284 300 mm slab 300 mm slabU/s 344.359 418.984

    5000 2.4

    2.4

    7.817800

    0.3

    2 2.41

    5000

    10000

  • 15750

    14500500

    3225 6925 2000 8388 6112

    (D/swing&return)

    422.399 417.955

    1.400 422.149

    421.159

    mm slab

    419.359 0.000 419.359419.284 75 mm thick wearing coat -0.075 4.900418.984418.834 0.45

    414.490

    down stream

    4833.33333333

    17467

    31

    4833.33333

    30575 14500

    0.5:1

  • AUTOMATION FOR 2 DROPS UTDetails of Inputs for Quantity Estimate of Under Tunnel

    S.NO CODE INPUT DESCRIPTION1 CBW Canal Bed Width =2 CSSLOPE Canal Side Slopes =3 CBL CBL =4 FSL FSL =5 TBL TBL =6 GLACROSS G.L @ Crossing =7 CA Catchment area =8 MFD Discharge by Dicken's Formula =9 SBLUS Stream bed level at 30 m U/S =

    10 SBLDS Stream bed level at 30 m D/S =11 TWBLS Top width of Bank(L) =12 TWBRS Top width of Bank(R) =13 Barrel

    BHEIGHT Height =BWIDTH Width =

    NOVENTS No. of Vents =THWCOAT Thickness of Wearing coat =

    UNDER EARTH BANKTHTSLAB Thickness of top slab =THBSLAB Thickness of bottom slab =

    THSWALLS Thickness of side walls =THIWALLS Thickness of intermediate walls =

    UNDER CANAL Thickness of top slab =Thickness of bottom slab =Thickness of side walls =Thickness of intermediate walls =

    BLUC Barrel Length Under Canal =BLUCB Barrel Length Under Bank =

    TLB Total Length of the barrel =TWB Total Width of the barrel =THB Total height of the barrel =

    FILLET Fillet =USBTL Under Side of Barrel top level =FLRLVL Floor level =

    LUSSPLAY Length of U/S Splayed =LUSTRAN Length of U/S transition =

    Apron length of drop =WUSTRAN Width of U/S transition =LDSTRAN Length of D/S transition =WDSTRAN Width of D/S transition =LDSSPLAY Length of D/S Splayed =HWLENTR Level of Head wall (Entry) =

    THHW Thickness of Headwall =HHWENTR Height of Head wall (Entry) =

  • Bottom width of wall =HWLEXIT Level of Head wall (Exit) =

    THHWEXIT Thickness of Headwall Exit =HHWEXIT Height of Head wall (Exit) =

    Bottom width of wall =FLTH Floor Thickness =

    BCOURSE Base Course =SCOAT Sealing coat =THOL Canal Lining =

    Thickness =Total Length U/s & D/s =Stream LiningThickness =Total Length U/s & D/s =

    SPW Size of Profile walls =WPWUS width of Profile wall(U/s) =WPWDS width of Profile wall(D/s) =

  • 12 Drop Walls (First)TWDROPFIRST Top width of Drop wall =BWDROPFIRST Bottom width of Drop wall =DDROPFIRST Foundation Depth of Drop wall =

    USTHAPRNFIRST Thickness of Apron(U/s) =USLAPRNFIRST Length of Apron(U/s) =

    HDROPFIRST Height of the Drop wall =LVLAPRNFIRST Apron level =

    Bottom level of apron =13 Sloped Wing Wall U/S @ Junction of HW

    USSWWTL Top level of wall =USSWWFNL Foundation Level =USSWWFND Depth of Foundation =

    USSWWTHST Thickness of Wall (Straight portion) =USSWWTHSL Thickness of Wall (Sloped portion) =

    USSWWH Height of the wall =USSWWOS Offset to wall =

    USSWWBWFN Base width of foundation =USSWWL Length =

    14 Horizontal wing wall U/SUSHWWTL Top level of wall =

    USHWWFNL Foundation Level =USHWWFND Depth of Foundation =

    USHWWTHST Thickness of Wall (Straight portion) =USHWWTHSL Thickness of Wall (Sloped portion) =

    USHWWH Height of the wall =USHWWOS Offset to wall =

    USHWWBWFN Base width of foundation =USHWWL Length =

    15 Return wall U/SUSRWTL Top level of wall =

    USRWFNL Foundation Level =USRWFND Depth of Foundation =

    USRWTHST Thickness of Wall (Straight portion) =USRWTHSL Thickness of Wall (Sloped portion) =

    USRWH Height of the wall =USRWOS Offset to wall =

    USRWBWFN Base width of foundation =USRWL Length =

    16 Sloped Wing Wall D/S @ Junction of HWDSSWWTL Top level of wall =

    DSSWWFNL Foundation Level =DSSWWFND Depth of Foundation =

    DSSWWTHST Thickness of Wall (Straight portion) =DSSWWTHSL Thickness of Wall (Sloped portion) =

    DSSWWH Height of the wall =DSSWWOS Offset to wall =

    DSSWWBWFN Base width of foundation =DSSWWL Length =

  • 17 Horizontal wing on D/sDSHWWL Length =

    DSHWWTL Top level of wall =DSHWWFNL Foundation Level =

    DSHWWTHST Thickness of Wall (Straight portion) =DSHWWTHSL Thickness of Wall (Sloped portion) =

    DSHWWH Height of the wall =DSHWWOS Offset to wall =

    DSHWWBWFN Base width of foundation =18 Return Wall D/S

    DSRWL Length =DSRWTL Top level of wall =

    DSRWFNL Foundation Level =DSRWTHST Thickness of Wall (Straight portion) =DSRWTHSL Thickness of Wall (Sloped portion) =

    DSRWH Height of the wall =DSRWOS Offset to wall =

    DSRWBWFN Base width of foundation =19 DSCL D/S Cut off level =20 DSCW D/S Cut off width =

    RTH 300 mm Thick Revetment =USRL Revetment Length(U/s) =USSL Side length =

    21 DSRL Revetment Length(D/s) =22 DSSL Side length =44 TOL Top of Lining =45 USMFL MFL U/S =46 DSMFL MFL D/S =47 QREQ Discharge required =48 QDES Discharge designed =49 CSLOUTER Canal side slope outer =50 BFALLca Bed fall =51 Nca Value of rugosity for Canal =52 Vca Velocity of canal =53 Vbarl Velocity of Barrel =54 DFDSTRANS Depth of flow in ds transition =55 Ntc Value of rugosity for Tail channel =56 Sstc Side slopes for Tail channel =57 BFALLtc Bed fall =58 Vtc Velocity of Tail channel =

    59 USSWWHWSCmax US Sloped wing wall at HW stress in concrete max =

    60 USSWWHWSCmin US Sloped wing wall at HW stress in concrete min =

    61 USSWWHWSSmax US Sloped wing wall at HW stress on soil max =

    62 USSWWHWSSmin US Sloped wing wall at HW stress on soil min =

    63 USWWRWSCmax US wing wall& return wall stress in concrete max =

    64 USWWRWSCmin US wing wall& return wall stress in concrete min =

    65 USWWRWSSmax US wing wall& return wall stress on soil max =

    66 USWWRWSSmin US wing wall& return wall stress on soil min =

  • 67 DSSWWHWSC max DS Sloped wing wall at HW stress in concrete max =

    68 DSSWWHWSC min DS Sloped wing wall at HW stress in concrete min =

    69 DSSWWHWSS max DS Sloped wing wall at HW stress on soil max =

    70 DSSWWHWSS min DS Sloped wing wall at HW stress on soil min =

    71 DSW&RSCmax DS wing & return stress in concrete max =

    72 DSW&RSCmin DS wing & return stress in concrete min =

  • 73 DSW&RSSmax DS wing & return stress on soil max =

    74 DSW&RSSmin DS wing & return stress on soil min =75 LUS_TRANS_SLOPE =76 LDS_TRANS_SLOPE =

    Barrel Reinforcement (Earth pressure)

    Type Nos

    1 16 250 64 8.340 =2 16 250 64 8.340 =3 16 250 64 2.188 =4 16 250 64 1.713 =5 16 300 54 8.340 =6 16 250 64 8.340 =7 16 250 64 2.188 =8 16 300 54 2.020 =

    9 (a) 16 250 64 2.365 =9 (b) 16 250 64 2.365 =10 10 250 157 15.95 =11 10 200 80 3.664 =

    Total =Barrel Reinforcement (Water pressure)

    Type Nos

    1 12 300 21 8.340 =2 12 300 21 8.340 =3 12 300 21 2.188 =4 12 300 21 1.713 =5 12 300 21 8.340 =6 12 360 18 8.340 =7 12 360 18 2.188 =8 12 300 21 1.713 =

    9 (a) 12 150 42 2.365 =9 (b) 12 150 42 2.365 =10 10 250 152 6.20 =12 10 200 31 5.312 =

    Total =

    Grand Total =

    Dia of Bar(mm)

    Spacing (mm)

    Length of Each bar(m)

    Dia of Bar(mm)

    Spacing (mm)

    Length of Each bar(m)

  • AUTOMATION FOR 2 DROPS UTDetails of Inputs for Quantity Estimate of Under Tunnel

    VALUE UNIT6.200 m1.5 : 1 -

    421.249 m422.649 m423.399 m415.985 m

    2.72435.410

    416.330 m415.841 m

    4.0002.500

    1.500 m2.400 m

    30.075 m

    0.350 m0.300 m0.300 m0.200 m

    0.350 m0.300 m0.300 m0.200 m6.200 m

    15.950 m22.150 m7.600 m2.225 m

    0.150 x .150 m417.485 m415.985 m11.079 m10.000 m10.000 m17.140 m14.500 m17.140 m15.264 m

    423.399 m0.500 m2.240 m

    Km2

    m3/s

  • 1.100 m422.399 m

    0.500 m1.240 m0.600 m0.500 m0.150 m0.040 m

    0.100 m15.000 m

    0.100 m10.000 m

    0.450 x .4522.015 m23.065 m

  • 0.500 m0.500 m0.500 m0.150 m

    10.000 m0.345 m

    415.910 m415.835 m

    420.399 m415.410 m

    0.500 m0.750 m1.500 m4.489 m0.300 m2.850 m2.898 m

    418.950 m415.410 m

    0.500 m0.500 m1.000 m3.040 m0.300 m2.100 m

    18.102 m

    418.950 m415.410 m

    0.500 m0.750 m1.000 m3.040 m0.300 m2.350 m4.830 m

    422.149 m415.410 m

    0.500 m0.750 m1.400 m6.239 m0.300 m2.750 m8.378 m

  • 6.122 m417.960 m415.210 m

    0.500 m0.600 m2.250 m0.300 m1.700 m

    3.862 m417.960 m415.210 m

    0.500 m0.600 m2.250 m0.300 m1.700 m

    414.490 m0.450 m0.300 m5.000 m1.620 m5.000 m7.004 m

    423.399 m418.551 m417.555 m

    8.4928.5172.0 : 1

    1 in 60000.0180.7333.3741.5700.0301.5 : 1

    1 in 12401.157

    21.838

    0.474

    17.197

    5.073

    13.062

    2.081

    10.126

    5.418

    t/m2

    t/m2

    t/m2

    t/m2

    t/m2

    t/m2

    t/m2

    t/m2

  • 47.315

    -15.385

    34.920

    -4.361

    11.248

    0.113

    t/m2

    t/m2

    t/m2

    t/m2

    t/m2

    t/m2

  • 7.422

    4.2320.5

    0.333

    843.473 Kg843.473 Kg221.235 Kg173.246 Kg711.680 Kg843.473 Kg221.235 Kg172.373 Kg239.186 Kg239.186 Kg

    1545.772 Kg180.938 Kg

    6235.268 Kg

    155.680 Kg155.680 Kg40.833 Kg31.976 Kg

    155.680 Kg133.440 Kg35.000 Kg31.976 Kg88.293 Kg88.293 Kg

    581.728 Kg101.649 Kg

    1600.230 Kg

    7835.5391.88.500 MT

    t/m2

    t/m2

  • DETAILED ESTIMATE OF DRAINAGE SYPHON

    UNDER TUNNEL AT Km. 25.509

    Description Unit No. L B D

    1

    Under Barrel 1 22.150 7.600 0.525

    U/s

    Transition floor on u/s 1 10.000 12.270 0.495

    Sloped Wing at Junction of Head wall 2 2.898 2.850 0.920

    Horizontal wing 2 18.102 2.100 0.920

    Returns 2 4.830 2.350 0.920

    Drop wall 1 17.140 0.800 0.920

    Stream Profile wall 1 0.450 22.015 0.450

    Canal Profile wall 1 0.450 12.650 0.450

    D/S

    Transitions D/S 1 14.500 12.270 0.631

    Sloped Wing at Junction of Head wall 2 8.378 2.750 0.431

    Horizontal Wings 2 6.122 1.700 0.631

    Returns 2 3.862 1.700 0.631

    Cut off wall 1 17.140 0.450 1.351

    Stream Profile wall 1 0.450 23.065 0.450

    Canal Profile wall 1 0.450 12.650 0.450

    Total Cum 2

    Base course 1 22.150 7.600 0.150

    U/s

    Stream Profile walls 1 0.450 22.015 0.450

    Canal Profile wall 1 0.450 12.650 0.450

    D/S

    Stream Profile walls 1 0.450 23.065 0.450

    Canal Profile wall 1 0.450 12.650 0.450

    Cum 3

    Foundation U/S

    Transition floor on U/s

    first drop 1 10.000 12.270 0.150

    S.No

    Excavation in soft or ordinary soil including 50 m lead and 1.5 m lift with dressing

    Providing and placing in position Nominal mix M15(1:3:6) R.C.C. excluding cost of reinforcement but including form work, vibration, finishing, curing and cleaning etc. Complete with graded metal of maximum size-(a) 40 mm

    Providing and placing in position Nominal mix M20(1:2:4) R.C.C. excluding cost of reinforcement, but including form work, vibration, finishing, curing and cleaning etc.,complete with graded metal of maximum size-(a) 40 mm

  • Description Unit No. L B DS.No

    Drop wall (first) 1 17.140 0.800 0.500

    Sloped Wing at Junction of Head wall 2 2.898 2.850 0.500

    Horizontal wing 2 18.102 2.100 0.500

    Returns 2 4.830 2.350 0.500Foundation D/s

    Transitions Floor (D/s) 1 14.500 12.270 0.500

    Wings at Junction of Head wall 2 8.378 2.750 0.500

    Horizontal Wings 2 6.122 1.700 0.500

    Returns 2 3.862 1.700 0.500

    Cut off wall 1 17.140 0.450 1.495

    Body wallU/s

    Head wall 1 7.600 0.8 2.24

    Sloped Wing at Junction of Head wall 2 2.898 1.500 4.489

    Horizontal wing 2 18.102 1.000 3.040

    Returns 2 4.830 1.250 3.040

    Drop wall (first) 1 17.140 0.500 0.345D/S

    Head wall 1 7.600 0.55 1.24

    Sloped Wing at Junction of Head wall 2 8.378 1.450 6.239

    Horizontal Wings 2 6.122 0.800 2.250

    Returns 2 3.862 0.800 2.250

    Total Cum 4

    Box Under Canal

    Side Walls 2 6.200 0.300 2.225Intermediate wall 2 6.200 0.200 1.500Base Slab 1 6.200 7.400 0.300Top Slab 1 6.200 7.400 0.350Box Under Bank

    Side Walls 2 15.950 0.300 2.225Intermediate wall 2 15.950 0.200 1.500Base Slab 1 15.950 7.400 0.300Top Slab 1 15.950 7.400 0.350

    Transition floor on U/s 1 10.000 12.270 0.075Transitions D/s 1 14.500 12.270 0.075

    Total Cum

    Providing and placing in position Nominal mix M25(1:1.5:3) R.C.C. excluding cost of reinforcement, but including form work, vibration, finishing, curing etc. complete with metal of maximum size-(b) 20 mm graded

  • Description Unit No. L B DS.No

    5

    Inside Barrel 1 22.150 7.200 0.075 Sealing coat in the Trough 1 6.200 4.200 0.040

    Total Cum 6

    MT7

    cum8

    Horizontal 2 7.900Verticals 2 1.900Total Sq.m

    9

    Horizontal 2 7.900Verticals 2 1.900Total Rmt

    Providing and placing in position Nominal mix M35(1:1.5:3) R.C.C. excluding cost of reinforcement, but including form work, vibration, finishing, curing etc. complete with metal of maximum size-(b) 20 mm graded

    Supplying and fixing steel reinforcement bars (tested) for R.C.C. Including cleaning, straightening, cutting, bending, all handling placing in position and binding with 0.9mm annealed binding wire conforming to I.S. 280 (Including cost of binding wire) (b) Cold worked steel high strength bars confirming to grade Fe 415 of IS:1786

    Filling foundations and around masonry works with hard murum or murum mixed with boulders including watering and ramming.

    Providing and fixing in position12 mm thick pre moulded fillers non extruding and resilient type(bitumen impregnated fiber,I.S.1838 ), in expansion joints including cleaning of surface etc. complete.

    Providing and fixing in position P.V.C. strips in panel joints in lining work, using mechanical contrivance, smooth finishing etc. complete.

  • DETAILED ESTIMATE OF DRAINAGE SYPHON

    UNDER TUNNEL AT Km. 25.509

    Qty

    88.378

    60.736

    15.197

    69.946

    20.885

    12.615

    4.458

    2.562

    112.264

    19.860

    13.134

    8.287

    10.420

    4.671

    2.562

    446.000

    25.251

    4.458

    2.562

    4.671

    2.562

    39.503

    18.405

  • Qty

    6.856

    8.259

    38.014

    11.351

    88.958

    23.040

    10.407

    6.566

    11.531

    13.619

    39.027

    110.060

    36.708

    2.957

    13.619

    151.584

    22.039

    13.905

    627.000

    8.277

    3.720

    13.764

    16.058

    21.293

    9.570

    35.409

    41.310

    9.203

    13.344

    172.000

  • Qty

    11.961

    1.042

    14.000

    8.500

    0.000

    0.190

    0.046

    1.000

    15.800

    3.800

    20.000

  • ABSTRACT ESTIMATE OF DRAINAGE SYPHON

    UNDER TUNNEL AT Km. 25.509

    Description Qty. Unit Item no Rate

    1 446.00 Cum 401 (a) 20

    2 39.50 Cum 1603(b) 2774

    3 627.00 Cum 1602(b) 3492

    4 172.00 Cum 1601(b) 4253

    5 14.00 Cum 1601(b) 4253

    6 8.50 MT 1304(b) 41000

    7 0.00 Cum 703 95

    8 1.00 Sq.m 2454 1443

    9 20.00 Rmt 2527 96

    LeadCement Lead 15 km from Rajgarh 130.509 cum 153.63

    HYSD reinforcement steel Lead 15 km from Rajgarh 8.5 MT 153.63

    Sand Lead 50 km from Parbati River 383.85 cum 309.78

    Metal 15 km from Nearest Crusher 767.7 cum 170.7

    S.No.

    Excavation in soft or ordinary soil including 50 m lead and 1.5 m lift with dressing

    Providing and placing in position Nominal mix M15(1:3:6) R.C.C. excluding cost of reinforcement but including form work, vibration, finishing, curing and cleaning etc. Complete with graded metal of maximum size-(a) 40 mm

    Providing and placing in position Nominal mix M20(1:2:4) R.C.C. excluding cost of reinforcement, but including form work, vibration, finishing, curing and cleaning etc.,complete with graded metal of maximum size-(a) 40 mm

    Providing and placing in position Nominal mix M25(1:1.5:3) R.C.C. excluding cost of reinforcement, but including form work, vibration, finishing, curing etc. complete with metal of maximum size-(b) 20 mm graded

    Providing and placing in position Nominal mix M35(1:1.5:3) R.C.C. excluding cost of reinforcement, but including form work, vibration, finishing, curing etc. complete with metal of maximum size-(b) 20 mm graded

    Supplying and fixing steel reinforcement bars (tested) for R.C.C. Including cleaning, straightening, cutting, bending, all handling placing in position and binding with 0.9mm annealed binding wire conforming to I.S. 280 (Including cost of binding wire) (b) Cold worked steel high strength bars confirming to grade Fe 415 of IS:1786

    Filling foundations and around masonry works with hard murum or murum mixed with boulders including watering and ramming.

    Providing and fixing in position12 mm thick pre moulded fillers non extruding and resilient type(bitumen impregnated fiber,I.S.1838 ), in expansion joints including cleaning of surface etc. complete.

    Providing and fixing in position P.V.C. strips in panel joints in lining work, using mechanical contrivance, smooth finishing etc. complete.

  • Total Amount =

  • ABSTRACT ESTIMATE OF DRAINAGE SYPHON

    UNDER TUNNEL AT Km. 25.509

    0.09

    1.10

    21.89

    7.32

    0.60

    3.49

    0.00

    0.01

    0.02

    0.20

    0.01

    1.19

    1.31

    Amountin LAKHS

  • 37.220

  • MOHANPURA MAJOR MULTIPURPOSE PROJECT

    Consumption Statement for Construction of Drainage Syphon

    S.No Items Qty Cement Sand Metal

    1 2 3 4 5 6

    1 40 6.12 18.00 36.00

    2 627 95.93 282.15 564.30

    3 14 2.14 6.30 12.60

    4 172 26.32 77.40 154.80

    Total : - 130.51 Cum 383.85 Cum 767.70 Cum

    C.C. 1:3:6 with 40 mm graded metal in foundation

    R.C.C. 1:2:4 with 40 mm graded metal for Sub Structure

    R.C.C. 1:1.5:3 with 20 mm graded metal for Sub Structure

    R.C.C. 1:1.5:3 with 20 mm graded metal for Super Structure

  • aarvee associates

    DR.B.R.AMBEDKAR PRANAHITHA-CHEVELLA SUJALA SRAVANTHI

    PACKAGE-21

    DESIGN OF UNDER TUNNEL AT Km. 25.509

    CHECK SLIP TO ACCOMPANY THE SITE SURVEY OF STRUCTURES

    Description Remarks

    1 Yes

    2 Yes

    a. Has the names of roads or drains with direction been given? Yes

    b. Has the canal proposals been shown? Yes

    d. Has the reference to B.M been given? No

    e. Are the levels and identification number of C.S given? Yes

    f. Are the trial pit particulars given? Yes

    g. Have the spot levels of adjacent country been given? No

    3 i. Has the L.S of the drain been given? Yes

    ii. Is the scale adopted as 1:500 ? Yes

    4 Has the L.S of canal showing the site of crossing been enclosed? Yes

    5 Nil

    ii.If so, are the hydraulic particulars furnished? N.A

    6 Is a list of Masonry works for 3 kms U/s and D/s of structure furnished? Nil

    7 Is the necessity for the structure explained clearly?

    8 Have the canal chainages been given? As per Approved H.Ps

    Sl.No.

    Has an Index Map showing the location and any alternatives been enclosed?

    Has site plan to a scale of 1:1300 giving the following information been enclosed.

    c.If the structure is in skew, have the angle and direction of skew been given?

    This structure is proposed to be constructed

    perpendicular to canal. The skew if any may be

    adjusted in approach and tail channel.

    Has a note on the important details of masonry works along the drain enclosed?

    Structure is proposed in view of canal is

    interrupting existing drain.

  • aarvee associates

    9 Have the leads for materials of construction been given? N.A

    10 Has any proposal depending on site conditions been marked? Yes

    11 If the structure is on a curve or skew is it possible to

    i. To alter: ----

    ii. If not have the reasons been furnished? ----

    12 Yes

    13 Has the catchment map of the drain been furnished? Yes

    14 Have the Hydraulic particulars of the drain furnished? Yes

    15 Has any special features or relevant information been furnished? Nil

    16 Has certificate of levels given? ---

    17 Have plans been indexed? Yes

    18 Are the L.S and C.S levels of corresponding points tallying? Yes

    19 Are the north points and scales noted in the plans? Yes

    Have the possibilities or diversion been examined? It is a major stream cannot be diverted.

  • aarvee associates

    DR.B.R.AMBEDKAR PRANAHITHA-CHEVELLA SUJALA SRAVANTHIPACKAGE-21

    STREAM CROSSING AT Km.25.509REPORT TO ACCOMPANY THE SITE SURVEY

    The HP's of the canal at Km. is as follows.

    S.No. Description Units Particulars1 Discharge (R/D) Cumecs 8.492 / 8.517

    2 Bed width m 6.200

    3 F.S.D. m 1.400

    4 Side Slopes (inner / outer) -- 1.5 :1 / 2:1

    5 Bed fall -- 1 in 6000

    6 Value of Rugosity -- 0.018

    7 Free board m 0.750

    8 Velocity m / sec 0.733

    9 Top width of banks L/R m 4.0 / 2.5

    10 C.B.L. m + 421.249

    11 F.S.L. m + 422.649

    12 T.B.L. m + 423.399

    13 Stream Bed level at Crossing m + 415.985

    The Alignment of Pranahitha-Chevella Sujala Sravanthi project (Package-21) crosses a stream @ Km.The Catchment Area for this stream on Right side of the canal is worked out as per catchment area plan is 2.724 Sq.km and the discharge arrived as per Dicken's formulae is 35.41 Cumecs. Hence a structure is proposed across the canal for this stream to discharge the water collected on Right side of the canal. The LS and CS of stream are taken on U/s and D/s of the proposed structure. The net level plan is also prepared.

    contentsnotesHpsmfl'sdesignsectionsDrawingInputsDetailedAbstractConsumptioncheck slipreport