Top Banner
Jean-Loup Faulon jfaulon.com [email protected] Using RetroSynthesis in Synthe/c Biology and Metabolic Engineering and Synthetic Biolog y institute of Systems iSSB mSSB iGEM
27

Using retrosynthesis in synthetic biology and metabolic engineering

Apr 05, 2017

Download

Science

Laura Berry
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon20161

Jean-LoupFaulon

jfaulon.com [email protected]

UsingRetroSynthesisinSynthe/cBiologyandMetabolic

Engineering

and Synthetic Biologyi n s t i t u t e o f S y s t e m s

iSSB

mSSB iGEM

Page 2: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon20162

CHASSIS

TARGET

EFFECTOR

CHASSIS

TARGET(signal)

Metabolicengineering Biosensorengineering

Findingmetabolicpathwaysbetweentwopoolsofcompounds

Page 3: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon20163

CHASSIS

TARGET

Findingpathwaysfromchassistotarget

Forward-synthesis

Findingpathwaysbetweentwopoolsofcompounds

SINK

SOURCE

Retro-synthesis

SOURCE

SINK

metabolicreac8on

Reversedmetabolicreac8on

Page 4: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon20164

Findingpathwaysbetweentwopoolsofcompounds:state-of-the-art

BNICE SimPheny/GEM-Path RetroPath

Page 5: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon20165

Findingpathwaysbetweentwopoolsofcompounds:theworkflow

Page 6: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon20166

UsingtheworkflowtofindretrosyntheMcpathwaystoproduce3-methylphenolinE.coli

SINK

SOURCE-SOURCE:trimethylphenol-SINK:E.colimetabolites-RULES:reversedMetaNetXreacEons

Page 7: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon20167

SINK

SOURCE

37productsgeneratedbyFIRE FILTER15productstobecomenewsubstratesfornextiteraEon

1SOURCEsubstrate

UsingtheworkflowtofindretrosyntheMcpathwaystoproduce3-methylphenolinE.coli

Page 8: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon20168

SINK

SOURCE

Iter2:15substrates1281productsgeneratedbyFIRE214newsubstratesIter3:214substrates25016productsgeneratedbyFIRE2789newsubstrates

UsingtheworkflowtofindretrosyntheMcpathwaystoproduce3-methylphenolinE.coli

Page 9: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon20169

SINK

SOURCE

FinalretrosyntheEcnetwork:•  1compoundinSOURCE•  163compoundsinSINK•  26312compoundstotal•  4soluEonpathways

UsingtheworkflowtofindretrosyntheMcpathwaystoproduce3-methylphenolinE.coli

L-tyrosineC3-methyltransferase(Streptomyceslavendulae)

Page 10: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201610

L-Glutamate Oxaloacetate 2-Oxaloglutarate L-Aspartate

Transaminase(2.6.1)

BNICERULE SIMPHENYRULE

[H][#7]([H])-[#6](-[#6]-[#6]-[#6](-[#8])=O)-[#6](-[#8])=O.[#6,#1]-[#6](-[#6,#1])=O>>[#8]-[#6](=O)-[#6]-[#6]-[#6](=O)-[#6](-[#8])=O.[H][#7]([H])-[#6](-[#6,#1])-[#6,#1]

[#6,#1]-[#6](-[#6,#1])=O>>[H][#7]([H])-[#6](-[#6,#1])-[#6,#1]

Findingpathwaysbetweentwopoolsofcompounds:allthatmaOersisthesetofreacMonrules

•  86mulE-substratesrulesmanuallycuratedatthethirdEClevelclass(HenryCS,etal.BiotechnolBioeng.2010;106(3):462-73)

•  Rulescover30%ofallknowmetabolicreacEons(havinganECnumber)

•  50rulesmanuallycreated,allmono-substrate(Yim,H.etal.NatChemBiol,20117(7):p.445-5)

•  Rulescover20%ofallknowmetabolicreacEons(havinganECnumber)

Page 11: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201611

-1(4−10)-1(15−17)+1(4−17)+1(15−10)

2.6.1

L-Glutamate Oxaloacetate 2-Oxaloglutarate L-Aspartate

RetroPathrulecomputaMonworkflow

[#6:1]-[#6:2]-[#6:4](-[#7:10])-[#6:5](-[#8:6])=[O:7]>>[#6:1]-[#6:2]-[#6:4](=O)-[#6:5](-[#8:6])=[O:7].[#7:10]-[#6](-[#6]-[#6](-[#8])=O)-[#6](-[#8])=O

Substrate+Oxaloacetate=Product+L-Aspartate

D=4

[#6:4]-[#7:10]>>[#6:4]=O.[#7:10]-[#6](-[#6]-[#6](-[#8])=O)-[#6](-[#8])=O

D=0Substrate+Oxaloacetate=Product+L-Aspartate

•  From12000(forD=∞)to6000(forD=0)rules•  Rulescover100%ofallknowmetabolicreacEons(havinganECnumber)

Page 12: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201612

SOURCE:E.colimodeliJO1366(752compounds)

RULES:BNICE,SimPheny,RetroPathD=8onMetaNetXE.colireac8ons

Numberofproductsgenerated

inModel inBRENDA TotalSimPheny 376/752 2874 9782BNICE 546/752 3526 150228RetroPathD=8 633/752 6298 14178

SOURCE

SINK

HowwellcanthedifferentrulesystemsbuildanExtendedMetabolicSpaceforE.coli?

•  Carbonell,etal.ACSSynth.Biol2014+addeddistribuEonsforSimPhenyandBNICE

SINK:BRENDA

SimPheny

Page 13: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201613

?

RetroPathapplicaMonforflavanones

SINK:Flavanones

RULES:FromD=∞toD=4onMetaNetXreac8ons

SOURCE

SINK

SOURCE:E.colimodeliJO1366

Page 14: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201614

AllowingpromiscuousreacEonrules(D=4)

SpecificreacEonrulesonly(D=∞)

UsingdiametertocontrolreacMonspecificityanddesignnovelmetabolicpathways

11pathwaysenumeratedfollowingCarbonelletal.BMCSysBio2012

1pathway

Page 15: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201615

SearchingforenzymesequencescatalyzingreacMons

Tensorproduct(MachinelearningSVMandGP)

Enzymesequence?

www.jfaulon.com/category/tools/

(µM)

PredicMngKMvalues

• Protein-protein:MarEn,Roe,FaulonBioinforma/cs2005• Drug-target:Oprea,Trospha,Faulon,Rintoul,Nat.Chem.Bio2007• Enzyme-reacEon:Faulonetal.Bioinforma/cs2008

Melloretal.ACSSynth.Bio.2016

SOURCE

SINK

Page 16: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201616

EvaluaMngreacMonthermodynamicfeasibilityandproducttoxicity

Kanamycin

Screen-168compounds

Q2=0.71

StructureToxicityRelaMonship

Model

MeasureE.colibacterialgrowth(IC50)toxicity?

•  PlansonAGetal.Biotechnology&Bioengineering2011

RejectreacEonsthermodynamicallyunfavorable(Jankowskietal.BiophysJ,2008)andscorefavorablereacEonsthoughproducttoxicitySOURCE

SINK

www.jfaulon.com/category/tools/

Page 17: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201617

DESIGN:Rankingpathways

•  Benchmark:rankingthepathwaysforaminoacidbiosynthesisinE.coli

Allna8vepathwaysfoundinthetop10pathwaysreturnedbytherankingfunc8on

11.1510.9710.4610.4410.0810.039.939.579.527.757.74

scoregenesscorereacMonsscorepathways

Scoreandselectbestpathway(s)

λpathλgene

λtox

S

•  CarbonellP,etal.BMCSystemsBiology2011•  CarbonellP,etal.ACSSynthBiol.2014•  CarbonellPetal.NucleicAcidRes.2014

GPandSVMtensorproduct

ToxicityTheoreEcalflux

xtms.issb.genopole.fr

Page 18: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201618

Emzyme6.2.1.12(4CL)

L:Streptomycesmari8mus

M:Arabidopsisthaliana

H:Streptomycescoelocolor

Emzyme2.3.1.74(CHS)

L:Bacillussub8lis

H:Arabidopsisthaliana

Emzyme5.5.1.6(CHI)

L:Arabidopsisthaliana

H:Arabidopsisthaliana

EnzymeproducMvityvs.predictedscore

L-Phenylalanine

Cinnamoyl-CoA

Pinocembrin-chalcone

Pinocembrin

5.5.1.6

Trans-Cinnamate

CoA

ATP

Malonyl-CoA

2.3.1.74

6.2.1.12

4.3.1.25

BUILDANDTEST:ToppathwayconstrucMonandvalidaMonoftherankingfuncMon

[Pinocembrin-H]-

• FeherTetal.BiotechJ.2014

L/M/H:Low/Medium/HighpredictedacMvity

Page 19: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201619

LEARNwithfluxanalysis

E.colimodel:FeistAetal.MolSystBiol2007+heterologouspathway2038reacEons(includingtransport)1043metabolites

@24haserinducEon:Growthrate:0.4847h-1Trans-cinnamate:49.0mg/LPinocembrin:<1.0mg/L

Fumarate

cinnamicacid-dihydrodiol

TCACycle

Trans-2,3-dihydroxycinnamate

Growth

2-Hydroxy-6-oxonona-trienedioate

1.14.12.19

1.3.1.87

1.13.11.16

3.7.1.-

L-Phenylalanine

Cinnamoyl-CoA

Pinocembrin-chalcone

Pinocembrin

5.5.1.6

Trans-Cinnamate

CoA

ATP

2.3.1.74

6.2.1.12

4.3.1.25

Malonyl-ACP

FaOyAcids

1.1695

2.3.1.39

Malonyl-CoA

6.4.1.2

Acetyl-CoA

9.24e-70.4847

0.0026

0.2909

0.2935

1.1695

9.24e-7

Weneedtoboostmalonyl-CoA

FluxesinmmolgDW-1h-1

Page 20: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201620FluxesinmmolgDW-1h-1

4.

Coxiella

1.

Rhizobium 3.

E. coli

2.

Geobacter

Fumarate

cinnamicacid-dihydrodiol

TCACycle

Trans-2,3-dihydroxycinnamate

Growth

2-Hydroxy-6-oxonona-trienedioate

1.14.12.19

1.3.1.87

1.13.11.16

3.7.1.-

L-Phenylalanine

Cinnamoyl-CoA

Pinocembrin-chalcone

Pinocembrin

5.5.1.6

Trans-Cinnamate

CoA

ATP

2.3.1.74

6.2.1.12

4.3.1.25

Malonyl-ACP

FaOyAcids

1.1695

2.3.1.39

Malonyl-CoA

6.4.1.2

Acetyl-CoA

9.24e-70.4847

0.0026

0.2909

0.2935

1.1695

9.24e-7

LEARNàBacktoDESIGN

• FeherTetal.BiotechJ.2014

• Melloretal.ACSSynth.Bio.2016

Page 21: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201621

Fumarate

cinnamicacid-dihydrodiol

TCACycle

Trans-2,3-dihydroxycinnamate

Growth

2-Hydroxy-6-oxonona-trienedioate

1.14.12.19

1.3.1.87

1.13.11.16

3.7.1.-

L-Phenylalanine

Cinnamoyl-CoA

Pinocembrin-chalcone

Pinocembrin

5.5.1.6

Trans-Cinnamate

CoA

ATP

2.3.1.74

6.2.1.12

4.3.1.25

Malonyl-ACP

FaOyAcids

1.1695

FluxesinmmolgDW-1h-1

2.3.1.39

Malonyl-CoA

0.3412

6.4.1.2

Acetyl-CoA Malonate

6.2.1.-

0.00120.06139.24e-70.4847

0.0050

0.6932

0.0026

0.2909

0.69950.2935

0.33761.1695

0.00129.24e-7

@24haserinducEon:Growthrate:0.0613h-1Trans-cinnamate:50.44mg/LPinocembrin:20.92mg/L

• FernandezAetal.J.Biotechnology2014

@48haserinducEon:Pinocembrin:27mg/L

1.

Rhizobium

Pathway ranking:

3.

E. coli

4.

Coxiella

2.

Geobacter

LEARNàBacktoDESIGN

Page 22: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201622

Biosensorengineering

•  DelepineBetal.NAR2016

SOURCEDrugBankHMDB(biomarkers)Tox21

SINKRegulonDBRegTransBaseRegPreciseBioNemo

RULESD=∞onRhea,MetaCycandBRENDAreac8ons

EFFECTOR

CHASSIS

TARGET(signal)

www.sensipath.micalis.fr

Page 23: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201623

Usingmetabolicengineeringtoengineeringbiosensors

• LibisV,etal.ACSSynthBio2016

Page 24: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201624

10 100 10000

5

10

15

20

Concentration (µM)

Rela

tive

fluor

esce

nce

(A.U

.)

1 10 100 10001

2

3

4

5

6

7

8

Concentration (µM)

Rela

tive

fluor

esce

nce

(A.U

.)

10 100 10000

20

40

60

Concentration (µM)

Rela

tive

fluor

esce

nce

(A.U

.)

0 50 100

1.0

1.2

1.4

1.6

1.8

Concentration (µM)

Rela

tive

fluor

esce

nce

(A.U

.)

10 100 10000

10

20

10 100 10000

10

20

0 50 100

1.0

1.9

2.8

Without metabolic module Without metabolic module

Without metabolic moduleWithout metabolic module1 10 100 1000

0

4

8

12

E.colibiosensorsinE.colimanymoleculesofinterest

• LibisV,etal.ACSSynthBio2016

Page 25: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201625

Usingbiosensorsformetabolicengineering

TyrR

FapR

FdeR

Pathwayscanbedynamicallyregulatedandvariantscanbescreenedviafluorescentbiosensor

• FeherTetal.Fron/erinBioengineering&Biotechnology,2015

>100mg/L

2.5mg/L

Page 26: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201626

LACTOSE GALACTOSE+GLUCOSE

ALLOLACTOSELacI LacZYA

+

TheundergroundacEvityof𝛽-GalactosidaseispresentonlywhenLacIispresentThisnetworkmoEfisconservedbyevoluEon(RWheatleyetal.,2013JBiolChem)

WhensyntheMcbiologybringsnewsystemsbiologyquesMons

𝛽-Gal

host Sensed compound intermediates regulator

E. coli lactose allolactose LacI E. coli nitroglycerin nitrite NarL

Thauera aromatica

toluene benzylsuccinate TutBC

Mycobacterium tuberculosis

cholesterol

cholest-4-en-3-one; 3-oxocholest-4-en-26-oyl-CoA

KstR

Mycobacterium smegmatis

cholesterol

cholest-4-en-3-one ; 3-oxo-4-cholestenoic acid

KstR

Paracoccus sp. L-gluconate L-5-ketogluconate ; D-idonate

LgnR

Azoarcus sp. 3-methylbenzoate 3-methylbenzoyl-CoA MbdR Sphingobium sp.

ferulate feruloyl-CoA FerR

Rhodopseudomonas palustris

p-Coumarate p-Coumaroyl-CoA CouR

Comamonas testosteroni

benzoic acid benzoyl-CoA GenR

Thermus thermophilus

Phenylacetic acid phenylacetyl-CoA PaaR

•  Libis,Delepine,FaulonCurrentOpinionMicrobiology,2016

Page 27: Using retrosynthesis in synthetic biology and metabolic engineering

Jean-LoupFaulon201627

Acknowledgements

ThomasDuigou,IGR,MicalisINRA (reacMonruleworkflow)DhaferLhabib,Post-doc,MicalisINRA (retrosynthesisalgorithm)BaudoinDelepine,PhDstudent,MicalisINRA (biosensordesign)MathildeKoch,PhDstudent,MicalisINRA (biosensordesign&engineering)PabloCarbonell,SeniorResearcher,U.Manchester (metabolicpathwayscoring)JoeMellor,Post-doc,U.Manchester (MachineLearning)VincentLibis,PhDstudent,MicalisINRA (biosensorengineering)HeykelTrabelsi,Post-doc,MicalisINRA (metabolicengineering)AmirPandi,PhDstudent,MicalisINRA (biosensorengineering)CecileJacry,Tech.iSSB,Evry (metabolicengineering)IoanaPopescu,MCF,iSSB,Evry (metabolicengineering)CyrillePauthenier,Abolis,Evry (metabolicengineering)