Top Banner
Use of chemical and physical characteristics to investigate trends in biochar feedstocks Fungai Mukome, Xiaoming Zhang, Lucas C.R. Silva, Johan Six, and Sanjai J. Parikh University of California, Davis US Biochar Conference, Rohnert Park, CA July 2012
19

Use of chemical and physical characteristics to investigate trends in biochar feedstocks

Feb 25, 2016

Download

Documents

fallon

Use of chemical and physical characteristics to investigate trends in biochar feedstocks. Fungai Mukome, Xiaoming Zhang, Lucas C.R. Silva, Johan Six, and Sanjai J. Parikh University of California, Davis US Biochar Conference, Rohnert Park, CA July 2012. What is Biochar?. Walnut shell. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Use of chemical and physical characteristics to investigate trends in

biochar feedstocks

 Fungai Mukome, Xiaoming Zhang, Lucas C.R. Silva, Johan Six, and 

Sanjai J. ParikhUniversity of California, Davis

US Biochar Conference, Rohnert Park, CAJuly 2012

Page 2: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

What is Biochar?Walnut shell

Wood

Wood chips

Fly ashcarbon-negative.us

Corn stover

Rice Husks Manure

Orange peels

Page 3: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

All biochars are not created equal…. (McLaughlin et al. 2009)

• Differ on– pH– Surface area– Ash content– Water holding capacity

• All a function of pyrolysis temperature (highest treatment temperature-HTT), pyrolysis method, residence time and feedstock

– Cation exchange capacity (CEC)– H/C ratio– C/N ratio

Page 4: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Objectives

1. To characterize physical and chemical properties of various biochars (mostly commercially available)

2. To determine if trends exist for biochar properties that can be related to feedstock material, which can serve to develop guidelines for biochar use. 

Page 5: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Objectives 1

• Physical properties:– Moisture content– Ash content–  BET Surface area–  Surface morphology

• Chemical properties:– Elemental content– H and C content– pH– Cation exchange capacity– Surface basicity and acidity– Surface functionality (ATR-FTIR and Raman)

Twelve biochars were analyzed

Page 6: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Char Source MaterialPyrolysis Temp (°C)

Ash (wt %)

BET Surface Area (m2/g)

Type (Hysteresis)

BC_ A Turkey litter  700-800  64 21.8 aPs. II (H3) BC_Bb Walnut shell  900 40.4 227.1 Ps. II (H4) BC_C Inoculated material  unavailablec  15.5 95.9 Ps. II (H4) 

BC_D Soft wood  600-700  2.4 25.2 Ps. II (H4) BC_E Wood + Algal digestate  600-700  6.4 2 Ps. II (H3) BC_F Wood  510 3 165.8 Ps. II (H4) BC_G Wood  410 2.6 2.8 Ps. II (H3) BC_H Wood chips  500-650  17 4.9 Ps. II (H3) BC_I Wood chips  unavailable  5 164.1 Ps. II (H4) BC_J Wood chips  unavailable  2.8 153.1 Ps. II (H4) BC_K Wood chips  unavailable  5.5 154.4 Ps. II (H4) BC_L Wood chips  unavailable 4.2 301.6 Ps. II (H4) 

a Ps.II = Pseudo Type IIb Unknown, not willing to provide or proprietary c Not commercially available

Physical properties

WoodNon-wood

Page 7: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

SEM images of three biochars showing a) a char with type H3 hysteresis loop b) a char with type H4 hysteresis loop and c) a char with high ash content.

c) BC_Ba) BC_G b) BC_F

10µm100µm60µm

Type II isotherms - capillary non-porous or macroporous adsorbents and represent monolayer-multilayer adsorption. 

Lower surface areas (BC_J,BC_H, BC_A and BC_G) - Type H3 hysteresis loops - lack of microporosity, plate-like particles and slit shaped pores.

Higher surface area - (BC_L, BC_K, BC_J, BC_I,  BC_F) - Type H4 hysteresis loops- narrow slit-like pores

Scanning Electron Microscopy analysis

Page 8: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

CharC

(wt %)N

(wt %)H

(wt %)O

(wt %)PO4-P (wt %)

K (wt %)

S (ppm)

Fe (ppm)

pHw (1:2)

CECa

cmol/kgAcidity

(meq/g)Basicity (meq/g)

BC_A 15.6 0.78 0.83 4.4 6.61 7.05 10720 9191 10.9 24.4 0.08 4.92

BC_Bb 55.3 0.47 0.89 1.6 0.64 9.32 940 1981 9.7 33.4 -  11.71

BC_C 53.3 1.96 3.7 24.3 0.47 1.2 5920 1109 6.8 44.5 1.22 1

BC_D 68.2 0.51 3.66 26.8 0.13 0.26 370 1934 7.5 26.2 1.24 1.02

BC_E 58.1 0.41 4.16 31.7 0.08 0.19 685 3370 6.8 67 1.56 1.22

BC_F 83.9 0.36 1.88 19.8 0.02 0.13 110 505 7.3 12 0.27 0.93

BC_G 65.7 0.21 4.38 23.5 0.02 0.12 50 248 7.1 10 0.83 0.4

BC_H 71.2 0.91 2.88 11.6 0.08 0.72 480 3517 7.9 3.2 0.79 1.01

BC_I 87.3 0.59 2.15 7.4 0.07 0.85 140 203 9.2 9.1 0.41 0.84

BC_J 88 0.44 2.55 14.8 0.02 0.33 60 79 9.5 14.9 0.49 0.87

BC_K 85.4 0.55 2.37 8.9 0.07 0.48 140 606 8.8 3.6 0.6 0.94

BC_L 82.5 0.49 1.64 5.6 0.06 1.02 160 473 9.5 16.5 0.36 1.21

aCEC = Cation exchange capacityb Not commercially available

Chemical properties

WoodNon-wood

Page 9: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Aromatic

Aliphatic/Functionalized

C=O

C=CC-H

C-O, C-H

C-O

FTIR: Fourier Transform Infrared Spectroscopy

Greater aromaticity in wood derived biochar

1800 1600 1400 1200 1000 800 600Wavenumber (cm-1)

BC_L

BC_K

BC_J

BC_I

BC_H

Abso

rban

ce BC_E

BC_D

BC_C

BC_A

BC_B

BC_F

BC_G

Page 10: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Char

xAromatic C-H (744cm-1)

xAliphatic ether (1029cm-1)

xAliphatic CH3 (1417cm-1)

xAromatic C=C (1587cm-1)

xAromatic carbonyl

(1690cm-1)

BC_A -  2.9 1 0.21 0.02BC_B -  1.1 2.2 -  - BC_C 0.53 3.6 0.38 0.69 0.39BC_D 0.63 2.67 2.46 2.6 1.2BC_E 0.27 2.83 2.2 2.05 0.94BC_F 1.2 2.09 1.7 2.3 0.28BC_G 1.2 2.16 0.83 1.5 0.4BC_H 1.12 1 1.71 1.78 0.41BC_I 1 1.2 1.83 1.98 0.38BC_J 0.71 1.67 0.27 1.41 0.36BC_K 1.05 1.17 1.6 1.9 0.36BC_L 1.1 1.01 1.05 1.22 0.12x. Ratios of peak intensities relative to the aromatic C-H stretch at 870cm-1 common to all spectra

Page 11: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

1000 1200 1400 1600 1800

BC_A

BC_C

BC_J BC_K BC_L

BC_B BC_I BC_F

BC_G BC_H

BC_D BC_E

Inte

nsity

Wavenumber (cm-1)

Char Aliphatic ether (1029cm-1)

yRaman Id/Ig

BC_A 2.9 0.4BC_B 1.1 0.34BC_C 3.6 0.76BC_D 2.67 0.58BC_E 2.83 0.65BC_F 2.09 0.4BC_G 2.16 0.25BC_H 1 0.83BC_I 1.2 0.68BC_J 1.67 0.72BC_K 1.17 0.59BC_L 1.01 0.71

y. Ratio of peak intensities of the Carbon D (1350cm-

1) and G (1690cm-1) bands in Raman spectra

D band(aromatic)

G band(aliphatic & olefinic)

• ID  - sp2 disordered C atoms in aromatic ring structures•  IG - sp2 disordered C atoms in aliphatic and olefinic molecules•Approximates sp2: sp3 ratio in amorphous carbon

Page 12: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0G G

G

G

G

G

GG

GG

G

GG

GG

G

G

GG

G

L

L

L

L

M N

N

P

P

P

PP

P

PP P

WW

WW

W

WW

WWW

WWWWWW WWW

W

WWW

WW

G

NW

W

W

KJ

I

E

D

C

H

A

B

G

F

y = 1.805x + 0.190R2 = 0.83

H/C

atom

ic ra

tio

O/C atomic ratio

y = 2.182x + 0.198R2 = 0.88

0.0 0.1 0.2 0.3 0.4 0.50.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Literature Study biochar (inset)

L

Objective 2 1. Sharma et al. Fuel 2004, 83, 1469-1482.2. Keiluweit et al. Environmental Science & Technology 2010, 44, 1247-1253.3. Zheng et al. Journal of Hazardous Materials 2010, 181, 121-126.4. Cao, X. et al. Bioresource Technology 2010, 101, 5222-5228.5. Özçimen et al. Renewable Energy 2010, 35, 1319-1324.6. Jindarom et al. Chemical Engineering Journal 2007, 133, 239-246.7. Chan et al.  Soil Research 2008, 46, 437-444.8. Azargohar et al. Applied Biochemistry and Biotechnology 2006, 131, 762-773.9. Wu et al. Industrial & Engineering Chemistry Research 2009, 48, 10431-10438.10. Toles et al. Bioresource Technology 2000, 71, 87-92.11. Van Zwieten et al. Plant and Soil 2010, 327, 235-246.12. Chen, B. and  Chen, Z. Chemosphere 2009, 76, 127-133.13. Major et al. Plant and Soil 2010, 333, 117-128.14. Argudo, M. et al. Carbon 1998, 36, 1027-1031.15. Hammes et al. Applied Geochemistry 2008, 23, 2113-2122.16. Chun et al. Environmental Science & Technology 2004, 38, 4649-4655.17. Mahinpey et al. Energy & Fuels 2009, 23, 2736-2742.18. Rondon et al. Biology and Fertility of Soils 2007, 43, 699-708.19. Abdullah, H. and Wu, H.  Energy & Fuels 2009, 23, 4174-4181.20. Cheng, C.-H and Lehmann, J. Chemosphere 2009, 75, 1021-1027.21. Spokas et al. Chemosphere 2009, 77, 574-581.22. Steiner et al. J. Environ. Qual. 2009, 39, 1236-1242.23. Busscher et al. Soil Science 2010, 175, 10-14.24. Brewer et al. Environmental Progress & Sustainable Energy 2009, 28, 386-396.25. Novak et al. Annals of Environmental Science 2009, 3, 195-206.26. Novak, J. M. and  Reicosky, D. C. Annals of Environmental Science 2009, 3, 179-193.27. Singh et al. J. Environ. Qual. 2010, 39, 1224-1235.

n= 85

van Krevelen diagram of a) selected biochar (from literature) and b) 12 study biochar (inset)

 A  algae G  grass L   hull M manure N  nutshell P  pomace W wood

Page 13: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Change in ash content as a function of pyrolysis temperature of biochar

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

A

A

A

A

A

A

A

G GG

G

G

G

G

G

G

G G

G

L

LL

L

M

M

M

M

M

M

M

M

NN NN

N

N

P P P P P PP P P

P

W W W WWWW

WWWW

WW

WW

W

W WW

W

WWW W

Temperature (oC)

A algaeG grassL hullM manureN nutshellP pomaceW wood

Ash

con

tent

(%)

100 200 300 400 500 600 700

0

5

10

15

20

25

30

HHH

H

H

H HH

H

S S S S SS

S

S

S

H HardwoodS Softwood

Ash

con

tent

(%)

Temperature (oC)

Change in ash content as a function of pyrolysis temperature of biochar derived from hard and softwood

Page 14: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Change in the C/N ratio as a function of pyrolysis temperature of biochar derived from hard and softwood. 

0 100 200 300 400 500 600 700 800 900 1000

10

100

1000

AAAAAAA

G GG

GG G

G

G

G

G

GGG

G G

G

G

LLL

L

LL

MM

M

M

M

M

M

MM M

MM

NN

N

P P P P PP P P P

WW

W

W

W

W

W

W

W

WW

WWW

WWWW

W

W

W

WW

W

W

WW

WW

W

W

W

WW

WW

A algaeG grassL hullM manureN shellP pumiceW wood

J ra

tio

J (oC)

0 100 200 300 400 500 600 70010

100

1000

HHHH

H H HH

H

H HH H

SS S S

SS

S

S SS

SSS

SS

H hardwoodS softwood

C/N

ratio

Temperature (OC)

Change in the C/N ratio as a function of pyrolysis temperature of biochar

Page 15: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

100 200 300 400 500 600 700 800 900 1000

1

10

100

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

L

L

M MN

N

N

N

P

P

P P

PP

P

P

P

P

WW

WW

W

WW

WW

W

W

WWW

W

W

W

WW

W

WW

W

W

W

WW

W

W

G grassL hullM manureN nutshellP pumiceW wood

(Sur

face

are

a (m

2 g-1)

Temperature

100 200 300 400 500 600 700

1

10

100

HHHH

H

HH

H

H

SS

S

S

S

S S

SS

S

S

S

S

(Sur

face

are

a (m

2 g-1) H Hardwood

S Softwood

Temperature (oC)

Change in the surface area as a function of pyrolysis temperature of biochar

Change in surface area as a function of pyrolysis temperature of biochar derived from hard and softwood

Page 16: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Box plots showing differences in a) ash content and b) C/N ratios, but not in c) surface area across the different feedstocks. The grey boxes show the range from first to third quartiles, with the median dividing the interquartile range, into two boxes for the second and third quartiles. Letters show significant differences (p<0.05) according to a one-way ANOVA followed by Tukey (HSD) multiple means comparison

Page 17: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Suggested guidelines

Characteristic Suggested guideline

Ash content grass ≈ manure >> nut shells, pomace and wood(hard wood > soft wood)

C/N ratio wood >> grass> pomace> manure(soft wood > hard wood)

Surface area temperature dependent(soft wood > hard wood)

Property Agroecosystem consideration

Ash content Hydrophobicity and retention of agrochemicals

C/N ratio Initial Immobilization of soil N

Surface area Sorption of pesticides, herbicides and heavy metals, sites for fungal and microbial colonization

Page 18: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Acknowledgements

• Xiaoming Zhang • Lucas C.R. Silva • Johan Six• Sanjai J. Parikh• UC Davis Agricultural Sustainability Institute (ASI) Junior Faculty Award

•  David and Lucile Packard Foundation 

Email:[email protected]

Page 19: Use of chemical and physical characteristics to investigate trends in biochar  feedstocks

Effects of biochar• Improves 

– water holding capacity– nutrient retention– soil fertility – agricultural yield– greenhouse emission (GHG) mitigation

•  However many other studies have shown – no increase in crop yields, – increased GHG emissions,– unintended “liming” of soils.

• Results often linked to the properties of the biochar used, application rate, soil type and climate.