Top Banner
1 | Bioenergy Technologies Office BIOENERGY TECHNOLOGIES OFFICE US Case Studies on Energy Recovery from Waste Beau Hoffman Conversion R&D Technology Manager US Dept of Energy, Bioenergy Technologies Office
20

US Beau Hoffman - IEA Bioenergy

May 04, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: US Beau Hoffman - IEA Bioenergy

1 | Bioenergy Technologies Office

BIOENERGY TECHNOLOGIES OFFICE

US Case Studies on Energy Recovery from Waste

Beau HoffmanConversion R&D Technology ManagerUS Dept of Energy, Bioenergy Technologies Office

Page 2: US Beau Hoffman - IEA Bioenergy

2 | Bioenergy Technologies Office

MSW Report to Congress

Congressional interest is largely driven to solve waste disposal challenges

“Deliver a report to the Appropriations Committee a report on R&D opportunities to improve the economic viability of municipal solid waste‐to‐energy”

For existing WTE facilities:• Current Gen AD Improvements

– Co‐digestion advancements– Advanced biogas cleanup– Conversion of biogas to fuels and co‐products– Advanced AD reactor design

• Advanced waste preprocessing and handling strategies– High precision sorting– Development of quality control specs (for waste feedstocks)– Preprocessing/pretreatment processes to remove contaminants

Page 3: US Beau Hoffman - IEA Bioenergy

3 | Bioenergy Technologies Office

Case Study 1 – Catalytic Biogas Upgrading

Questions: Devin [email protected]

John [email protected]

Page 4: US Beau Hoffman - IEA Bioenergy

4 | Bioenergy Technologies Office

Case Study 1 – Catalytic Biogas Upgrading

24 SCFM LFG Feed 75 Gal/Day Diesel

Mobile Pilot Unit (completed 2018)

2016:2012:

Page 5: US Beau Hoffman - IEA Bioenergy

5 | Bioenergy Technologies Office

Case Study 1 – Catalytic Biogas Upgrading

Page 6: US Beau Hoffman - IEA Bioenergy

6 | Bioenergy Technologies Office

Case Study 1 – Catalytic Biogas Upgrading

• Excellent middle distillate boiling point distribution

• Boiling points align with commercial diesel

• Waste derived cleaner burning fuel

Fuel Analysis• Low aromatics (Less particulate/soot

formation)• Zero sulfur (No SOx Emissions)• Isomers improve cold temp properties

Hydrocarbon Family

TRIFTSDiesel

Commercial Diesel

Paraffins 68.61 19.95Isomers 29.98 31.60Olefins 0.86 0.92

Aromatics 0.3 39.48Cyclics 0.25 8.05

Page 7: US Beau Hoffman - IEA Bioenergy

7 | Bioenergy Technologies Office

Case Study 1 – Catalytic Biogas Upgrading

 $(5,000,000)

 $‐

 $5,000,000

 $10,000,000

 $15,000,000

 $20,000,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Discoun

ted Cu

mulative Ca

sh Flow

Years

Plant Profitability at Various Wholesale Diesel Prices w/ RIN (600 scfm Biogas)

WS Price $3.5

WS Price $3.0

WS Price $2.5

WS Price $2.0

WS Price $1.5

WS Price $1.0

At current WS pump price of 2.15 NPV = $10.6MM

RIN = $4.25/gal diesel (D3 ~ $2.50/RIN)

Initial Construction Capital $3.9 MM

Breakeven No RIN credit at 646 SCFM biogas production rate

Production Cost = $1.72/gal

Page 8: US Beau Hoffman - IEA Bioenergy

8 | Bioenergy Technologies Office

Case Study 2 – Hydrothermal Liquefaction

Wet waste requires a simple and robust process technology  

PNNL’s bench‐scale continuous HTL system

Conversion technology must be: Simple, scalable, robust 

Process a range of feedstocks and high ash levels (>20%)

Able to convert directly with minimal dewatering (or by blending in of dry materials)

Achieve high carbon yields to liquid hydrocarbons (40‐60%)

Hydrothermal liquefaction (HTL) is…The conversion of solid biomass in hot, compressed water into liquid components

• HTL produces a gravity‐separable biocrude with low oxygen content (5–15 %) that can be upgraded to drop‐in blendstocks

HTL ConditionsTemp: 330-350°CPressure: 2900 psigtres: 10-30 min

Hydrotreating ConditionsTemp: 400°CPressure: 1500 psig H2Sulfided NiMo on Al

Wet biomass material (sludge, manure, algae)

Stable biocrude oil(up to 60% C‐yield)

Fuel blendstocks(95%+ yield)

Questions: Justin [email protected] Snowden‐SwanLesley.Snowden‐[email protected]

Page 9: US Beau Hoffman - IEA Bioenergy

9 | Bioenergy Technologies Office 9

• A fixed-bed hydrotreater is critical to quantify catalyst lifetime• Process improvements dropped the MFSP by over $2/GGE

Throughput increased 34% (WHSV of 0.29/h to 0.39/h) – catalyst, capital costTime-on-stream increased from 300 to 550 hours – catalyst cost

• A two-year catalyst life will further reduce MFSP by $0.80/GGE

Case Study 2 – Hydrothermal Liquefaction

Page 10: US Beau Hoffman - IEA Bioenergy

10 | Bioenergy Technologies Office

Case Study 2 – Hydrothermal Liquefaction

0%10%20%30%40%50%60%70%80%

gasoline(IBP‐184°C)

jet(153‐256°C)

diesel(184‐390°C)

heavies(>390°C)

Mass Y

ield* %

Sludge (GLWA) Sludge (CCCSD)

Sludge/FOG (80/20) (CCCSD) Swine Manure

• Engine testing at CSU of 5% blends in diesel shows NO negative impact on performance or emissions 

• Simulated distillation shows product is Rich in diesel High in cetane (~70)

WoodPyrolysis

WoodHTL

50/50Wood/Algae

HTL

CertificationDiesel

EtOH toDiesel

SludgeHTL

AlgaeHTL

Page 11: US Beau Hoffman - IEA Bioenergy

11 | Bioenergy Technologies Office

Case Study 2 – Hydrothermal Liquefaction

$0.0

$1.0

$2.0

$3.0

$4.0

$5.0

$6.0

$7.0

$8.0

2018 SOT 2018 SOT no NH3removal

2019 SOT 2019 SOTno NH3removal

2022 Projected 2022 Projected no NH3removal

Minim

um Fue

l Sellin

g Price, 

$/GGE

Balance of Plants

Biocrude Hydrotreating /Hydrocracking

Biocrude Transportation

HTL Water Treatment

HTL Biocrude Production

Sludge Dewatering

$7.16

$5.11$4.69

$6.74

$3.11$2.77

• Annual state of technology (SOT) assessment tracks progress toward goal• Progress via increased hydrotreating catalyst life and reactor throughput• Increased feed solids, separations, heating configuration and upgrading 

(throughput and catalyst life) will enable the 2022 goal 

Page 12: US Beau Hoffman - IEA Bioenergy

12 | Bioenergy Technologies Office

Case Study 2 – Hydrothermal Liquefaction

$0.0

$1.0

$2.0

$3.0

$4.0

$5.0

$6.0

Baseline(SOT)

Sludge/FOG(80/20)

Swinemanure

MFSP, $/G

GE

Balance of Plants

BiocrudeHydrotreating /HydrocrackingBiocrudeTransportation

HTL WaterTreatment

HTL BiocrudeProduction

Feedstockdewatering

$5.11$4.44 $4.54

• Blending FOG, even at low levels, improves economics of waste water sludge

• Higher biocrude yields for manure and FOG reduce MFSP by $0.60‐70/gge

0

0.1

0.2

0.3

0.4

0.5

0.6

 $4.0

 $4.2

 $4.4

 $4.6

 $4.8

 $5.0

 $5.2

 $5.4

 $5.6

 $5.8

0 5 10 15 20

Biocrude

 Yield, g/g fe

ed (D

AF)

MFSP, $/G

GE

Weight % FOG blended with sludge

MFSP Yield

SOT

Page 13: US Beau Hoffman - IEA Bioenergy

13 | Bioenergy Technologies Office

Case Study 2 – Hydrothermal Liquefaction

• Wet waste resources are highly co‐located 80% of non‐sludge waste is generated within 25 miles of a wastewater 

treatment plant (WWTP) that is ≥ 1 M Gal/day• Collection and blending reduces costs via larger plant scale

Page 14: US Beau Hoffman - IEA Bioenergy

14 | Bioenergy Technologies Office

Case Study 3 – Advanced CO2 Sorbents

Synthetic, porous metal‐organic frameworks + amines

Combine benefits of aqueous amines and adsorbents“step‐shaped adsorbents”

• “Step‐shaped” adsorption = less energy needed to regenerate• High selectivity for CO2 = higher product purity• Solid phase = easy to handle, increased safety (vs aqueous amines) Questions: Jason Husk

[email protected]

Page 15: US Beau Hoffman - IEA Bioenergy

15 | Bioenergy Technologies Office

Case Study 3 – Advanced CO2 Sorbents

Sorbents for PSA and amine scrubbers…•exhibit low working capacities•require large pressure and/or temperature swings to be cycled

Mosaic’s phase change adsorbents…•exhibit very large working capacities•require small pressure and/or temperature swings to be cycled

Mosaic Typical PSA Process

Page 16: US Beau Hoffman - IEA Bioenergy

16 | Bioenergy Technologies Office

Case Study 3 – Advanced CO2 Sorbents

• 1.2MM grant from California Energy Commission (CEC) thru Sept 2018

• 40% Reduction in OPEX with Mosaic’s Gen‐1 concept system compared to traditional amine scrubbing

• 15% Reduction in CapEx, and plans to pursue further cost reductions

• Stability testing of MOF‐based pellets performed at Davis WWTP

– CO2 capacity maintained over 1000+ cycles

• In‐house manufacturing at 1 kg /week, currently supporting multiple orders.  

• Year 1: Pilot system designed/fabricated by Mosaic Materials, EPC Subs

• Year 2: Pilot system deployed at host site to demonstrate efficacy of CO2 removal unit

Sources: American Biogas Council, SoCalGas

Pipeline injection or vehicle

CNG

Biogas Upgrading

Digestion produces

biogas

Waste received

Page 17: US Beau Hoffman - IEA Bioenergy

17 | Bioenergy Technologies Office

Case Study 4 – Next Gen AD

Project goal: Improve the techno‐economic viability of biopower production by developing a sustainable two‐phase anaerobic membrane bioreactor (AnMBR) system that diverts organic fraction of municipal solid waste (OFMSW) and food waste from landfills and incineration while generating methane and renewable bioproducts.Project outcome: A scalable, high performance, low‐cost, two‐phase modular AnMBR to extend the economic viability of AD to smaller scales

•Modular high rate rumen inspired AD technology 

Dynamic Membrane: Filtering biofilm formed on support structure of ~ 10 – 100 microns

2nd Phase Magna Tree

Questions: Meltem Urgun‐[email protected]

Page 18: US Beau Hoffman - IEA Bioenergy

18 | Bioenergy Technologies Office

Case Study 4 – Next Gen AD

Ruminant Inspired Dynamic AnMBR hydrolyzes a high fraction of lignocellulose > 60% in a short time

VFA concentration and VFA yield during operation of the rumen reactor 

Page 19: US Beau Hoffman - IEA Bioenergy

19 | Bioenergy Technologies Office

Case Study 4 – Next Gen AD

• Modelling AnMBR performance• Previous AD models have been developed to model 

one stage AD.• A model is needed that evaluates the feasibility of 

different waste stream combinations and the process performance from the lens of two stage AD.

• Why? Hydrolysis step is rate limiting and varies with biodegradability of waste.

• New C++ version of the ADM1 model allows ~40x speedup in computational time while maintaining robustness of results 

Page 20: US Beau Hoffman - IEA Bioenergy

20 | Bioenergy Technologies Office

Questions?

[email protected]