Top Banner
Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic Working Group Meeting 29 July 2016
37

Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Aug 23, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Up-down asymmetric tokamaks

Justin Ball Prof. Felix Parra and Prof. Michael Barnes

Oxford University and CCFE 9th Gyrokinetic Working Group Meeting

29 July 2016

Page 2: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

The problem

• Toroidal plasma rotation has been used in experiments to significantly increase the plasma pressure

(on-axis)

2

*multiply by ~10 to get

MS ⌘ R⌦⇣

vsound

*MA ⌘ R⌦⇣

vAlfven⇡ 0.5� 5%

Liu et al. Nucl. Fusion (2004).

⌦⇣• The usual methods to drive rotation do not appear to scale well to larger

devices such as ITER

• Numerical modeling suggests that, to see a benefit, ITER requires rotation with

Page 3: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

The solution?

• Use plasma turbulence to transport momentum and spontaneously generate “intrinsic” rotation from a stationary plasma

• For future large devices, we need intrinsic rotation that scales with size

• As we will see, this severely restricts our options: up-down asymmetry in the magnetic equilibrium

3

Camenen et al. PPCF (2010).

r aTo

roid

al v

eloc

ity [k

m/s

]

Page 4: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Outline

4

Non-mirror symmetric Mirror symmetric

Up-

dow

n as

ym.

enve

lope

Up-

dow

n sy

m.

enve

lope

Up-down symmetric

Page 5: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Generalization of Miller local equilibrium

• Works well with GS2, a local δf gyrokinetic code

• Specify the flux surface of interest as a Fourier decomposition:

• Specify how it changes with minor radius:

5

✓r

⇣@r0@r

����✓

= 1�X

m

C 0m cos (m (✓ + ✓0tm))

Miller et al. Phys. Plasmas (1998).

r0 (✓) = r 0

1�

X

m

Cm cos (m (✓ + ✓tm))

!

Page 6: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Gyrokinetics

• Governs turbulence in tokamaks:

• Allows us to calculate the turbulent fluxes, such as

• Calculate the eight geometric coefficients from MHD equilibrium

7

k? =

rk2

���~r ���2+ 2k k↵~r · ~r↵+ k2↵

���~r↵���2

where

⇧ = 2⇡iIX

k ,k↵

k↵

⌧� (k , k↵)

Zdv||dµ v||J0 (k?⇢s)hs (�k ,�k↵)

@hs

@t+ v||b · ~r✓

@hs

@✓

����v||

+ i (k vds + k↵vds↵)hs + a||s@hs

@v||�

X

s0

hC(l)ss0i' + {J0 (k?⇢s)�, hs}

=ZseFMs

Ts

@

@t(J0 (k?⇢s)�)� v�s FMs

1

ns

dns

d +

✓msv2

2Ts� 3

2

◆1

Ts

dTs

d

Page 7: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Estimating the Alfvén Mach number

8

Ball et al. PPCF (2014).

ignore

• Ignoring pinch is conservative, may enhance rotation by a factor of 3

Peeters et al. PRL (2007).

Pr ⌘ D⇧

DQ⇡ 1 ⇡ constant

h⇧ (0, 0)it � P⇧⌦⇣ �D⇧d⌦⇣dr

= 0

⌧⇧

✓⌦⇣ ,

d⌦⇣dr

◆�

t

= 0 hQiit = �DQdTi

dr

MA ⇡p2�T

Pr

h⇧ithQiit

Page 8: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Up-down symmetry argumentPeeters et al. PoP (2005). & Parra et al. PoP (2011).

• Second solution has a canceling momentum flux:

• Constrains to lowest order in

• Negating kψ, θ, and v|| leads to a second solution of the gyrokinetic eq.

⇢⇤ ⌘ ⇢i/a ⌧ 1

9

Sugama et al. PPCF (2011).

!⇢B, b · ~r✓,�vds , vds↵,�a||s,

���~r ���2,�~r · ~r↵,

���~r↵���2�

hs

�k , k↵, ✓, v||, µ, t

�! �hs

��k , k↵,�✓,�v||, µ, t

h⇧it ! �h⇧ith⇧it = 0

MA = 0

Qud

geo

2⇢B, b · ~r✓, vds , vds↵, a||s,

���~r ���2

, ~r · ~r↵,���~r↵

���2

Page 9: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Outline

11

Non-mirror symmetric Mirror symmetric

Up-

dow

n as

ym.

enve

lope

Up-

dow

n sy

m.

enve

lope

Up-down symmetric

Small in ⇢⇤ ⌧ 1

Page 10: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

MHD equilibrium argument

m=4 modem=2 mode

Low m penetrates best

• Grad-Shafranov equation for a constant toroidal current profile:

• To lowest order in aspect ratio, solutions are cylindrical harmonics:m=3 mode

13

Rodrigues et al. Nucl. Fusion (2014).Ball et al. PPCF (2015).

R2~r · ~r R2

!= �µ0R

2 dp

d � I

dI

d = const

amount of shaping / rm�2

Page 11: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Outline

15

Non-mirror symmetric Mirror symmetric

Up-

dow

n as

ym.

enve

lope

Up-

dow

n sy

m.

enve

lope

Exp. bad MHD

Up-down symmetric

Exp. bad MHD

Exp. bad MHD

Small in ⇢⇤ ⌧ 1

Page 12: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Screw pinch argument

• Screw pinches have no toroidicity, so up-down symmetry has no meaning

• Mirror symmetric flux surfaces generate no rotation

• Rotation can be generated by breaking mirror symmetry (i.e. the direct interaction of two different shaping effects)

• This can occur in tokamaks

16

MA 6= 0

MA = 0

Page 13: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Outline

18

Non-mirror symmetric Mirror symmetric

Up-

dow

n as

ym.

enve

lope

Up-

dow

n sy

m.

enve

lope

Exp. bad MHD

Up-down symmetric

Screw pinch limit

Screw pinch limit Exp. bad MHD

Exp. bad MHD

Small in ⇢⇤ ⌧ 1

Page 14: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Poloidal tilting symmetry argument

• Rewrite geometry specification to distinguish (the fast poloidal scale) from (the connection length scale):

• Convert to the form of a 2-D Fourier series using

• Define according to the physics of the scale separation (defines any mode as “fast”)

19

Ball, et al. PPCF 58 045023 (2016).

✓z ⌘ mc✓

r0 (✓) = r 0

1�

X

m

Cm cos (m (✓ + ✓tm))

!

k ⌘ m� lmc

l ⌘ bm/mccm � mc

r0 (✓, z) = r 0

1�

1X

l=0

mc�1X

k=0

Ck+lmc

⇥⇥cos (l (z +mc✓tm)) cos (k (✓ + ✓tm))� sin (l (z +mc✓tm)) sin (k (✓ + ✓tm))

⇤!

z ✓

mc = 5

Page 15: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Poloidal tilting symmetry argument

• But remember we expanded in

• Specify

25

Ball, et al. PPCF 58 045023 (2016).

Qud

geo

(✓, z) 2⇢B, b · ~r✓, vds , vds↵, a||s,

���~r ���2

, ~r · ~r↵,���~r↵

���2

Qtilt

geo

= Qud

geo

(✓, z + ztilt

)

htilts (✓, z) = hud

s (✓, z + ztilt)⌦⌦⇧tilt

↵t

↵z=

⌦⌦⇧ud

↵t

↵z= 0

ztilt

⇡tilt⇣ (✓, z) = ⇡ud

⇣ (✓, z + ztilt)

• Verify by looking for

rtilt0 (✓, z) = rud0 (✓, z + ztilt)

Up-down sym.

Tiltedmc � 1⌦⌦⇧

tilt↵t

↵z⇠ MA ⇠ exp (�mc)

Page 16: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

28

m=7 geometry: Simulation (up-down sym.)

Simulation (tilted)

Theory prediction for tilted

-π πθ

-0.06

0.06⇡⇣

-π π

-0.06

0.06

Ball, et al. PPCF 58 045023 (2016).Verify ⇡tilt

⇣ (✓, z) = ⇡ud⇣ (✓, z + ztilt)

Page 17: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

29

m=5:

-π πθ

-0.06

0.06

m=7:

m=6:

m=8:

-π πθ

-0.06

0.06 ⇡⇣⇡⇣

⇡⇣⇡⇣

-π π

-0.06

0.06

-π π

-0.06

0.06

-π π

-0.06

0.06

-π π

-0.06

0.06

-π πθ

-0.06

0.06

-π πθ

-0.06

0.06

Ball, et al. PPCF 58 045023 (2016).Verify ⇡tilt

⇣ (✓, z) = ⇡ud⇣ (✓, z + ztilt)

Page 18: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Outline

31

Non-mirror symmetric Mirror symmetric

Up-

dow

n as

ym.

enve

lope

Up-

dow

n sy

m.

enve

lope

Exp. bad MHD

Up-down symmetric

Screw pinch limit & Exp. small in

Screw pinch limit Exp. bad MHD

Exp. bad MHDExp. small in m � 1

m � 1

Small in ⇢⇤ ⌧ 1

Page 19: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

32

• Created using two modes, and , with distinct tilt angles, and

• Calculate geometric coefficients order-by-order in

• Look for beating between fast shaping effects (creates an envelope on the connection length)

m � 1

Ball, et al. PPCF 58 055016 (2016).Envelope argument: Expansion in m � 1

R0 R0 R0 R0 R0R

m = 2 m = 3 m = 4 m = 5 m = 6

m✓tm ✓tn

n = m+ 1

Page 20: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

37

0

Ball, et al. PPCF 58 055016 (2016).

vds↵ =

B0

R0⌦s

dr d

(cos (✓) + s✓sin (✓))

+

B0

2R0⌦s

dr d

⇥�m3C2

m + n3C2n

�✓sin (✓)

� s✓cos (✓) (mCmsin (m (✓ � ✓tm)) + nCnsin (n (✓ � ✓tn)))

+ s✓sin (✓) (mCmcos (m (✓ � ✓tm)) + nCncos (n (✓ � ✓tn)))

+mnm+ n

n�mCmCnsin (✓)

⇥ (sin ((n�m) ✓) cos (n✓tn �m✓tm) + cos ((n�m) ✓) sin (n✓tn �m✓tm))]

Envelope argument: Expansion in

vds↵• Calculate magnetic drift coefficient within flux surface,

m � 1

breaks symmetry⇠ m�1

h⇧ithQiit

⇠ m�1MA / m�1

Page 21: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Envelope argument: Numerical scaling with

38

m � 1Ball, et al. PPCF 58 055016 (2016).

2 3 4 5 6 7 8

m

−0.02

0

0.02

0.04

v thi⟨Π

⟩ t/R

0⟨Q

i⟩ t

Mirror Sym.

exp(-m)

Non-mirror Sym.

1/m

2 3 4 5 6 7 8

mc

−0.02

0

0.02

0.04

(vth

i/R

c0)⟨Π

ζi⟩

t/⟨Q

i⟩t

Mirror sym. Exp. scaling

Non-mirror sym., up-down asym. envelopeNon-mirror sym., up-down sym. envelope

h⇧i t/hQ

iit

Page 22: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Outline

40

Non-mirror symmetric Mirror symmetric

Up-

dow

n as

ym.

enve

lope

Up-

dow

n sy

m.

enve

lope

Exp. bad MHD

Up-down symmetric

Screw pinch limit & Exp. small in

Screw pinch limit & Poly. small in

Exp. bad MHD

Exp. bad MHDExp. small in m � 1

m � 1

Poly. small in m � 1 m � 1

Small in ⇢⇤ ⌧ 1

Page 23: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Two options to maximize rotation

42

Elongation & triangularity

• Use lowest possible to break mirror symmetry and create up-down asymmetric envelopes

• Prefer modes to be controllable by external shaping magnets

Shafranov shift & elongation(i.e. and ) (i.e. and )

m

m = 1 m = 2 m = 2 m = 3

1 2 3 4 5- 2

- 1

0

1

2

R

Z

Page 24: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

44

Momentum flux from Shafranov shift

• Reduced by including effect of a constant , which affects the magnetic equilibrium through the Grad-Shafranov equation

dp/dr

0 0.25 0.5 0.75 1

ρ0

0

0.02

0.04

0.06

0.08

0.1

(vth

i/R

c0)⟨Π

ζi⟩

t/⟨Q

i⟩t

0 0.25 0.5 0.75 1

ρ0

0

0.02

0.04

0.06

0.08

0.1

(vth

i/R

c0)⟨Π

ζi⟩

t/⟨Q

i⟩t

0 0.25 0.5 0.75 1

ρ0

0

0.02

0.04

0.06

0.08

0.1

(vth

i/R

c0)⟨Π

ζi⟩

t/⟨Q

i⟩t

/ includesdp

dr

Ball, et al. arXiv:1607.06387 (2016).

r a

Local Shafranov shift increases with minor radius

1

0

2

MA

(%)

Page 25: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Two options to maximize rotation

45

Elongation & triangularity

• Use lowest possible to break mirror symmetry and create up-down asymmetric envelopes

• Prefer modes to be controllable by external shaping magnets

Shafranov shift & elongation(i.e. and ) (i.e. and )

m

m = 1 m = 2 m = 2 m = 3

1 2 3 4 5- 2

- 1

0

1

2

R

Z

Roughly no net enhancement of momentum flux

Page 26: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

47

Momentum flux from elongation and triangularity

Up-down sym. envelopeMirror sym.

MA (%)

Page 27: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

48

Momentum flux from elongation and triangularityhQiit

Up-down sym. envelopeMirror sym.

ITER

Page 28: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Conclusions

• Intrinsic rotation generated by up-down asymmetry scales well to larger machines (ITER, DEMO, etc.), unlike other mechanisms

• Tilting the elongation of flux surfaces is a simple way to generate significant rotation

• The magnitude of rotation is roughly what is needed to permit increasing the plasma pressure in ITER

• Breaking ALL the symmetries, especially with external shaping, can boost the rotation significantly

49

} in ITER

= 1.7

� = 0.35

1 2 3 4 5- 2

- 1

0

1

2

R

Z

✓ = ⇡/4

✓� = ⇡/6

MA ⇡ 1.5%

The “optimal” geometry

Page 29: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Thank you!

Page 30: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Summary

51

Non-mirror symmetric Mirror symmetric

Up-

dow

n as

ym.

enve

lope

Up-

dow

n sy

m.

enve

lope

Exp. bad MHD

Up-down symmetric

Screw pinch limit & Exp. small in

Screw pinch limit & Poly. small in

Exp. bad MHD

Exp. bad MHDExp. small in m � 1

m � 1

Poly. small in m � 1 m � 1

Small in ⇢⇤ ⌧ 1

Page 31: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Extra Slides

Page 32: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

62

Expansion fails at m=4:

-π πθ

-0.06

0.06⇡⇣

-π π

-0.06

0.06

Ball, et al. PPCF 58 045023 (2016).

Simulation (up-down sym.)

Simulation (tilted)

Theory prediction for tilted

Verify ⇡tilt⇣ (✓, z) = ⇡ud

⇣ (✓, z + ztilt)

Page 33: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Breakdown in poloidal tilting symmetry

63

Page 34: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

64

Global Shafranov shift in tilted elliptical geometry

• Calculate from Grad-Shafranov eq. (to next order in aspect ratio) for ITER-like parameters

• Verify with the equilibrium code ECOM

✓axis

raxis

○○

○○ ○

□□

□□ □

△ △△

△△ △

π8

π4

3 π8

π2

θκb

0.2

0.4

0.6

raxisa

○○

○□

□□

□△

△△

△π8

π4

3 π8

π2

θκb

π8

π4

θaxis

Ball, et al. arXiv:1607.06387 (2016).

• Insensitive to shape of current profile (holding fixed)Ip

Page 35: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

65

Global Shafranov shift in tilted elliptical geometry

• Calculate from Grad-Shafranov eq. (to next order in aspect ratio) for ITER-like parameters

• Verify with the equilibrium code ECOM

○○

○○ ○

□□

□□ □

△ △△

△△ △

π8

π4

3 π8

π2

θκb

0.2

0.4

0.6

raxisa

○○

○□

□□

□△

△△

△π8

π4

3 π8

π2

θκb

π8

π4

θaxis

Ball, et al. arXiv:1607.06387 (2016).

• Insensitive to shape of current profile (holding fixed)

✓axis

raxis

paxis

/ b

Page 36: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

Global to local Shafranov shift

66

• GS2 requires the local change in the flux surface center, anddRc

dr

dZc

dr

dRc

dr =

dRc

d

d

dr = �2

r a

raxis

asin (✓

axis

)dRc

d = const

Ball, et al. arXiv:1607.06387 (2016).

■■ ■■

■■

■■

■■

▲▲ ▲▲

▲▲

▲▲ ▲▲

○○ ○○

○○

○○ ○○

□□ □□

□□

□□ □□

△△ △△

△△

△△ △△0 0.25 0.5 0.75 1

ψψb

0

0.05

0.1

0.15

Rc -R0a

Page 37: Up-down asymmetric tokamaks - University of Oxford · Up-down asymmetric tokamaks Justin Ball Prof. Felix Parra and Prof. Michael Barnes Oxford University and CCFE 9th Gyrokinetic

70

• I think so, but there is a catch

• The shape of the first wall is fixed

Reduced plasma volume

• Each shaping coil has a current limit

Reduced plasma current

• For , it’s worth a shot�N = 3

Can something like this be done in ITER?

X

X