Top Banner
University of Groningen Light switchable surface topographies Liu, Ling IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Liu, L. (2018). Light switchable surface topographies: Modelling and design of photo responsive topographical changes of liquid crystal polymer films. [Groningen]: Rijksuniversiteit Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 15-08-2020
23

University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Jul 10, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

University of Groningen

Light switchable surface topographiesLiu, Ling

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Liu, L. (2018). Light switchable surface topographies: Modelling and design of photo responsivetopographical changes of liquid crystal polymer films. [Groningen]: Rijksuniversiteit Groningen.

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 15-08-2020

Page 2: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Bibliography 153

Bibliography

[1] Bhushan, B., Jung, Y.C., and Koch, K. (2009). Micro-, nano-and hierarchicalstructures for superhydrophobicity, self-cleaning and low adhesion. PhilosophicalTransactions of the Royal Society of London A: Mathematical, Physical andEngineering Sciences, 367, 1631–1672.

[2] Yu, H., Boschitsch, S.B., Nan, S., et al. A switchable cross-species liquid repel-lent surface. Advanced Materials, 29, 1604641.

[3] Chen, H., Zhang, P., Zhang, L., et al. (2016). Continuous directional watertransport on the peristome surface of nepenthes alata. Nature, 532, 85–89.

[4] Hansen, W.R. and Autumn, K. (2005). Evidence for self-cleaning in geckosetae. Proceedings of the National Academy of Sciences of the United States ofAmerica, 102, 385–389.

[5] Hamed, S., Muhammad, S.S., Antal, J., and Boxin, Z. Thermally active liquidcrystal network gripper mimicking the self-peeling of gecko toe pads. AdvancedMaterials, 29, 1604021.

[6] Tallinen, T., Chung, J.Y., Rousseau, F., et al. (2016). On the growth and formof cortical convolutions. Nature Physics, 12, 588.

[7] Godinho, M., Canejo, J., Feio, G., and Terentjev, E. (2010). Self-winding ofhelices in plant tendrils and cellulose liquid crystal fibers. Soft Matter, 6, 5965–5970.

[8] Chen, X. (2012). Mechanical Self-assembly: Science and Applications. Springer.[9] Budday, S., Steinmann, P., and Kuhl, E. (2014). The role of mechanics during

brain development. Journal of the Mechanics and Physics of Solids, 72, 75–92.[10] Priimagi, A., Barrett, C.J., and Shishido, A. (2014). Recent twists in pho-

toactuation and photoalignment control. Journal of Materials Chemistry C,2, 7155–7162.

[11] Pieranski, P., Baranska, J., and Skjeltorp, A. (2004). Tendril perversion-aphysical implication of the topological conservation law. European journal ofphysics, 25, 613.

[12] McMillen, T. and Goriely, A. (2002). Tendril perversion in intrinsically curvedrods. Journal of Nonlinear Science, 12, 241–281.

[13] Goriely, A. and Tabor, M. (1998). Spontaneous helix hand reversal and tendrilperversion in climbing plants. Physical Review Letters, 80, 1564.

[14] Cheng, Y., Wang, R., Chan, K.H., et al. (2018). A biomimetic conductive

Page 3: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

154 Bibliography

tendril for ultrastretchable and integratable electronics, muscles, and sensors.ACS Nano, 12, 3898–3907.

[15] Li, C., Liu, Y., Huang, X., and Jiang, H. (2012). Direct sun-driven artificialheliotropism for solar energy harvesting based on a photo-thermomechanicalliquid-crystal elastomer nanocomposite. Advanced Functional Materials,22, 5166–5174.

[16] Ohm, C., Brehmer, M., and Zentel, R. (2010). Liquid crystalline elastomers asactuators and sensors. Advanced Materials, 22, 3366–3387.

[17] Cheng, F., Yin, R., Zhang, Y., Yen, C.C., and Yu, Y. (2010). Fully plasticmicrorobots which manipulate objects using only visible light. Soft Matter,6, 3447–3449.

[18] Ware, T.H., McConney, M.E., Wie, J.J., Tondiglia, V.P., and White, T.J.(2015). Voxelated liquid crystal elastomers. Science, 347, 982–984.

[19] Gladman, A.S., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L., and Lewis,J.A. (2016). Biomimetic 4d printing. Nature materials, 15, 413.

[20] Yamada, M., Kondo, M., Miyasato, R., et al. (2008). Photomobile polymermaterials–various three-dimensional movements. Journal of Materials Chem-istry, 19, 60–62.

[21] Daniele, M., Sara, N., Dmitry, N., Camilla, P., and S., W.D. Photonic micro-hand with autonomous action. Advanced Materials, 29, 1704047.

[22] Wani, O.M., Zeng, H., and Priimagi, A. (2017). A light-driven artificial flytrap.Nature communications, 8, 15546.

[23] Yamada, M., Kondo, M., Mamiya, J.i., et al. (2008). Photomobile polymer ma-terials: Towards light-driven plastic motors. Angewandte Chemie InternationalEdition, 47, 4986–4988.

[24] Hao, Z., M., W.O., Piotr, W., and Arri, P. Light-driven, caterpillar-inspiredminiature inching robot. Macromolecular Rapid Communications, 39, 1700224.

[25] Xili, L., Shengwei, G., Xia, T., Hesheng, X., and Yue, Z. Tunable photo-controlled motions using stored strain energy in malleable azobenzene liquidcrystalline polymer actuators. Advanced Materials, 29, 1606467.

[26] Hao, Z., M., W.O., Piotr, W., Radoslaw, K., and Arri, P. Self-regulatingiris based on light-actuated liquid crystal elastomer. Advanced Materials,29, 1701814.

[27] Sánchez-Ferrer, A., Fischl, T., Stubenrauch, M., et al. (2009). Photo-crosslinked side-chain liquid-crystalline elastomers for microsystems. Macro-molecular Chemistry and Physics, 210, 1671–1677.

[28] Modes, C., Warner, M., Sanchez-Somolinos, C., de Haan, L., and Broer, D.(2013). Angular deficits in flat space: remotely controllable apertures in ne-matic solid sheets. Proceedings of the Royal Society of London A: Mathematical,Physical and Engineering Sciences, 469, 20120631.

[29] Petsch, S., Khatri, B., Schuhladen, S., et al. (2016). Muscular mems-the engi-neering of liquid crystal elastomer actuators. Smart Materials and Structures,25, 085010.

[30] Sánchez-Ferrer, A., Fischl, T., Stubenrauch, M., et al. (2011). Liquid-crystallineelastomer microvalve for microfluidics. Advanced Materials, 23, 4526–4530.

[31] Huang, C., Lv, J.a., Tian, X., et al. (2016). A remotely driven and controlledmicro-gripper fabricated from light-induced deformation smart material. SmartMaterials and Structures, 25, 095009.

[32] Liu, D. and Broer, D.J. (2014). Light controlled friction at a liquid crystalpolymer coating with switchable patterning. Soft Matter, 10, 7952–7958.

[33] Liu, D. and Broer, D.J. (2014). Self-assembled dynamic 3d fingerprints inliquid-crystal coatings towards controllable friction and adhesion. AngewandteChemie International Edition, 126, 4630–4634.

Page 4: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Bibliography 155

[34] Liu, D., Liu, L., Onck, P.R., and Broer, D.J. (2015). Reverse switching of surfaceroughness in a self-organized polydomain liquid crystal coating. Proceedings ofthe National Academy of Sciences of the United States of America, 112, 3880–3885.

[35] Rand, C.J. and Crosby, A.J. (2009). Friction of soft elastomeric wrinkledsurfaces. Journal of Applied Physics, 106, 064913.

[36] Suzuki, K. and Ohzono, T. (2016). Wrinkles on a textile-embedded elastomersurface with highly variable friction. Soft Matter, 12, 6176–6183.

[37] Chen, C.M., Chiang, C.L., Lai, C.L., Xie, T., and Yang, S. (2013). Buckling-based strong dry adhesives via interlocking. Advanced Functional Materials,23, 3813–3823.

[38] Varenberg, M. and Gorb, S.N. (2009). Hexagonal surface micropattern for dryand wet friction. Advanced Materials, 21, 483–486.

[39] Jeong, H.E., Kwak, M.K., and Suh, K.Y. (2010). Stretchable, adhesion-tunabledry adhesive by surface wrinkling. Langmuir, 26, 2223–2226.

[40] Camargo, C.J., Campanella, H., Marshall, J.E., et al. (2011). Localised ac-tuation in composites containing carbon nanotubes and liquid crystalline elas-tomers. Macromolecular Rapid Communications, 32, 1953–1959.

[41] Camargo, C., Campanella, H., Marshall, J., et al. (2012). Batch fabricationof optical actuators using nanotube–elastomer composites towards refreshablebraille displays. Journal of Micromechanics and Microengineering, 22, 075009.

[42] Torras, N., Zinoviev, K., Camargo, C., et al. (2014). Tactile device based onopto-mechanical actuation of liquid crystal elastomers. Sensors and ActuatorsA: Physical, 208, 104–112.

[43] Jiang, H., Li, C., and Huang, X. (2013). Actuators based on liquid crystallineelastomer materials. Nanoscale, 5, 5225–5240.

[44] Miruchna, V., Walter, R., Lindlbauer, D., et al. Geltouch: Localized tactilefeedback through thin, programmable gel. In Proceedings of the 28th AnnualACM Symposium on User Interface Software & Technology, pages 3–10. ACM,(2015).

[45] Liu, D. and Broer, D.J. (2017). Responsive Polymer Surfaces: Dynamics inSurface Topography. John Wiley & Sons.

[46] Torras, N., Zinoviev, K.E., Esteve, J., and Sánchez-Ferrer, A. (2013). Liquid-crystalline elastomer micropillar array for haptic actuation. Journal of MaterialsChemistry C, 1, 5183–5190.

[47] Ichimura, K., Oh, S.K., and Nakagawa, M. (2000). Light-driven motion ofliquids on a photoresponsive surface. Science, 288, 1624–1626.

[48] Patankar, N.A. (2003). On the modeling of hydrophobic contact angles onrough surfaces. Langmuir, 19, 1249–1253.

[49] Wenzel, R.N. (1949). Surface roughness and contact angle. Journal of PhysicalChemistry, 53, 1466–1467.

[50] Marmur, A. (2003). Wetting on hydrophobic rough surfaces: to be heteroge-neous or not to be? Langmuir, 19, 8343–8348.

[51] Yang, S., Khare, K., and Lin, P.C. (2010). Harnessing surface wrinkle patternsin soft matter. Advanced Functional Materials, 20, 2550–2564.

[52] Sidorenko, A., Krupenkin, T., and Aizenberg, J. (2008). Controlled switchingof the wetting behavior of biomimetic surfaces with hydrogel-supported nanos-tructures. Journal of Materials Chemistry, 18, 3841–3846.

[53] Wu, Z.L., Wei, R., Buguin, A., et al. (2013). Stimuli-responsive topologi-cal change of microstructured surfaces and the resultant variations of wettingproperties. ACS applied materials & interfaces, 5, 7485–7491.

[54] Lin, P.C. and Yang, S. (2009). Mechanically switchable wetting on wrinkledelastomers with dual-scale roughness. Soft Matter, 5, 1011–1018.

Page 5: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

156 Bibliography

[55] Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P., and Aizenberg, J. (2007).Reversible switching of hydrogel-actuated nanostructures into complex mi-cropatterns. Science, 315, 487–490.

[56] Zarzar, L.D., Kim, P., and Aizenberg, J. (2011). Bio-inspired design of sub-merged hydrogel-actuated polymer microstructures operating in response to ph.Advanced materials, 23, 1442–1446.

[57] Gelebart, A.H., Mc Bride, M., Schenning, A.P.H.J., Bowman, C.N., and Broer,D.J. (2016). Photoresponsive fiber array: Toward mimicking the collective mo-tion of cilia for transport applications. Advanced Functional Materials, 26, 5322–5327.

[58] Khaderi, S., Craus, C., Hussong, J., et al. (2011). Magnetically-actuated arti-ficial cilia for microfluidic propulsion. Lab on a Chip, 11, 2002–2010.

[59] Blossey, R. (2003). Self-cleaning surfaces - virtual realities. Nature materials,2, 301–306.

[60] Yu, N., Wang, S., Liu, Y., et al. (2017). Thermal-responsive anisotropic wettingmicrostructures for manipulation of fluids in microfluidics. Langmuir, 33, 494–502.

[61] ter Schiphorst Jeroen, , G., M.G., Eslami, A.H., et al. Photoresponsive passivemicromixers based on spiropyran size-tunable hydrogels. Macromolecular RapidCommunications, 39, 1700086.

[62] Whitesides, G.M. (2006). The origins and the future of microfluidics. Nature,442, 368–373.

[63] Blake, J. (1971). A spherical envelope approach to ciliary propulsion. Journalof Fluid Mechanics, 46, 199–208.

[64] den Toonder, J.M. and Onck, P.R. (2013). Microfluidic manipulation withartificial/bioinspired cilia. Trends in biotechnology, 31, 85–91.

[65] Khaderi, S., den Toonder, J., and Onck, P. (2011). Microfluidic propulsionby the metachronal beating of magnetic artificial cilia: a numerical analysis.Journal of Fluid Mechanics, 688, 44–65.

[66] den Toonder, J., Bos, F., Broer, D., et al. (2008). Artificial cilia for activemicro-fluidic mixing. Lab on a Chip, 8, 533–541.

[67] van Oosten, C.L., Bastiaansen, C.W., and Broer, D.J. (2009). Printed artificialcilia from liquid-crystal network actuators modularly driven by light. NatureMaterials, 8, 677–682.

[68] Khatavkar, V.V., Anderson, P.D., den Toonder, J.M., and Meijer, H.E. (2007).Active micromixer based on artificial cilia. Physics of Fluids, 19, 083605.

[69] Gau, H., Herminghaus, S., Lenz, P., and Lipowsky, R. (1999). Liquid mor-phologies on structured surfaces: from microchannels to microchips. Science,283, 46–49.

[70] Khare, K., Zhou, J., and Yang, S. (2009). Tunable open-channel microflu-idics on soft poly (dimethylsiloxane)(pdms) substrates with sinusoidal grooves.Langmuir, 25, 12794–12799.

[71] Shahsavan, H., Salili, S.M., Jákli, A., and Zhao, B. (2015). Smart muscle-drivenself-cleaning of biomimetic microstructures from liquid crystal elastomers. Ad-vanced Materials, 27, 6828–6833.

[72] Zhan, Y., Zhao, J., Liu, W., et al. (2015). Biomimetic submicroarrayed cross-linked liquid crystal polymer films with different wettability via colloidal lithog-raphy. ACS applied materials & interfaces, 7, 25522–25528.

[73] Yao, X., Hu, Y., Grinthal, A., et al. (2013). Adaptive fluid-infused porous filmswith tunable transparency and wettability. Nature materials, 12, 529–534.

[74] Liu, C., Ding, H., Wu, Z., et al. (2016). Tunable structural color surfaces withvisually self-reporting wettability. Advanced Functional Materials, 26, 7937–7942.

Page 6: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Bibliography 157

[75] Wu, Z.L., Wang, Z.J., Keller, P., and Zheng, Q. (2016). Light responsivemicrostructured surfaces of liquid crystalline network with shape memory andtunable wetting behaviors. Macromolecular rapid communications, 37, 311–317.

[76] Rhee, D., Lee, W.K., and Odom, T.W. (2017). Crack-free, soft wrinkles en-able switchable anisotropic wetting. Angewandte Chemie International Edition,56, 6523–6527.

[77] Prathapan, R., Berry, J.D., Fery, A., Garnier, G., and Tabor, R.F. (2017).Decreasing the wettability of cellulose nanocrystal surfaces using wrinkle-basedalignment. ACS Applied Materials & Interfaces, 9, 15202–15211.

[78] Wang, T., Chen, H., Liu, K., et al. (2014). Janus si micropillar arrays withthermal-responsive anisotropic wettability for manipulation of microfluid mo-tions. ACS applied materials & interfaces, 7, 376–382.

[79] Dong, L. and Jiang, H. (2007). Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter, 3, 1223–1230.

[80] Chen, C.M., Chiang, C.L., and Yang, S. (2015). Programming tilting angles inshape memory polymer janus pillar arrays with unidirectional wetting againstthe tilting direction. Langmuir, 31, 9523–9526.

[81] Kieviet, B.D., Schön, P.M., and Vancso, G.J. (2014). Stimulus-responsive poly-mers and other functional polymer surfaces as components in glass microfluidicchannels. Lab on a Chip, 14, 4159–4170.

[82] Luzinov, I., Minko, S., and Tsukruk, V.V. (2004). Adaptive and responsivesurfaces through controlled reorganization of interfacial polymer layers. Progressin Polymer Science, 29, 635–698.

[83] Yao, X., Song, Y., and Jiang, L. (2011). Applications of bio-inspired specialwettable surfaces. Advanced Materials, 23, 719–734.

[84] Liu, M., Wang, S., and Jiang, L. (2017). Nature-inspired superwettabilitysystems. Nature Reviews Materials, 2, 17036.

[85] Liu, K. and Jiang, L. (2012). Bio-inspired self-cleaning surfaces. Annual Reviewof Materials Research, 42, 231–263.

[86] Kizilkan, E., Strueben, J., Staubitz, A., and Gorb, S.N. (2017). Bioinspired pho-tocontrollable microstructured transport device. Science Robotics, 2, eaak9454.

[87] Cui, J., Drotlef, D.M., Larraza, I., et al. (2012). Bioinspired actuated adhesivepatterns of liquid crystalline elastomers. Advanced Materials, 24, 4601–4604.

[88] Fuller, K. and Tabor, D. The effect of surface roughness on the adhesion ofelastic solids. In Proceedings of the Royal Society of London A: Mathemati-cal, Physical and Engineering Sciences, volume 345, pages 327–342. The RoyalSociety, (1975).

[89] Kinloch, A.J. (2012). Adhesion and adhesives: science and technology. SpringerScience & Business Media.

[90] Autumn, K., Liang, Y.A., Hsieh, S.T., et al. (2000). Adhesive force of a singlegecko foot-hair. Nature, 405, 681–685.

[91] Aksak, B., Murphy, M.P., and Sitti, M. Gecko inspired micro-fibrillar adhesivesfor wall climbing robots on micro/nanoscale rough surfaces. In Robotics andAutomation, 2008. ICRA 2008. IEEE International Conference on, pages 3058–3063. IEEE, (2008).

[92] Gao, H., Wang, X., Yao, H., Gorb, S., and Arzt, E. (2005). Mechanics ofhierarchical adhesion structures of geckos. Mechanics of Materials, 37, 275–285.

[93] Yao, H. and Gao, H. (2006). Mechanics of robust and releasable adhesion inbiology: Bottom–up designed hierarchical structures of gecko. Journal of theMechanics and Physics of Solids, 54, 1120–1146.

[94] Lin, P.C., Vajpayee, S., Jagota, A., Hui, C.Y., and Yang, S. (2008). Mechani-cally tunable dry adhesive from wrinkled elastomers. Soft Matter, 4, 1830–1835.

[95] Del Campo, A., Greiner, C., and Arzt, E. (2007). Contact shape controls

Page 7: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

158 Bibliography

adhesion of bioinspired fibrillar surfaces. Langmuir, 23, 10235–10243.[96] Sheparovych, R., Motornov, M., and Minko, S. (2009). Low adhesive surfaces

that adapt to changing environments. Advanced Materials, 21, 1840–1844.[97] Li, C., Cheng, F., Lv, J.a., et al. (2012). Light-controlled quick switch of

adhesion on a micro-arrayed liquid crystal polymer superhydrophobic film. SoftMatter, 8, 3730–3733.

[98] Northen, M.T., Greiner, C., Arzt, E., and Turner, K.L. (2008). A gecko-inspiredreversible adhesive. Advanced Materials, 20, 3905–3909.

[99] Reddy, S., Arzt, E., and del Campo, A. (2007). Bioinspired surfaces withswitchable adhesion. Advanced materials, 19, 3833–3837.

[100] Li, C., Zhang, Y., Ju, J., et al. (2012). In situ fully light-driven switching ofsuperhydrophobic adhesion. Advanced Functional Materials, 22, 760–763.

[101] Jin, C., Khare, K., Vajpayee, S., et al. (2011). Adhesive contact betweena rippled elastic surface and a rigid spherical indenter: from partial to fullcontact. Soft Matter, 7, 10728–10736.

[102] Chan, E.P., Smith, E.J., Hayward, R.C., and Crosby, A.J. (2008). Surfacewrinkles for smart adhesion. Advanced Materials, 20, 711–716.

[103] Davis, C.S. and Crosby, A.J. (2011). Mechanics of wrinkled surface adhesion.Soft Matter, 7, 5373–5381.

[104] Xue, L., Kovalev, A., Dening, K., et al. (2013). Reversible adhesion switchingof porous fibrillar adhesive pads by humidity. Nano letters, 13, 5541–5548.

[105] Drotlef, D.M., Blümler, P., and del Campo, A. (2014). Magnetically actuatedpatterns for bioinspired reversible adhesion (dry and wet). Advanced Materials,26, 775–779.

[106] Amador, G.J., Endlein, T., and Sitti, M. (2017). Soiled adhesive pads shearclean by slipping: a robust self-cleaning mechanism in climbing beetles. Journalof The Royal Society Interface, 14, 20170134.

[107] Shahsavan, H. and Zhao, B. (2013). Bioinspired functionally graded adhesivematerials: synergetic interplay of top viscous–elastic layers with base micropil-lars. Macromolecules, 47, 353–364.

[108] Cho, Y., Kim, G., Cho, Y., et al. (2015). Orthogonal control of stabilityand tunable dry adhesion by tailoring the shape of tapered nanopillar arrays.Advanced Materials, 27, 7788–7793.

[109] Boesel, L.F., Greiner, C., Arzt, E., and Del Campo, A. (2010). Gecko-inspiredsurfaces: a path to strong and reversible dry adhesives. Advanced Materials,22, 2125–2137.

[110] Zhu, H., Guo, Z., and Liu, W. (2014). Adhesion behaviors on superhydrophobicsurfaces. Chemical Communications, 50, 3900–3913.

[111] Rahmawan, Y., Chen, C.M., and Yang, S. (2014). Recent advances in wrinkle-based dry adhesion. Soft Matter, 10, 5028–5039.

[112] Tiwari, A., Dorogin, L., Bennett, A., et al. (2017). The effect of surface rough-ness and viscoelasticity on rubber adhesion. Soft Matter, 13, 3602–3621.

[113] Li, C.C., Chen, C.W., Yu, C.K., et al. (2017). Arbitrary beam steering enabledby photomechanically bendable cholesteric liquid crystal polymers. AdvancedOptical Materials, 5, 1600824–1600824.

[114] Yan, Z., Ji, X., Wu, W., Wei, J., and Yu, Y. (2012). Light-switchable behavior ofa microarray of azobenzene liquid crystal polymer induced by photodeformation.Macromolecular Rapid Communications, 33, 1362–1367.

[115] Stumpel, J.E., Gil, E.R., Spoelstra, A.B., et al. (2015). Stimuli-responsivematerials based on interpenetrating polymer liquid crystal hydrogels. AdvancedFunctional Materials, 25, 3314–3320.

[116] Kim, P., Hu, Y., Alvarenga, J., et al. (2013). Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent

Page 8: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Bibliography 159

wrinkling patterns. Advanced Optical Materials, 1, 381–388.[117] Stover, J.C. (1995). Optical scattering: measurement and analysis, volume 2.

SPIE optical engineering press Bellingham.[118] Robinson, I.K. (1986). Crystal truncation rods and surface roughness. Physical

Review B, 33, 3830.[119] Berreman, D. and Scheffer, T. (1970). Bragg reflection of light from single-

domain cholesteric liquid-crystal films. Physical Review Letters, 25, 577.[120] John, W.S., Fritz, W., Lu, Z., and Yang, D.K. (1995). Bragg reflection from

cholesteric liquid crystals. Physical Review E, 51, 1191.[121] Broer, D., Lub, J., and Mol, G. (1995). Wide-band reflective polarizers from

cholesteric polymer networks with a pitch gradient. Nature, 378, 467.[122] Shanshan, L., Yue, L., Chuanyong, L., Zhijian, C., and Kai, S. Bioinspired

adaptive microplate arrays for magnetically tuned optics. Advanced OpticalMaterials, 5, 1601043.

[123] Stumpel, J.E., Broer, D.J., and Schenning, A.P. (2014). Stimuli-responsivephotonic polymer coatings. Chemical Communications, 50, 15839–15848.

[124] de Haan, L.T., Schenning, A.P., and Broer, D.J. (2014). Programmed morphingof liquid crystal networks. Polymer, 55, 5885–5896.

[125] Zhao, J., Liu, Y., and Yu, Y. (2014). Dual-responsive inverse opal films based ona crosslinked liquid crystal polymer containing azobenzene. Journal of MaterialsChemistry C, 2, 10262–10267.

[126] Yao, L. and He, J. (2014). Recent progress in antireflection and self-cleaningtechnology–from surface engineering to functional surfaces. Progress in Mate-rials Science, 61, 94–143.

[127] Lee, E., Zhang, M., Cho, Y., et al. (2014). Tilted pillars on wrinkled elastomersas a reversibly tunable optical window. Advanced Materials, 26, 4127–4133.

[128] Wang, Z., Fan, W., He, Q., et al. (2017). A simple and robust way towardsreversible mechanochromism: Using liquid crystal elastomer as a mask. ExtremeMechanics Letters, 11, 42–48.

[129] Yu, C., OâĂŹBrien, K., Zhang, Y.H., Yu, H., and Jiang, H. (2010). Tunable op-tical gratings based on buckled nanoscale thin films on transparent elastomericsubstrates. Applied Physics Letters, 96, 041111.

[130] Stuart, M.A.C., Huck, W.T., Genzer, J., et al. (2010). Emerging applicationsof stimuli-responsive polymer materials. Nature Materials, 9, 101–113.

[131] Holmes, D. and Crosby, A. (2007). Snapping surfaces. Advanced Materials,19, 3589–3593.

[132] Bae, J., Bende, N.P., Evans, A.A., et al. (2017). Programmable and reversibleassembly of soft capillary multipoles. Materials Horizons, 4, 228–235.

[133] Ohzono, T., Monobe, H., and Shimizu, Y. (2008). Liquid crystal alignment onself-organized microwrinkles. Applied physics express, 1, 065001.

[134] Ohzono, T., Monobe, H., Yamaguchi, R., Shimizu, Y., and Yokoyama, H.(2009). Dynamics of surface memory effect in liquid crystal alignment on re-configurable microwrinkles. Applied Physics Letters, 95, 014101.

[135] Viswanathan, N., Kim, D., and Tripathy, S. (1999). Surface relief structures onazo polymer films. Journal of Materials Chemistry, 9, 1941–1955.

[136] Liu, H., Liu, X., Meng, J., et al. (2013). Hydrophobic interaction-mediatedcapture and release of cancer cells on thermoresponsive nanostructured surfaces.Advanced Materials, 25, 922–927.

[137] Kelley, E.G., Albert, J.N., Sullivan, M.O., and Epps III, T.H. (2013). Stimuli-responsive copolymer solution and surface assemblies for biomedical applica-tions. Chemical Society Reviews, 42, 7057–7071.

[138] Takezawa, T., Mori, Y., and Yoshizato, K. (1990). Cell culture on a thermo-responsive polymer surface. Nature Biotechnology, 8, 854–856.

Page 9: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

160 Bibliography

[139] Kim, J., Yoon, J., and Hayward, R.C. (2010). Dynamic display of biomolecularpatterns through an elastic creasing instability of stimuli-responsive hydrogels.Nature materials, 9, 159–164.

[140] Kuroki, H., Tokarev, I., and Minko, S. (2012). Responsive surfaces for lifescience applications. Annual Review of Materials Research, 42, 343–372.

[141] Cole, M.A., Voelcker, N.H., Thissen, H., and Griesser, H.J. (2009). Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials, 30, 1827–1850.

[142] Wang, Z., Tonderys, D., Leggett, S.E., et al. (2016). Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment andmorphology. Carbon, 97, 14–24.

[143] Zeng, Z., Jin, L., and Huo, Y. (2010). Strongly anisotropic elastic moduli ofnematic elastomers: Analytical expressions and nonlinear temperature depen-dence. European Physical Journal E: Soft Matter, 32, 71–79.

[144] Nikkhah, M., Eshak, N., Zorlutuna, P., et al. (2012). Directed endothelial cellmorphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials,33, 9009–9018.

[145] Ikeda, T., Mamiya, J., and Yu, Y. (2007). Photomechanics of liquid-crystallineelastomers and other polymers. Angewandte Chemie International Edition,46, 506–528.

[146] Meng, H. and Li, G. (2013). Reversible switching transitions of stimuli-responsive shape changing polymers. Journal of Materials Chemistry A,1, 7838–7865.

[147] White, T.J. and Broer, D.J. (2015). Programmable and adaptive mechan-ics with liquid crystal polymer networks and elastomers. Nature Materials,14, 1087–1098.

[148] Roy, D., Cambre, J.N., and Sumerlin, B.S. (2010). Future perspectives andrecent advances in stimuli-responsive materials. Progress in Polymer Science,35, 278–301.

[149] Yu, H. and Ikeda, T. (2011). Photocontrollable liquid-crystalline actuators.Advanced Materials, 23, 2149–2180.

[150] Liu, D. and Broer, D.J. (2014). Liquid crystal polymer networks: prepara-tion, properties, and applications of films with patterned molecular alignment.Langmuir, 30, 13499–13509.

[151] Broer, D.J., Boven, J., Mol, G.N., and Challa, G. (1989). In-situ pho-topolymerization of oriented liquid-crystalline acrylates, 3. oriented polymernetworks from a mesogenic diacrylate. Macromolecular Chemistry and Physics,190, 2255–2268.

[152] Mol, G.N., Harris, K.D., Bastiaansen, C.W., and Broer, D.J. (2005). Thermo-mechanical responses of liquid-crystal networks with a splayed molecular orga-nization. Advanced Functional Materials, 15, 1155–1159.

[153] Liu, D., Bastiaansen, C.W.M., den Toonder, J.M.J., and Broer, D.J. (2012).Photo-switchable surface topologies in chiral nematic coatings. AngewandteChemie International Edition, 51, 892–896.

[154] de Haan, L.T., Sánchez-Somolinos, C., Bastiaansen, C.M., Schenning, A.P., andBroer, D.J. (2012). Engineering of complex order and the macroscopic defor-mation of liquid crystal polymer networks. Angewandte Chemie InternationalEdition, 51, 12469–12472.

[155] Seki, T., Nagano, S., and Hara, M. (2013). Versatility of photoalignmenttechniques: from nematics to a wide range of functional materials. Polymer,54, 6053–6072.

[156] Zhao, Y. and Ikeda, T. (2009). Smart light-responsive materials: azobenzene-containing polymers and liquid crystals. John Wiley & Sons.

[157] Hikmet, R. and Broer, D. (1991). Dynamic mechanical properties of anisotropic

Page 10: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Bibliography 161

networks formed by liquid crystalline acrylates. Polymer, 32, 1627–1632.[158] van Oosten, C.L., Corbett, D., Davies, D., et al. (2008). Bending dynamics and

directionality reversal in liquid crystal network photoactuators. Macromolecules,41, 8592–8596.

[159] van Oosten, C.L., Harris, K., Bastiaansen, C., and Broer, D. (2007). Glassyphotomechanical liquid-crystal network actuators for microscale devices. Euro-pean Physical Journal E: Soft Matter, 23, 329–336.

[160] Broer, D.J., Hikmet, R.A., and Challa, G. (1989). In-situ photopolymeriza-tion of oriented liquid-crystalline acrylates, 4. influence of a lateral methyl sub-stituent on monomer and oriented polymer network properties of a mesogenicdiacrylate. Macromolecular Chemistry and Physics, 190, 3201–3215.

[161] Liu, D. and Broer, D.J. (2013). Liquid crystal polymer networks: switchablesurface topographies. Liquid Crystals Reviews, 1, 20–28.

[162] Sousa, M.E., Broer, D.J., Bastiaansen, C.W., Freund, L., and Crawford, G.P.(2006). Isotropic "fislands" in a cholesteric "sea": patterned thermal expansionfor responsive surface topologies. Advanced Materials, 18, 1842–1845.

[163] Liu, D., Tito, N.B., and Broer, D.J. (2017). Protruding organic surfaces trig-gered by in-plane electric fields. Nature Communications, 8, 1526.

[164] Ryabchun, A., Lancia, F., Nguindjel, A.D., and Katsonis, N. (2017). Humidity-responsive actuators from integrating liquid crystal networks in an orientingscaffold. Soft Matter, 13, 8070–8075.

[165] Yu, Y., Nakano, M., and Ikeda, T. (2003). Photomechanics: directed bendingof a polymer film by light. Nature, 425, 145–145.

[166] Wermter, H. and Finkelmann, H. (2001). Liquid crystalline elastomers asartificial muscles. e-Polymers, 1, 111–123.

[167] Warner, M. and Terentjev, E.M. (2003). Liquid crystal elastomers, volume 120.Oxford University Press.

[168] Finkelmann, H., Nishikawa, E., Pereira, G., and Warner, M. (2001). A newopto-mechanical effect in solids. Physical Review Letters, 87, 015501–015501.

[169] Kularatne, R.S., Kim, H., Boothby, J.M., and Ware, T.H. (2017). Liquidcrystal elastomer actuators: Synthesis, alignment, and applications. Journal ofPolymer Science Part B: Polymer Physics, 55, 395–411.

[170] Thomsen, D.L., Keller, P., Naciri, J., et al. (2001). Liquid crystal elastomerswith mechanical properties of a muscle. Macromolecules, 34, 5868–5875.

[171] Woltman, S.J., Jay, G.D., and Crawford, G.P. (2007). Liquid-crystal materialsfind a new order in biomedical applications. Nature materials, 6, 929–938.

[172] Terentjev, E. and Warner, M. (2001). Linear hydrodynamics and viscoelasticityof nematic elastomers. European Physical Journal E: Soft Matter, 4, 343–353.

[173] Gelebart, A.H., Mulder, D.J., Varga, M., et al. (2017). Making waves in aphotoactive polymer film. Nature, 546, 632–636.

[174] Harris, K.D., Cuypers, R., Scheibe, P., et al. (2005). Large amplitude light-induced motion in high elastic modulus polymer actuators. Journal of MaterialsChemistry, 15, 5043–5048.

[175] Liu, D. and Broer, D.J. (2015). New insights into photoactivated volume gener-ation boost surface morphing in liquid crystal coatings. Nature communications,6, 8334.

[176] White, T.J., Tabiryan, N.V., Serak, S.V., et al. (2008). A high frequencyphotodriven polymer oscillator. Soft Matter, 4, 1796–1798.

[177] J., K.A.J., J., B.D., and J., S.A.P.H. Easily processable and programmable re-sponsive semi-interpenetrating liquid crystalline polymer network coatings withchanging reflectivities and surface topographies. Advanced Functional Materials,28, 1704756.

[178] Li, M.H. and Keller, P. (2006). Artificial muscles based on liquid crystal elas-

Page 11: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

162 Bibliography

tomers. Philosophical Transactions of the Royal Society of London A: Mathe-matical, Physical and Engineering Sciences, 364, 2763–2777.

[179] Barrett, C.J., Mamiya, J.i., Yager, K.G., and Ikeda, T. (2007). Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter, 3, 1249–1261.

[180] Natansohn, A. and Rochon, P. (2002). Photoinduced motions in azo-containingpolymers. Chemical reviews, 102, 4139–4176.

[181] Warner, M., Modes, C., and Corbett, D. (2010). Curvature in nematic elasticaresponding to light and heat. Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 466, 2975–2989.

[182] Warner, M., Modes, C., and Corbett, D. (2010). Suppression of curvature innematic elastica. Proceedings of the Royal Society A, 466, 3561–3578.

[183] Elias, A., Harris, K., Bastiaansen, C., Broer, D., and Brett, M. (2006). Pho-topatterned liquid crystalline polymers for microactuators. Journal of MaterialsChemistry, 16, 2903–2912.

[184] Liu, D., Bastiaansen, C.W.M., den Toonder, J.M.J., and Broer, D.J. (2012).Light-induced formation of dynamic and permanent surface topologies in chiral-nematic polymer networks. Macromolecules, 45, 8005–8012.

[185] Liu, Y., Wu, W., Wei, J., and Yu, Y. (2016). Visible light responsive liquidcrystal polymers containing reactive moieties with good processability. ACSapplied materials & interfaces, 9, 782–789.

[186] Bisoyi, H.K. and Li, Q. (2016). Light-driven liquid crystalline materials:from photo-induced phase transitions and property modulations to applications.Chemical reviews, 116, 15089–15166.

[187] Jiang, Z., Xu, M., Li, F., and Yu, Y. (2013). Red-light-controllable liquid-crystalsoft actuators via low-power excited upconversion based on triplet–triplet an-nihilation. Journal of the American Chemical Society, 135, 16446–16453.

[188] Wu, W., Yao, L., Yang, T., et al. (2011). Nir-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. Journal of theAmerican Chemical Society, 133, 15810–15813.

[189] Liu, Y., Shaw, B., Dickey, M.D., and Genzer, J. (2017). Sequential self-foldingof polymer sheets. Science Advances, 3, e1602417.

[190] Davis, D., Mailen, R., Genzer, J., and Dickey, M.D. (2015). Self-folding ofpolymer sheets using microwaves and graphene ink. RSC Advances, 5, 89254–89261.

[191] Ahir, S.V. and Terentjev, E.M. (2005). Photomechanical actuation in polymer–nanotube composites. Nature materials, 4, 491.

[192] Wang, T., Torres, D., Fernández, F.E., Wang, C., and Sepúlveda, N. (2017).Maximizing the performance of photothermal actuators by combining smartmaterials with supplementary advantages. Science Advances, 3, e1602697.

[193] Vantomme, G., Gelebart, A., Broer, D., and Meijer, E. (2017). A four-bladelight-driven plastic mill based on hydrazone liquid-crystal networks. Tetrahe-dron, 73, 4963–4967.

[194] Helene, G.A., Ghislaine, V., W., M.E., and J., B.D. Mastering the photother-mal effect in liquid crystal networks: A general approach for selfâĂŘsustainedmechanical oscillators. Advanced Materials, 29, 1606712.

[195] Liu, X., Wei, R., Hoang, P.T., et al. (2015). Reversible and rapid laser actuationof liquid crystalline elastomer micropillars with inclusion of gold nanoparticles.Advanced Functional Materials, 25, 3022–3032.

[196] Hauser, A.W., Liu, D., Bryson, K.C., Hayward, R.C., and Broer, D.J. (2016).Reconfiguring nanocomposite liquid crystal polymer films with visible light.Macromolecules, 49, 1575–1581.

[197] Sun, Y., Evans, J.S., Lee, T., et al. (2012). Optical manipulation of shape-

Page 12: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Bibliography 163

morphing elastomeric liquid crystal microparticles doped with gold nanocrys-tals. Applied Physics Letters, 100, 241901.

[198] Serak, S., Tabiryan, N., Vergara, R., et al. (2010). Liquid crystalline polymercantilever oscillators fueled by light. Soft Matter, 6, 779–783.

[199] Kumar, K., Knie, C., Bléger, D., et al. (2016). A chaotic self-oscillating sunlight-driven polymer actuator. Nature communications, 7, 11975.

[200] Fuchi, K., Ware, T.H., Buskohl, P.R., et al. (2015). Topology optimization forthe design of folding liquid crystal elastomer actuators. Soft Matter, 11, 7288–7295.

[201] de Haan, L.T., Gimenez-Pinto, V., Konya, A., et al. (2014). Accordion-like actu-ators of multiple 3d patterned liquid crystal polymer films. Advanced FunctionalMaterials, 24, 1251–1258.

[202] Iamsaard, S., Aßhoff, S.J., Matt, B., et al. (2014). Conversion of light intomacroscopic helical motion. Nature chemistry, 6, 229.

[203] Warner, M. and Mahadevan, L. (2004). Photoinduced deformations of beams,plates, and films. Physical Review Letters, 92, 134302.

[204] Liu, Y., Boyles, J.K., Genzer, J., and Dickey, M.D. (2012). Self-folding ofpolymer sheets using local light absorption. Soft Matter, 8, 1764–1769.

[205] Iamsaard, S., Villemin, E., Lancia, F., et al. (2016). Preparation of biomimeticphotoresponsive polymer springs. Nature Protocols, 11, 1788–1797.

[206] Liu, L. and Onck, P.R. (2018). Topographical modulations via tunable photo-polymerization induced diffusion of azobenzene-doped liquid crystal polymerfilms. Journal of the Mechanics and Physics of Solids, submitted.

[207] Wang, M., Lin, B.P., and Yang, H. (2016). A plant tendril mimic soft ac-tuator with phototunable bending and chiral twisting motion modes. Naturecommunications, 7, 13981.

[208] Boothby, J. and Ware, T. (2017). Dual-responsive, shape-switching bilayersenabled by liquid crystal elastomers. Soft Matter, 13, 4349–4356.

[209] Dai, M., Picot, O.T., Verjans, J.M., et al. (2013). Humidity-responsive bilayeractuators based on a liquid-crystalline polymer network. ACS applied materials& interfaces, 5, 4945–4950.

[210] Stoychev, G., Zakharchenko, S., Turcaud, S., Dunlop, J.W., and Ionov, L.(2012). Shape-programmed folding of stimuli-responsive polymer bilayers. ACSNano, 6, 3925–3934.

[211] Liu, D., Bastiaansen, C.W., den Toonder, J.M., and Broer, D.J. (2013). Single-composition three-dimensionally morphing hydrogels. Soft Matter, 9, 588–596.

[212] Hendrikx, M., Schenning, A.P.H.J., and Broer, D.J. (2017). Patterned oscil-lating topographical changes in photoresponsive polymer coatings. Soft Matter,13, 4321–4327.

[213] Liu, L., Broer, D.J., and Onck, P.R. (2018). Travelling waves on photo-switchable polymer films by rotating polarized light. submitted.

[214] Liu, D., Bastiaansen, C.W., den Toonder, J.M., and Broer, D.J. (2013). (Photo-) thermally induced formation of dynamic surface topographies in polymer hy-drogel networks. Langmuir, 29, 5622–5629.

[215] Palagi, S., Mark, A.G., Reigh, S.Y., et al. (2016). Structured light enablesbiomimetic swimming and versatile locomotion of photoresponsive soft micro-robots. Nature Materials, 15, 647–653.

[216] Liu, L. and Onck, P.R. (2018). Topographical changes in photo-responsiveliquid crystal films: a computational analysis. Soft matter, 14, 2411–2428.

[217] Liu, L. and Onck, P.R. (2017). Computational modelling of light-triggeredtopography changes of azobenzene-modified liquid crystal polymer coatings. InLiu, D. and Broer, D.J., editors, Responsive Polymer Surfaces -Dynamics inSurface Topographies and Properties, pages 85–121. Wiley.

Page 13: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

164 Bibliography

[218] Gritsai, Y., Goldenberg, L.M., and Stumpe, J. (2011). Efficient single-beamlight manipulation of 3d microstructures in azobenzene-containing materials.Optics express, 19, 18687–18695.

[219] Viswanathan, N.K., Balasubramanian, S., Li, L., Kumar, J., and Tripathy, S.K.(1998). Surface-initiated mechanism for the formation of relief gratings on azo-polymer films. The Journal of Physical Chemistry B, 102, 6064–6070.

[220] Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., and Whitesides, G.M.(1998). Spontaneous formation of ordered structures in thin films of metalssupported on an elastomeric polymer. Nature, 393, 146–149.

[221] Huck, W.T., Bowden, N., Onck, P., et al. (2000). Ordering of spontaneouslyformed buckles on planar surfaces. Langmuir, 16, 3497–3501.

[222] Chen, X. and Hutchinson, J.W. (2004). Herringbone buckling patterns ofcompressed thin films on compliant substrates. Journal of applied mechanics,71, 597–603.

[223] Cai, S., Breid, D., Crosby, A.J., Suo, Z., and Hutchinson, J.W. (2011). Periodicpatterns and energy states of buckled films on compliant substrates. Journal ofthe Mechanics and Physics of Solids, 59, 1094–1114.

[224] Chen, X. and Hutchinson, J.W. (2004). A family of herringbone patterns inthin films. Scripta materialia, 50, 797–801.

[225] Huang, Z., Hong, W., and Suo, Z. (2005). Nonlinear analyses of wrinkles in afilm bonded to a compliant substrate. Journal of the Mechanics and Physics ofSolids, 53, 2101–2118.

[226] Song, J., Jiang, H., Liu, Z., et al. (2008). Buckling of a stiff thin film on acompliant substrate in large deformation. International Journal of Solids andStructures, 45, 3107–3121.

[227] Jiang, H., Khang, D.Y., Song, J., et al. (2007). Finite deformation mechanics inbuckled thin films on compliant supports. Proceedings of the National Academyof Sciences, 104, 15607–15612.

[228] Guvendiren, M., Yang, S., and Burdick, J.A. (2009). Swelling-induced surfacepatterns in hydrogels with gradient crosslinking density. Advanced FunctionalMaterials, 19, 3038–3045.

[229] Guvendiren, M., Burdick, J.A., and Yang, S. (2010). Solvent induced transitionfrom wrinkles to creases in thin film gels with depth-wise crosslinking gradients.Soft Matter, 6, 5795–5801.

[230] Hong, W., Zhao, X., and Suo, Z. (2009). Formation of creases on the surfacesof elastomers and gels. Applied Physics Letters, 95, 111901.

[231] Li, B., Cao, Y.P., Feng, X.Q., and Gao, H. (2012). Mechanics of morphologicalinstabilities and surface wrinkling in soft materials: a review. Soft Matter,8, 5728–5745.

[232] Chen, C.M. and Yang, S. (2012). Wrinkling instabilities in polymer films andtheir applications. Polymer International, 61, 1041–1047.

[233] Rodriguez-Hernandez, J. (2015). Wrinkled interfaces: taking advantage ofsurface instabilities to pattern polymer surfaces. Progress in Polymer Science,42, 1–41.

[234] Chung, J.Y., Nolte, A.J., and Stafford, C.M. (2011). Surface wrinkling: a ver-satile platform for measuring thin-film properties. Advanced Materials, 23, 349–368.

[235] Genzer, J. and Groenewold, J. (2006). Soft matter with hard skin: From skinwrinkles to templating and material characterization. Soft Matter, 2, 310–323.

[236] Agrawal, A., Luchette, P., Palffy-Muhoray, P., et al. (2012). Surface wrinklingin liquid crystal elastomers. Soft Matter, 8, 7138–7142.

[237] Agrawal, A., Yun, T., Pesek, S.L., Chapman, W.G., and Verduzco, R. (2014).Shape-responsive liquid crystal elastomer bilayers. Soft Matter, 10, 1411–1415.

Page 14: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Bibliography 165

[238] An, N., Li, M., and Zhou, J. (2015). Instability of liquid crystal elastomers.Smart Materials and Structures, 25, 015016.

[239] Destgeer, G. and Sung, H.J. (2015). Recent advances in microfluidic actua-tion and micro-object manipulation via surface acoustic waves. Lab on a Chip,15, 2722–2738.

[240] Yamaoka, D., Hara, M., Nagano, S., and Seki, T. (2015). Photoalignable radi-cal initiator for anisotropic polymerization in liquid crystalline media. Macro-molecules, 48, 908–914.

[241] Soni, H., Pelcovits, R.A., and Powers, T.R. (2016). Wrinkling of a thin film ona nematic liquid-crystal elastomer. Physical Review E, 94, 012701.

[242] Greco, F., Domenici, V., Romiti, S., et al. (2013). Reversible heat-inducedmicrowrinkling of pedot: Pss nanofilm surface over a monodomain liquid crystalelastomer. Molecular Crystals and Liquid Crystals, 572, 40–49.

[243] Kang, S.H., Na, J.H., Moon, S.N., et al. (2012). Self-organized anisotropicwrinkling of molecularly aligned liquid crystalline polymer. Langmuir, 28, 3576–3582.

[244] Fu, C., Xu, F., and Huo, Y. (2018). Photo-controlled patterned wrinkling ofliquid crystalline polymer films on compliant substrates. International Journalof Solids and Structures, 132-133, 264 – 277.

[245] Yang, D. and He, L. (2014). Photo-triggered wrinkling of glassy nematic films.Smart Materials and Structures, 23, 045012.

[246] Takeshima, T., Liao, W.y., Nagashima, Y., et al. (2015). Photoresponsive sur-face wrinkle morphologies in liquid crystalline polymer films. Macromolecules,48, 6378–6384.

[247] Yang, D. and He, L.H. (2015). Nonlinear analysis of photo-induced wrinklingof glassy twist nematic films on compliant substrates. Acta Mechanica Sinica,31, 672–678.

[248] Na, J.H., Kim, S.U., Sohn, Y., and Lee, S.D. (2015). Self-organized wrinklingpatterns of a liquid crystalline polymer in surface wetting confinement. SoftMatter, 11, 4788–4792.

[249] Song, S.E., Choi, G.H., Yi, G.R., and Yoo, P.J. (2017). Competitive concurrenceof surface wrinkling and dewetting of liquid crystalline polymer films on non-wettable substrates. Soft Matter, 13, 7753–7759.

[250] Rofouie, P., Pasini, D., and Rey, A.D. (2015). Nano-scale surface wrinkling inchiral liquid crystals and plant-based plywoods. Soft Matter, 11, 1127–1139.

[251] Rofouie, P., Pasini, D., and Rey, A. (2015). Tunable nano-wrinkling of chiralsurfaces: Structure and diffraction optics. The Journal of chemical physics,143, 09B613.

[252] Rofouie, P., Pasini, D., and Rey, A. (2017). Multiple-wavelength surface pat-terns in models of biological chiral liquid crystal membranes. Soft Matter,13, 541–545.

[253] Thompson, J.M.T. and Hunt, G.W. (1973). A general theory of elastic stability.Wiley.

[254] Brush, D.O., Almroth, B.O., and Hutchinson, J. (1975). Buckling of bars,plates, and shells. Journal of Applied Mechanics, 42, 911.

[255] Jones, R.M. (2006). Buckling of bars, plates, and shells. Bull Ridge Corporation.[256] Riks, E. (1979). An incremental approach to the solution of snapping and

buckling problems. International Journal of Solids and Structures, 15, 529–551.[257] Crisfield, M. (1981). A fast incremental/iterative solution procedure that han-

dles "snap-through". Computers & Structures, 13, 55–62.[258] Skandani, A.A., Chatterjee, S., Smith, M.L., et al. (2016). Discrete-state pho-

tomechanical actuators. Extreme Mechanics Letters, 9, 45–54.[259] Fu, C., Xu, Y., Xu, F., and Huo, Y. (2016). Light-induced bending and buckling

Page 15: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

166 Bibliography

of large-deflected liquid crystalline polymer plates. International Journal ofApplied Mechanics, 8, 1640007.

[260] Aßhoff, S.J., Lancia, F., Iamsaard, S., et al. (2017). High-power actuation frommolecular photoswitches in enantiomerically paired soft springs. AngewandteChemie International Edition, 56, 3261–3265.

[261] Jeong, J., Cho, Y., Lee, S.Y., et al. (2017). Topography-guided buckling ofswollen polymer bilayer films into three-dimensional structures. Soft Matter,13, 956–962.

[262] Modes, C.D., Bhattacharya, K., and Warner, M. (2010). Disclination-mediatedthermo-optical response in nematic glass sheets. Physical Review E, 81, 060701.

[263] Modes, C.D., Bhattacharya, K., and Warner, M. Gaussian curvature from flatelastica sheets. In Proceedings of the Royal Society of London A: Mathematical,Physical and Engineering Sciences, volume 467, pages 1121–1140. The RoyalSociety, (2011).

[264] Modes, C.D. andWarner, M. (2011). Blueprinting nematic glass: Systematicallyconstructing and combining active points of curvature for emergent morphology.Physical Review E, 84, 021711.

[265] Mostajeran, C., Warner, M., Ware, T.H., and White, T.J. (2016). Encodinggaussian curvature in glassy and elastomeric liquid crystal solids. Proceedingsof the Royal Society of London A: Mathematical, Physical and Engineering Sci-ences, 472, 20160112.

[266] Mostajeran, C., Warner, M., and Modes, C.D. (2017). Frame, metric andgeodesic evolution in shape-changing nematic shells. Soft Matter, 13, 8858–8863.

[267] He, L., Zheng, Y., and Ni, Y. (2018). Programmed shape of glassy nematicsheets with varying in-plane director fields: A kinetics approach. InternationalJournal of Solids and Structures, 130, 183–189.

[268] Aharoni, H., Xia, Y., Zhang, X., Kamien, R.D., and Yang, S. (2017). Makingfaces: Universal inverse design of surfaces with thin nematic elastomer sheets.arXiv preprint arXiv:1710.08485.

[269] Modes, C.D. and Warner, M. (2015). Negative gaussian curvature from inducedmetric changes. Physical Review E, 92, 010401.

[270] Modes, C. and Warner, M. (2012). Responsive nematic solid shells: topology,compatibility, and shape. EPL (Europhysics Letters), 97, 36007.

[271] Cirak, F., Long, Q., Bhattacharya, K., and Warner, M. (2014). Computationalanalysis of liquid crystalline elastomer membranes: Changing gaussian curva-ture without stretch energy. International Journal of Solids and Structures,51, 144–153.

[272] Kowalski, B.A., Mostajeran, C., Godman, N.P., Warner, M., and White, T.J.(2018). Curvature by design and on demand in liquid crystal elastomers. Phys-ical Review E, 97, 012504.

[273] McConney, M.E., Martinez, A., Tondiglia, V.P., et al. (2013). Topography fromtopology: photoinduced surface features generated in liquid crystal polymernetworks. Advanced Materials, 25, 5880–5885.

[274] Lv, J., Liu, Y., Wei, J., et al. (2016). Photocontrol of fluid slugs in liquid crystalpolymer microactuators. Nature, 537, 179–184.

[275] Lindsey, H., Kirstin, P., Zhan, L.G., and Metin, S. Soft actuators for small-scalerobotics. Advanced Materials, 29, 1603483.

[276] Ube, T., Minagawa, K., and Ikeda, T. (2017). Interpenetrating polymer net-works of liquid-crystalline azobenzene polymers and poly (dimethylsiloxane) asphotomobile materials. Soft Matter, 13, 5820–5823.

[277] Chatani, S., Kloxin, C.J., and Bowman, C.N. (2014). The power of light inpolymer science: photochemical processes to manipulate polymer formation,structure, and properties. Polymer Chemistry, 5, 2187–2201.

Page 16: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Bibliography 167

[278] Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P., and Shelley, M.(2004). Fast liquid-crystal elastomer swims into the dark. Nature Materials,3, 307–310.

[279] Wagner, N. and Theato, P. (2014). Light-induced wettability changes on poly-mer surfaces. Polymer, 55, 3436 – 3453.

[280] Roy, P.K., Pant, R., Nagarajan, A.K., and Khare, K. (2016). Mechanically tun-able slippery behavior on soft poly (dimethylsiloxane)-based anisotropic wrin-kles infused with lubricating fluid. Langmuir, 32, 5738–5743.

[281] Olga, G., Jan, S., Pavel, P., et al. Fast and reproducible wettability switching onfunctionalized pvdf/pmma surface controlled by external electric field. AdvancedMaterials Interfaces, 4, 1600886.

[282] Kim, H.N., Jang, K.J., Shin, J.Y., et al. (2017). Artificial slanted nanocilia arrayas a mechanotransducer for controlling cell polarity. ACS Nano, 11, 730–741.

[283] Corbett, D. and Warner, M. (2006). Nonlinear photoresponse of disorderedelastomers. Physical Review Letters, 96, 237802.

[284] Corbett, D. and Warner, M. (2007). Linear and nonlinear photoinduced defor-mations of cantilevers. Physical Review Letters, 99, 174302.

[285] Smith, M.L., Lee, K.M., White, T.J., and Vaia, R.A. (2014). Design ofpolarization-dependent, flexural-torsional deformation in photo responsive liq-uid crystalline polymer networks. Soft Matter, 10, 1400–1410.

[286] Cheng, L., Torres, Y., Min Lee, K., et al. (2012). Photomechanical bending me-chanics of polydomain azobenzene liquid crystal polymer network films. Journalof Applied Physics, 112, 013513–013513.

[287] Knežević, M., Warner, M., Čopič, M., and Sánchez-Ferrer, A. (2013). Photody-namics of stress in clamped nematic elastomers. Physical Review E, 87, 062503.

[288] Choi, J., Chung, H., Yun, J.H., and Cho, M. (2014). Photo-isomerization effectof the azobenzene chain on the opto-mechanical behavior of nematic polymer:A molecular dynamics study. Applied Physics Letters, 105, 221906.

[289] Hogan, P.M., Tajbakhsh, A.R., and Terentjev, E.M. (2002). Uv manipulationof order and macroscopic shape in nematic elastomers. Physical Review E,65, 041720.

[290] Kondo, M., Sugimoto, M., Yamada, M., et al. (2010). Effect of concentration ofphotoactive chromophores on photomechanical properties of crosslinked azoben-zene liquid-crystalline polymers. Journal of Materials Chemistry, 20, 117–122.

[291] Yu, Y., Nakano, M., Shishido, A., Shiono, T., and Ikeda, T. (2004). Ef-fect of cross-linking density on photoinduced bending behavior of orientedliquid-crystalline network films containing azobenzene. Chemistry of Materi-als, 16, 1637–1643.

[292] Braun, L.B., Linder, T.G., Hessberger, T., and Zentel, R. (2016). Influence ofa crosslinker containing an azo group on the actuation properties of a photoac-tuating lce system. Polymers, 8, 435.

[293] Zhu, B., Barnes, M., Kim, H., et al. (2017). Molecular engineering of step-growth liquid crystal elastomers. Sensors and Actuators B: Chemical, 244, 433– 440.

[294] Kumar, K., Schenning, A.P., Broer, D.J., and Liu, D. (2016). Regulatingthe modulus of a chiral liquid crystal polymer network by light. Soft Matter,12, 3196–3201.

[295] Corbett, D. and Warner, M. (2008). Polarization dependence of optically drivenpolydomain elastomer mechanics. Physical Review E, 78, 061701.

[296] Corbett, D. and Warner, M. (2008). Bleaching and stimulated recovery of dyesand of photocantilevers. Physical Review E, 77, 051710.

[297] Statman, D. and Janossy, I. (2003). Study of photoisomerization of azo dyes inliquid crystals. The Journal of Chemical Physics, 118, 3222.

Page 17: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

168 Bibliography

[298] Hibbett, and et. al., . (1998). ABAQUS/standard: User’s Manual, volume 1.[299] Heynderickx, I., Broer, D., Van Den Boom, H., and Teesselink, W. (1992).

Liquid-crystalline ordering in polymeric networks as studied by polarized ramanscattering. Journal of Polymer Science, Part B: Polymer Physics, 30, 215–220.

[300] Liu, Q., Zhan, Y., Wei, J., et al. (2017). Dual-responsive deformation of acrosslinked liquid crystal polymer film with complex molecular alignment. SoftMatter, 13, 6145–6151.

[301] Zeng, H., Martella, D., Wasylczyk, P., et al. (2014). High-resolution 3d directlaser writing for liquid-crystalline elastomer microstructures. Advanced Materi-als, 26, 2319–2322.

[302] Zeng, H., Wasylczyk, P., Cerretti, G., et al. (2015). Alignment engineering inliquid crystalline elastomers: Free-form microstructures with multiple function-alities. Applied Physics Letters, 106, 111902.

[303] Koen, N., M., B.G., Carlos, S.S., et al. 3d orientational control in self-assembledthin films with sub-5 nm features by light. Small, 13, 1701043.

[304] Gadelmawla, E., Koura, M., Maksoud, T., Elewa, I., and Soliman, H. (2002).Roughness parameters. Journal of Materials Processing Technology, 123, 133 –145.

[305] Arbizu, I.P. and Perez, C.L. (2003). Surface roughness prediction by factorialdesign of experiments in turning processes. Journal of Materials ProcessingTechnology, 143, 390–396.

[306] Crawford, R.J., Webb, H.K., Truong, V.K., Hasan, J., and Ivanova, E.P. (2012).Surface topographical factors influencing bacterial attachment. Advances inColloid and Interface Science, 179, 142–149.

[307] Sedlaček, M., Podgornik, B., and Vižintin, J. (2012). Correlation between stan-dard roughness parameters skewness and kurtosis and tribological behaviour ofcontact surfaces. Tribology International, 48, 102–112.

[308] Wenzel, R.N. (1936). Resistance of solid surfaces to wetting by water. Industrialand Engineering Chemistry Research, 28, 988–994.

[309] Goulet-Hanssens, A., Corkery, T.C., Priimagi, A., and Barrett, C.J. (2014).Effect of head group size on the photoswitching applications of azobenzenedisperse red 1 analogues. Journal of Materials Chemistry C, 2, 7505–7512.

[310] Liu, D. Responsive Surface Topographies-Liquid crystal networks and polymerhydrogel forming micrometer sized surface structures trigged by light, heat orpH. PhD thesis, Eindhoven University of Technology, (2013).

[311] Kurik, M.V. and Lavrentovich, O. (1988). Defects in liquid crystals: homotopytheory and experimental studies. Physics-Uspekhi, 31, 196–224.

[312] Donald, A. and Windle, A. (1984). Walls in liquid crystalline polymers: anelectron microscopy study. Polymer, 25, 1235–1246.

[313] Poulin, P., Stark, H., Lubensky, T., and Weitz, D. (1997). Novel colloidalinteractions in anisotropic fluids. Science, 275, 1770–1773.

[314] Eelkema, R., Pollard, M.M., Vicario, J., et al. (2006). Molecular machines:nanomotor rotates microscale objects. Nature, 440, 163–163.

[315] Nagai, H., Liang, X., Nishikawa, Y., Nakajima, K., and Urayama, K. (2016).Periodic surface undulation in cholesteric liquid crystal elastomers. Macro-molecules, 49, 9561–9567.

[316] Kularatne, R.S., Kim, H., Ammanamanchi, M., Hayenga, H.N., and Ware,T.H. (2016). Shape-morphing chromonic liquid crystal hydrogels. Chemistry ofMaterials, 28, 8489–8492.

[317] Zheng, Z.g., Li, Y., Bisoyi, H.K., et al. (2016). Three-dimensional control ofthe helical axis of a chiral nematic liquid crystal by light. Nature, 531, 352–356.

[318] Zhi-gang, Z., S., Z.R., Krishna, B.H., et al. Controllable dynamic zigzag patternformation in a soft helical superstructure. Advanced Materials, 29, 1701903.

Page 18: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Bibliography 169

[319] Eelkema, R., Pollard, M.M., Katsonis, N., et al. (2006). Rotational reorga-nization of doped cholesteric liquid crystalline films. Journal of the AmericanChemical Society, 128, 14397–14407.

[320] K., M.M., Matthew, H., Danqing, L., et al. Photoinduced plasticity in cross-linked liquid crystalline networks. Advanced Materials, 29, 1606509.

[321] Mavroidis, C., Pfeiffer, C., Celestino, J., and Bar-Cohen, Y. Controlled com-pliance haptic interface using electrorheological fluids. In SPIE’s 7th AnnualInternational Symposium on Smart Structures and Materials, pages 300–310.International Society for Optics and Photonics, (2000).

[322] Chen, Z., Jimao, F., Wenhong, Y., Qinghai, S., and Shumin, X. Enhancingthe magnetic resonance via strong coupling in optical metamaterials. AdvancedOptical Materials, 5, 1700469.

[323] Verho, T., Korhonen, J.T., Sainiemi, L., et al. (2012). Reversible switchingbetween superhydrophobic states on a hierarchically structured surface. Pro-ceedings of the National Academy of Sciences of the United States of America,109, 10210–10213.

[324] Ijspeert, A.J., Crespi, A., Ryczko, D., and Cabelguen, J.M. (2007). Fromswimming to walking with a salamander robot driven by a spinal cord model.Science, 315, 1416–1420.

[325] Ijspeert, A.J. (2014). Biorobotics: Using robots to emulate and investigate agilelocomotion. Science, 346, 196–203.

[326] Gemmell, B.J., Colin, S.P., Costello, J.H., and Dabiri, J.O. (2015). Suction-based propulsion as a basis for efficient animal swimming. Nature communica-tions, 6, 8790.

[327] Park, S.J., Gazzola, M., Park, K.S., et al. (2016). Phototactic guidance of atissue-engineered soft-robotic ray. Science, 353, 158–162.

[328] Rogóż, M., Zeng, H., Xuan, C., Wiersma, D.S., and Wasylczyk, P. (2016).Light-driven soft robot mimics caterpillar locomotion in natural scale. AdvancedOptical Materials, 4, 1689–1694.

[329] Nistor, V., Cannell, J., Gregory, J., and Yeghiazarian, L. (2016). Stimuli-responsive cylindrical hydrogels mimic intestinal peristalsis to propel a solidobject. Soft Matter, 12, 3582–3588.

[330] Diller, E., Zhuang, J., Lum, G.Z., Edwards, M.R., and Sitti, M. (2014). Con-tinuously distributed magnetization profile for millimeter-scale elastomeric un-dulatory swimming. Applied Physics Letters, 104, 174101.

[331] Huang, C., Lv, J.a., Tian, X., et al. (2015). Miniaturized swimming softrobot with complex movement actuated and controlled by remote light signals.Scientific reports, 5, 17414.

[332] Li, T., Li, J., Zhang, H., et al. (2016). Magnetically propelled fish-likenanoswimmers. Small, 12, 6098–6105.

[333] Namdeo, S., Khaderi, S., den Toonder, J., and Onck, P. (2011). Swimmingdirection reversal of flagella through ciliary motion of mastigonemes a. Biomi-crofluidics, 5, 034108.

[334] Liu, X., Kim, S.K., and Wang, X. (2016). Thermomechanical liquid crystallineelastomer capillaries with biomimetic peristaltic crawling function. Journal ofMaterials Chemistry B, 4, 7293–7302.

[335] Murase, Y., Maeda, S., Hashimoto, S., and Yoshida, R. (2008). Design of a masstransport surface utilizing peristaltic motion of a self-oscillating gel. Langmuir,25, 483–489.

[336] Zeng, H., Wasylczyk, P., Parmeggiani, C., et al. (2015). Light-fueled microscopicwalkers. Advanced Materials, 27, 3883–3887.

[337] Jafferis, N.T., Stone, H.A., and Sturm, J.C. (2011). Traveling wave-inducedaerodynamic propulsive forces using piezoelectrically deformed substrates. Ap-plied Physics Letters, 99, 114102.

Page 19: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

170 Bibliography

[338] Nakahara, K., Yamamoto, M., Okayama, Y., et al. (2013). A peristaltic microp-ump using traveling waves on a polymer membrane. Journal of Micromechanicsand Microengineering, 23, 085024.

[339] Na, J.H., Bende, N.P., Bae, J., Santangelo, C.D., and Hayward, R.C. (2016).Grayscale gel lithography for programmed buckling of non-euclidean hydrogelplates. Soft Matter, 12, 4985–4990.

[340] Liu, L. and Onck, P.R. (2017). Enhanced deformation of azobenzene-modifiedliquid crystal polymers under dual wavelength exposure: A photophysicalmodel. Physical Review Letters, 119, 057801.

[341] Namdeo, S., Khaderi, S., and Onck, P. Numerical modelling of chirality-inducedbi-directional swimming of artificial flagella. In Proceedings of the Royal Societyof London A: Mathematical, Physical and Engineering Sciences, volume 470,page 20130547. The Royal Society, (2014).

[342] Uchida, E., Azumi, R., and Norikane, Y. (2015). Light-induced crawling ofcrystals on a glass surface. Nature communications, 6, 7310.

[343] Shiraki, Y. and Yoshida, R. (2012). Autonomous intestine-like motion of tubularself-oscillating gel. Angewandte Chemie International Edition, 51, 6112–6116.

[344] You, Y., Xu, C., Ding, S., and Huo, Y. (2012). Coupled effects of director ori-entations and boundary conditions on light induced bending of monodomainnematic liquid crystalline polymer plates. Smart Materials and Structures,21, 125012.

[345] Taylor, G. (1951). Analysis of the swimming of microscopic organisms. Proceed-ings of the Royal Society of London A: Mathematical, Physical and EngineeringSciences, 209, 447–461.

[346] Felderhof, B. (2009). Swimming and peristaltic pumping between two planeparallel walls. Journal of Physics: Condensed Matter, 21, 204106.

[347] Lauga, E. and Powers, T.R. (2009). The hydrodynamics of swimming microor-ganisms. Reports on Progress in Physics, 72, 096601.

[348] Pozrikidis, C. (1987). A study of peristaltic flow. Journal of Fluid Mechanics,180, 515–527.

[349] Maeda, S., Hara, Y., Yoshida, R., and Hashimoto, S. (2008). Peristaltic motionof polymer gels. Angewandte Chemie, 120, 6792–6795.

[350] Nguyen, N.T., Huang, X., and Chuan, T.K. (2002). Mems-micropumps: areview. Journal of fluids Engineering, 124, 384–392.

[351] Nickmans, K., Murphy, J.N., de Waal, B., et al. (2016). Sub-5 nm patterningby directed self-assembly of oligo (dimethylsiloxane) liquid crystal thin films.Advanced Materials, 28, 10068–10072.

[352] Teymoori, M.M. and Abbaspour-Sani, E. (2005). Design and simulation of anovel electrostatic peristaltic micromachined pump for drug delivery applica-tions. Sensors and Actuators A: Physical, 117, 222–229.

[353] Ricotti, L., Trimmer, B., Feinberg, A.W., et al. (2017). Biohybrid actuatorsfor robotics: A review of devices actuated by living cells. Science Robotics,2, eaaq0495.

[354] Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H., and Kajiyama, T. (2002).Polymer-stabilized liquid crystal blue phases. Nature materials, 1, 64–68.

[355] Terentjev, E. (1995). Disclination loops, standing alone and around solid par-ticles, in nematic liquid crystals. Physical Review E, 51, 1330.

[356] Schopohl, N. and Sluckin, T. (1987). Defect core structure in nematic liquidcrystals. Physical review letters, 59, 2582.

[357] Chuang, I. and Durrer, R. (1991). Cosmology in the laboratory: Defect dy-namics in liquid crystals. Science, 251, 1336.

[358] Mermin, N.D. (1979). The topological theory of defects in ordered media.Reviews of Modern Physics, 51, 591.

Page 20: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Bibliography 171

[359] Ahn, S.k., Ware, T.H., Lee, K.M., Tondiglia, V.P., and White, T.J. (2016).Photoinduced topographical feature development in blueprinted azobenzene-functionalized liquid crystalline elastomers. Advanced Functional Materials,26, 5819–5826.

[360] Vizsnyiczai, G., Frangipane, G., Maggi, C., et al. (2017). Light controlled 3dmicromotors powered by bacteria. Nature Communications, 8, 15974.

[361] Safdar, M., Simmchen, J., and Jänis, J. (2017). Light-driven micro-and nanomo-tors for environmental remediation. Environmental Science: Nano, 4, 1602–1616.

[362] Zhang, Y.L., Dong, C.H., Zou, C.L., et al. (2017). Optomechanical devicesbased on traveling-wave microresonators. Physical Review A, 95, 043815.

[363] Babakhanova, G., Turiv, T., Guo, Y., et al. (2018). Liquid crystal elastomercoatings with programmed response of surface profile. Nature Communications,9, 456.

[364] Ikeda, T., Nakano, M., Yu, Y., Tsutsumi, O., and Kanazawa, A. (2003).Anisotropic bending and unbending behavior of azobenzene liquid-crystallinegels by light exposure. Advanced Materials, 15, 201–205.

[365] Lee, K.M., Smith, M.L., Koerner, H., et al. (2011). Photodriven, flexural–torsional oscillation of glassy azobenzene liquid crystal polymer networks. Ad-vanced Functional Materials, 21, 2913–2918.

[366] Wie, J.J., Shankar, M.R., and White, T.J. (2016). Photomotility of polymers.Nature Communications, 7, 13260.

[367] Tolbert, S.H., Firouzi, A., Stucky, G.D., and Chmelka, B.F. (1997). Magneticfield alignment of ordered silicate-surfactant composites and mesoporous silica.Science, 278, 264–268.

[368] van Nostrum, C.F., Nolte, R.J., Broer, D.J., Fuhrman, T., and Wendorff, J.H.(1998). Photoinduced opposite diffusion of nematic and isotropic monomersduring patterned photopolymerization. Chemistry of Materials, 10, 135–145.

[369] Broer, D.J., Mol, G.N., van Haaren, J.A., and Lub, J. (1999). Photo-induceddiffusion in polymerizing chiral-nematic media. Advanced Materials, 11, 573–578.

[370] Sánchez, C., de Gans, B.J., Kozodaev, D., et al. (2005). Photoembossing of pe-riodic relief structures using polymerization-induced diffusion: A combinatorialstudy. Advanced Materials, 17, 2567–2571.

[371] Broer, D. (2002). Deformed chiral-nematic networks obtained by polarizedexcitation of a dichroic photoinitiator. Current Opinion in Solid State andMaterials Science, 6, 553–561.

[372] de Gans, B.J., Sánchez, C., Kozodaev, D., et al. (2006). Optimizing photo-embossed gratings: a gradient library approach. Journal of CombinatorialChemistry, 8, 228–236.

[373] Hermans, K., Wolf, F.K., Perelaer, J., et al. (2007). High aspect ratio surfacerelief structures by photoembossing. Applied Physics Letters, 91, 174103.

[374] Bartlett, N.W., Tolley, M.T., Overvelde, J.T., et al. (2015). A 3d-printed,functionally graded soft robot powered by combustion. Science, 349, 161–165.

[375] Ware, T.H., Biggins, J.S., Shick, A.F., Warner, M., and White, T.J. (2016).Localized soft elasticity in liquid crystal elastomers. Nature communications,7, 10781.

[376] Wang, J., Li, B., Cao, Y.P., Feng, X.Q., and Gao, H. (2016). Wrinkling mi-cropatterns regulated by a hard skin layer with a periodic stiffness distributionon a soft material. Applied Physics Letters, 108, 021903.

[377] Guvendiren, M. and Burdick, J.A. (2010). The control of stem cell morphologyand differentiation by hydrogel surface wrinkles. Biomaterials, 31, 6511–6518.

[378] Klein, Y., Efrati, E., and Sharon, E. (2007). Shaping of elastic sheets by

Page 21: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

172 Bibliography

prescription of non-euclidean metrics. Science, 315, 1116–1120.[379] Hakan, C., Ceren, Y.I., and Metin, S. 3d chemical patterning of micromaterials

for encoded functionality. Advanced Materials, 29, 1605072.[380] Truby, R.L. and Lewis, J.A. (2016). Printing soft matter in three dimensions.

Nature, 540, 371–378.[381] Flory, P.J. (1953). Principles of polymer chemistry. Cornell University Press.[382] Leewis, C.M., de Jong, A.M., van IJzendoorn, L.J., and Broer, D.J. (2004).

Reaction–diffusion model for the preparation of polymer gratings by patternedultraviolet illumination. Journal of Applied Physics, 95, 4125–4139.

[383] Leewis, C.M., de Jong, A.M., van IJzendoorn, L.J., and Broer, D.J. (2004).Simulations with a dynamic reaction–diffusion model of the polymer gratingpreparation by patterned ultraviolet illumination. Journal of Applied Physics,95, 8352–8356.

[384] Corbett, D. and Warner, M. (2008). Bleaching and stimulated recovery of dyesand of photocantilevers. Physical Review E, 77, 051710.

[385] Marshall, J.E. and Terentjev, E.M. (2013). Photo-sensitivity of dye-doped liquidcrystal elastomers. Soft Matter, 9, 8547–8551.

[386] Lee, K.M., Tabiryan, N.V., Bunning, T.J., and White, T.J. (2012). Photome-chanical mechanism and structure-property considerations in the generation ofphotomechanical work in glassy, azobenzene liquid crystal polymer networks.Journal of Materials Chemistry, 22, 691–698.

[387] Lee, K.M., Koerner, H., Vaia, R.A., Bunning, T.J., and White, T.J. (2010).Relationship between the photomechanical response and the thermomechanicalproperties of azobenzene liquid crystalline polymer networks. Macromolecules,43, 8185–8190.

[388] Shimamura, A., Priimagi, A., Mamiya, J.i., et al. (2011). Simultaneous anal-ysis of optical and mechanical properties of cross-linked azobenzene-containingliquid-crystalline polymer films. ACS Applied Materials & Interfaces, 3, 4190–4196.

[389] Wang, D.H., Lee, K.M., Yu, Z., et al. (2011). Photomechanical response ofglassy azobenzene polyimide networks. Macromolecules, 44, 3840–3846.

[390] Sánchez-Ferrer, A. and Finkelmann, H. (2013). Opto-mechanical effect in pho-toactive nematic main-chain liquid-crystalline elastomers. Soft Matter, 9, 4621–4627.

[391] White, T.J., Serak, S.V., Tabiryan, N.V., Vaia, R.A., and Bunning, T.J. (2009).Polarization-controlled, photodriven bending in monodomain liquid crystal elas-tomer cantilevers. Journal of Materials Chemistry, 19, 1080–1085.

[392] Enkhbayar, P., Damdinsuren, S., Osaki, M., and Matsushima, N. (2008). Helfit:Helix fitting by a total least squares method. Computational Biology and Chem-istry, 32, 307–310.

[393] Silva, P., de Abreu, F.V., and Godinho, M.H. (2017). Shaping helical electro-spun filaments: a review. Soft Matter, 13, 6678–6688.

[394] Wang, D.H., Lee, K.M., Koerner, H., et al. (2012). Flexural-torsional photome-chanical responses in azobenzene-containing crosslinked polyimides. Macro-molecular Materials and Engineering, 297, 1167–1174.

[395] Sawa, Y., Ye, F., Urayama, K., et al. (2011). Shape selection of twist-nematic-elastomer ribbons. Proceedings of the National Academy of Sciences of theUnited States of America, 108, 6364–6368.

[396] Wie, J.J., Lee, K.M., Smith, M.L., Vaia, R.A., andWhite, T.J. (2013). Torsionalmechanical responses in azobenzene functionalized liquid crystalline polymernetworks. Soft Matter, 9, 9303–9310.

[397] Wie, J.J., Lee, K.M., Ware, T.H., and White, T.J. (2015). Twists and turns inglassy, liquid crystalline polymer networks. Macromolecules, 48, 1087–1092.

Page 22: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

Bibliography 173

[398] Modes, C., Warner, M., Van Oosten, C., and Corbett, D. (2010). Anisotropicresponse of glassy splay-bend and twist nematic cantilevers to light and heat.Physical Review E, 82, 041111.

[399] van den Heuvel, M., Prenen, A.M., Gielen, J.C., et al. (2009). Patterns ofdiacetylene-containing peptide amphiphiles using polarization holography. Jour-nal of the American Chemical Society, 131, 15014–15017.

[400] Van, M.P., Schuurmans, C.C., Bastiaansen, C.W., and Broer, D.J. (2014).Polarization-selective polymerization in a photo-crosslinking monomer film.RSC Advances, 4, 62499–62504.

[401] Seki, T. (2016). Light-directed alignment, surface morphing and related pro-cesses: recent trends. Journal of Materials Chemistry C, 4, 7895–7910.

[402] Kim, S., Laschi, C., and Trimmer, B. (2013). Soft robotics: a bioinspiredevolution in robotics. Trends in Biotechnology, 31, 287–294.

[403] Wopschall, R.H. and Pampalone, T.R. (1972). Dry photopolymer film forrecording holograms. Applied Optics, 11, 2096–2097.

[404] Sutherland, R., Tondiglia, V., Natarajan, L., and Bunning, T. (2004). Phe-nomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures. Journal of Applied Physics, 96, 951–965.

[405] Meng, S., Duran, H., Hu, J., et al. (2007). Influence of photopolymerization re-action kinetics on diffraction efficiency of h-pdlc undergoing photopatterning re-action in mixtures of acrylic monomer/nematic liquid crystals. Macromolecules,40, 3190–3197.

[406] Warner, M. and Blaikie, R. (2009). Two-color nonlinear absorption of light indye layers. Physical Review A, 80, 033833.

[407] Lin, Y., Jin, L., and Huo, Y. (2012). Quasi-soft opto-mechanical behav-ior of photochromic liquid crystal elastomer: Linearized stress-strain relationsand finite element simulations. International Journal of Solids and Structures,49, 2668 – 2680.

[408] Jin, L., Lin, Y., and Huo, Y. (2011). A large deflection light-induced bendingmodel for liquid crystal elastomers under uniform or non-uniform illumination.International Journal of Solids and Structures, 48, 3232 – 3242.

[409] Ord, J.K. (1972). Families of frequency distributions. Griffin.[410] Ma, J., Li, Y., White, T., Urbas, A., and Li, Q. (2010). Light-driven nanoscale

chiral molecular switch: reversible dynamic full range color phototuning. Chem-ical Communications, 46, 3463–3465.

[411] Zong, C., Zhao, Y., Ji, H., et al. (2016). Tuning and erasing surface wrinklesby reversible visible-light-induced photoisomerization. Angewandte Chemie In-ternational Edition, 55, 3931–3935.

[412] Ji, H., Zhao, Y., Zong, C., et al. (2016). Simple and versatile strategy toprevent surface wrinkling by visible light irradiation. ACS Applied Materials &Interfaces, 8, 19127–19134.

[413] Li, Y., Rios, O., Keum, J.K., Chen, J., and Kessler, M.R. (2016). Photore-sponsive liquid crystalline epoxy networks with shape memory behavior anddynamic ester bonds. ACS applied materials & interfaces, 8, 15750–15757.

[414] Wie, J.J., Chatterjee, S., Wang, D.H., et al. (2014). Azobenzene-functionalizedpolyimides as wireless actuators. Polymer, 55, 5915–5923.

[415] McNaught, A.D. and Wilkinson, A. (1997). Compendium of chemical termi-nology. iupac recommendations. 1669.

[416] Broer, D.J., Crawford, G.P., and Zumer, S. (2011). Cross-Linked Liquid Crys-talline Systems: From Rigid Polymer Networks to Elastomers. CRC press.

Page 23: University of Groningen Light switchable surface ... · 154Bibliography tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACSNano,12,3898–3907. [15]Li,

174 Curriculum Vitae