Top Banner
University of Groningen A system wide view of replicative aging in budding yeast Janssens, Georges Eric IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2016 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Janssens, G. E. (2016). A system wide view of replicative aging in budding yeast: Protein biogenesis machinery as a driver of the aging process; molecular and cellular properties associated to longevity in single cells; and the relevance of aging in yeast to aging in humans [Groningen]: University of Groningen Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-06-2018
21

University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

May 20, 2018

Download

Documents

duongminh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

University of Groningen

A system wide view of replicative aging in budding yeastJanssens, Georges Eric

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Janssens, G. E. (2016). A system wide view of replicative aging in budding yeast: Protein biogenesismachinery as a driver of the aging process; molecular and cellular properties associated to longevity insingle cells; and the relevance of aging in yeast to aging in humans [Groningen]: University of Groningen

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 26-06-2018

Page 2: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

132

Bibliography

Page 3: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

133

A system wide view of replicative aging in budding yeast

B

[1] L. Fontana, L. Partridge, V.D. Longo, Extending healthy life span--from yeast to humans., Science. 328 (2010) 321–326. doi:10.1126/science.1172539.

[2] T.B.L. Kirkwood, Understanding ageing from an evolutionary perspective, in: J. Intern. Med., 2008: pp. 117–127. doi:10.1111/j.1365-2796.2007.01901.x.

[3] L. Hayflick, Biological aging is no longer an unsolved problem, in: Ann. N. Y. Acad. Sci., 2007: pp. 1–13. doi:10.1196/annals.1395.001.

[4] S.I.S. Rattan, Theories of biological aging: genes, proteins, and free radicals., Free Radic. Res. 40 (2006) 1230–1238. doi:10.1080/10715760600911303.

[5] J.P. De Magalhães, Programmatic features of aging originating in development: Aging mechanisms beyond molecular damage?, FASEB J. 26 (2012) 4821–4826. doi:10.1096/fj.12-210872.

[6] A.M. Kligman, P. Zheng, R.M. Lavker, The anatomy and pathogenesis of wrinkles., Br. J. Dermatol. 113 (1985) 37–42. doi:10.1111/j.1365-2133.1985.tb02042.x.

[7] J.L. Contet-Audonneau, C. Jeanmaire, G. Pauly, A histological study of human wrinkle structures: Comparison between sun-exposed areas of the face, with or without wrinkles, and sun-protected areas, Br. J. Dermatol. 140 (1999) 1038–1047. doi:10.1046/j.1365-2133.1999.02901.x.

[8] R. Arking, The biology of aging: observations and principles, 2006. doi:10.1080/03601270701498491.

[9] R. Buffa, G.U. Floris, P.F. Putzu, E. Marini, Body composition variations in ageing., Coll. Antropol. 35 (2011) 259–265.

[10] T. Niccoli, L. Partridge, Ageing as a risk factor for disease, Curr. Biol. 22 (2012). doi:10.1016/j.cub.2012.07.024.

[11] M. Stanton, The High Concentration of U.S. Health Care Expenditures, Res. Action, Rockville, MD Agency Healthc. Res. Qual. (2006).

[12] R. Lee, The Demographic Transition: Three Centuries of Fundamental Change, J. Econ. Perspect. 17 (2003) 167–190. doi:10.1257/089533003772034943.

[13] L.E. Hebert, P.A. Scherr, L.A. Beckett, M.S. Albert, D.M. Pilgrim, M.J. Chown, et al., Age-specific incidence of Alzheimer’s disease in a community population., JAMA. 273 (1995) 1354–1359. doi:10.1001/jama.1995.03520410048025.

Page 4: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

134

Bibliography

B

[14] J.P. de Magalhães, How ageing processes influence cancer., Nat. Rev. Cancer. 13 (2013) 357–65. doi:10.1038/nrc3497.

[15] T. Craig, C. Smelick, R. Tacutu, D. Wuttke, S.H. Wood, H. Stanley, et al., The Digital Ageing Atlas: integrating the diversity of age-related changes into a unified resource, Nucleic Acids Res. 43 (2014) D873–D878. doi:10.1093/nar/gku843.

[16] M.-G. Hong, A.J. Myers, P.K.E. Magnusson, J.A. Prince, Transcriptome-wide assessment of human brain and lymphocyte senescence., PLoS One. 3 (2008) e3024. doi:10.1371/journal.pone.0003024.

[17] G.E.J. Rodwell, R. Sonu, J.M. Zahn, J. Lund, J. Wilhelmy, L. Wang, et al., A transcriptional profile of aging in the human kidney, PLoS Biol. 2 (2004). doi:10.1371/journal.pbio.0020427.

[18] J.M. Zahn, R. Sonu, H. Vogel, E. Crane, K. Mazan-Mamczarz, R. Rabkin, et al., Transcriptional profiling of aging in human muscle reveals a common aging signature, PLoS Genet. 2 (2006) 1058–1069. doi:10.1371/journal.pgen.0020115.

[19] J.P. de Magalhães, J. Curado, G.M. Church, Meta-analysis of age-related gene expression profiles identifies common signatures of aging, Bioinformatics. 25 (2009) 875–881. doi:10.1093/bioinformatics/btp073.

[20] T. Lu, Y. Pan, S.-Y. Kao, C. Li, I. Kohane, J. Chan, et al., Gene regulation and DNA damage in the ageing human brain., Nature. 429 (2004) 883–891. doi:10.1038/nature02661.

[21] C. Colantuoni, B.K. Lipska, T. Ye, T.M. Hyde, R. Tao, J.T. Leek, et al., Temporal dynamics and genetic control of transcription in the human prefrontal cortex, Nature. 478 (2011) 519–523. doi:10.1038/nature10524.

[22] O.R. Jones, A. Scheuerlein, R. Salguero-Gómez, C.G. Camarda, R. Schaible, B.B. Casper, et al., Diversity of ageing across the tree of life., Nature. 505 (2014) 169–73. doi:10.1038/nature12789.

[23] A.M. Valdes, D. Glass, T.D. Spector, Omics technologies and the study of human ageing., Nat. Rev. Genet. 14 (2013) 601–7. doi:10.1038/nrg3553.

[24] B.M. Wasko, M. Kaeberlein, Yeast replicative aging: a paradigm for defining conserved longevity interventions, 14 (2014) 148–159. doi:10.1111/1567-1364.12104.

[25] S.S. Lee, I.A. Vizcarra, D.H.E.W. Huberts, L.P. Lee, M. Heinemann, Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform, Proc. Natl. Acad. Sci. 109 (2012) 4916–4920. doi:10.1073/pnas.1113505109.

Page 5: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

135

A system wide view of replicative aging in budding yeast

B

[26] M.M. Crane, I.B.N. Clark, E. Bakker, S. Smith, P.S. Swain, A microfluidic system for studying ageing and dynamic single-cell responses in budding yeast, PLoS One. 9 (2014) 1–10. doi:10.1371/journal.pone.0100042.

[27] G. Janssens, A. Meinema, J. González, J. Wolters, A. Schmidt, V. Guryev, et al., Protein Biogenesis Machinery is a Driver of Replicative Aging in Yeast, Elife. (2015). doi:10.7554/eLife.08527.

[28] B.K. Kennedy, M. Kaeberlein, Hot topics in aging research: Protein translation, 2009, Aging Cell. 8 (2009) 617–623. doi:10.1111/j.1474-9726.2009.00522.x.

[29] K.K. Steffen, V.L. MacKay, E.O. Kerr, M. Tsuchiya, D. Hu, L.A. Fox, et al., Yeast Life Span Extension by Depletion of 60S Ribosomal Subunits Is Mediated by Gcn4, Cell. 133 (2008) 292–302. doi:10.1016/j.cell.2008.02.037.

[30] M. Kaeberlein, R.W. Powers, K.K. Steffen, E.A. Westman, D. Hu, N. Dang, et al., Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients., Science. 310 (2005) 1193–1196. doi:10.1126/science.1115535.

[31] S.C. Johnson, P.S. Rabinovitch, M. Kaeberlein, mTOR is a key modulator of ageing and age-related disease., Nature. 493 (2013) 338–45. doi:10.1038/nature11861.

[32] D.H.E.W. Huberts, G.E. Janssens, S.S. Lee, I.A. Vizcarra, M. Heinemann, Continuous High-resolution Microscopic Observation of Replicative Aging in Budding Yeast., J. Vis. Exp. (2013) e50143. doi:10.3791/50143.

[33] D.H.E.W. Huberts, S.S. Lee, J. Gonzáles, G.E. Janssens, I.A. Vizcarra, M. Heinemann, Construction and use of a microfluidic dissection platform for long-term imaging of cellular processes in budding yeast., Nat. Protoc. 8 (2013) 1019–27. doi:10.1038/nprot.2013.060.

[34] C. López-Otín, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer, XThe hallmarks of aging, Cell. 153 (2013). doi:10.1016/j.cell.2013.05.039.

[35] A. Friede, J.A. Reid, H.W. Ory, CDC WONDER: a comprehensive on-line public health information system of the Centers for Disease Control and Prevention, Am J Public Heal. 83 (1993) 1289–1294. doi:10.2105/AJPH.83.9.1289.

[36] D.H.E.W. Huberts, J. González, S.S. Lee, A. Litsios, G. Hubmann, E.C. Wit, et al., Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae., Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 11727–11731. doi:10.1073/pnas.1410024111.

Page 6: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

136

Bibliography

B

[37] J.P. de Magalhães, D. Wuttke, S.H. Wood, M. Plank, C. Vora, Genome-environment interactions that modulate aging: powerful targets for drug discovery., Pharmacol. Rev. 64 (2012) 88–101. doi:10.1124/pr.110.004499.

[38] P.B. Medawar, An Unsolved Problem of Biology, Evol. Heal. Dis. (1952) 24.

[39] M. A. McCormick, B. K. Kennedy, Genome-Scale Studies of Aging: Challenges and Opportunities, Curr. Genomics. 13 (2012) 500–507. doi:10.2174/138920212803251454.

[40] A.E. Webb, A. Brunet, FOXO transcription factors: Key regulators of cellular quality control, Trends Biochem. Sci. 39 (2014) 159–169. doi:10.1016/j.tibs.2014.02.003.

[41] M. Lagouge, N.-G. Larsson, The role of mitochondrial DNA mutations and free radicals in disease and ageing., J. Intern. Med. 273 (2013) 529–43. doi:10.1111/joim.12055.

[42] N. Barzilai, D.M. Huffman, R.H. Muzumdar, A. Bartke, The critical role of metabolic pathways in aging, Diabetes. 61 (2012) 1315–1322. doi:10.2337/db11-1300.

[43] R.K. Mortimer, J.R. Johnston, Life span of individual yeast cells., Nature. 183 (1959) 1751–1752. doi:10.1038/1831751a0.

[44] A. Denoth-Lippuner, T. Julou, Y. Barral, Budding yeast as a model organism to study the effects of age, FEMS Microbiol. Rev. 38 (2014) 300–325. doi:10.1111/1574-6976.12060.

[45] N.K. Egilmez, J.B. Chen, S.M. Jazwinski, Specific alterations in transcript prevalence during the yeast life span, J. Biol. Chem. 264 (1989) 14312–14317.

[46] S.S. Lin, J.K. Manchester, J.I. Gordon, Enhanced Gluconeogenesis and Increased Energy Storage as Hallmarks of Aging in Saccharomyces cerevisiae, J. Biol. Chem. 276 (2001) 36000–36007. doi:10.1074/jbc.M103509200.

[47] I. Lesur, J.L. Campbell, The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells., Mol. Biol. Cell. 15 (2004) 1297–1312. doi:10.1091/mbc.E03-10-0742.

[48] A. Koc, A.P. Gasch, J.C. Rutherford, H.-Y. Kim, V.N. Gladyshev, Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging., Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 7999–8004. doi:10.1073/pnas.0307929101.

Page 7: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

137

A system wide view of replicative aging in budding yeast

B

[49] G. Yiu, A. McCord, A. Wise, R. Jindal, J. Hardee, A. Kuo, et al., Pathways change in expression during replicative aging in Saccharomyces cerevisiae., J. Gerontol. A. Biol. Sci. Med. Sci. 63 (2008) 21–34. doi:63/1/21 [pii].

[50] T. Smeal, J. Claus, B. Kennedy, F. Cole, L. Guarente, Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae, Cell. 84 (1996) 633–642. doi:10.1016/S0092-8674(00)81038-7.

[51] N.K. Egilmez, J.B. Chen, S.M. Jazwinski, Preparation and partial characterization of old yeast cells., J. Gerontol. 45 (1990) B9–B17. doi:10.1093/geronj/45.1.B9.

[52] C.D. Powell, D.E. Quain, K.A. Smart, Chitin scar breaks in aged Saccharomyces cerevisiae, Microbiology. 149 (2003) 3129–3137. doi:10.1099/mic.0.25940-0.

[53] G.E. Janssens, A.C. Meinema, J. González, J.C. Wolters, A. Schmidt, V. Guryev, et al., Proteome data acquired during replicative aging of S. cerevisiae, (2015). doi:10.6019/PXD001714.

[54] G.E. Janssens, A.C. Meinema, J. González, J.C. Wolters, A. Schmidt, V. Guryev, et al., Transcriptome data acquired during replicative aging of S. cerevisiae, (2015) EBI ArrayExpress accession E–MTAB–3605.

[55] B.K. Kennedy, N.R. Austriaco, L. Guarente, Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span, J. Cell Biol. 127 (1994) 1985–1993. doi:10.1083/jcb.127.6.1985.

[56] S.F. Levy, N. Ziv, M.L. Siegal, Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant, PLoS Biol. 10 (2012). doi:10.1371/journal.pbio.1001325.

[57] N. Erjavec, L. Larsson, J. Grantham, T. Nyström, Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p, Genes Dev. 21 (2007) 2410–2421. doi:10.1101/gad.439307.

[58] A.L. Hughes, D.E. Gottschling, An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast., Nature. 492 (2012) 261–5. doi:10.1038/nature11654.

[59] Y. Zhang, C. Luo, K. Zou, Z. Xie, O. Brandman, Q. Ouyang, et al., Single Cell Analysis of Yeast Replicative Aging Using a New Generation of Microfluidic Device, PLoS One. 7 (2012). doi:10.1371/journal.pone.0048275.

Page 8: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

138

Bibliography

B

[60] C.L. Lord, B.L. Timney, M.P. Rout, S.R. Wente, Altering nuclear pore complex function impacts longevity and mitochondrial function in S. cerevisiae, J. Cell Biol. 208 (2015) 729–744. doi:10.1083/jcb.201412024.

[61] A. Denoth-Lippuner, M.K. Krzyzanowski, C. Stober, Y. Barral, Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing, Elife. 3 (2014) 1–33. doi:10.7554/eLife.03790.

[62] A. Eldakak, G. Rancati, B. Rubinstein, P. Paul, V. Conaway, R. Li, Asymmetrically inherited multidrug resistance transporters are recessive determinants in cellular replicative ageing., Nat. Cell Biol. 12 (2010) 799–805. doi:10.1038/ncb2085.

[63] J. Sun, S.P. Kale, A.M. Childress, C. Pinswasdi, S.M. Jazwinski, Divergent roles of RAS1 and RAS2 in yeast longevity, J. Biol. Chem. 269 (1994) 18638–18645.

[64] G. Csárdi, A. Franks, D.S. Choi, E.M. Airoldi, D.A. Drummond, Accounting for Experimental Noise Reveals That mRNA Levels , Amplified by Post- Transcriptional Processes , Largely Determine Steady-State Protein Levels in Yeast, (2015) 1–32. doi:10.5061/dryad.rg367.

[65] R. Opgen-Rhein, K. Strimmer, From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data., BMC Syst. Biol. 1 (2007) 37. doi:10.1186/1752-0509-1-37.

[66] G. Csardi, T. Nepusz, The igraph software package for complex network research, InterJournal. Complex Sy (2006) 1695. doi:citeulike-article-id:3443126.

[67] D.H.E.W. Huberts, B. Niebel, M. Heinemann, A flux-sensing mechanism could regulate the switch between respiration and fermentation, FEMS Yeast Res. 12 (2012) 118–128. doi:10.1111/j.1567-1364.2011.00767.x.

[68] J.M. Cherry, E.L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley, E.T. Chan, et al., Saccharomyces Genome Database: The genomics resource of budding yeast, Nucleic Acids Res. 40 (2012). doi:10.1093/nar/gkr1029.

[69] N.T. Ingolia, S. Ghaemmaghami, J.R.S. Newman, J.S. Weissman, Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling., Science. 324 (2009) 218–223. doi:10.1126/science.1168978.

[70] A. Belle, A. Tanay, L. Bitincka, R. Shamir, E.K. O’Shea, Quantification of protein half-lives in the budding yeast proteome., Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 13004–13009. doi:10.1073/pnas.0605420103.

Page 9: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

139

A system wide view of replicative aging in budding yeast

B

[71] P. Laun, A. Pichova, F. Madeo, J. Fuchs, A. Ellinger, S. Kohlwein, et al., Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis, Mol. Microbiol. 39 (2001) 1166–1173. doi:10.1046/j.1365-2958.2001.02317.x.

[72] Z. Hu, K. Chen, Z. Xia, M. Chavez, S. Pal, J.H. Seol, et al., Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging, Genes Dev. 28 (2014) 396–408. doi:10.1101/gad.233221.113.

[73] A.M. Cuervo, Autophagy and aging: keeping that old broom working, Trends Genet. 24 (2008) 604–612. doi:10.1016/j.tig.2008.10.002.

[74] P. Fabrizio, F. Pozza, S.D. Pletcher, C.M. Gendron, V.D. Longo, Regulation of longevity and stress resistance by Sch9 in yeast., Science. 292 (2001) 288–290. doi:10.1126/science.1059497.

[75] T. Vellai, K. Takacs-Vellai, Y. Zhang, A.L. Kovacs, L. Orosz, F. Müller, Genetics: influence of TOR kinase on lifespan in C. elegans., Nature. 426 (2003) 620. doi:10.1038/426620a.

[76] K.Z. Pan, J.E. Palter, A.N. Rogers, A. Olsen, D. Chen, G.J. Lithgow, et al., Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans, Aging Cell. 6 (2007) 111–119. doi:10.1111/j.1474-9726.2006.00266.x.

[77] P. Kapahi, B.M. Zid, T. Harper, D. Koslover, V. Sapin, S. Benzer, Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway, Curr. Biol. 14 (2004) 885–890. doi:10.1016/j.cub.2004.03.059.

[78] D.W. Lamming, L. Ye, P. Katajisto, M.D. Goncalves, M. Saitoh, D.M. Stevens, et al., Rapamycin-Induced Insulin Resistance Is Mediated by mTORC2 Loss and Uncoupled from Longevity, Science (80-. ). 335 (2012) 1638–1643. doi:10.1126/science.1215135.

[79] C. Selman, J.M.A. Tullet, D. Wieser, E. Irvine, S.J. Lingard, A.I. Choudhury, et al., Ribosomal protein S6 kinase 1 signaling regulates mammalian life span., Science. 326 (2009) 140–144. doi:10.1126/science.1177221.

[80] M. Hansen, S. Taubert, D. Crawford, N. Libina, S.J. Lee, C. Kenyon, Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans, Aging Cell. 6 (2007) 95–110. doi:10.1111/j.1474-9726.2006.00267.x.

[81] A.B. Canelas, N. Harrison, A. Fazio, J. Zhang, J.-P. Pitkänen, J. van den Brink, et al., Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains., Nat. Commun. 1 (2010) 145. doi:10.1038/ncomms1150.

Page 10: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

140

Bibliography

B

[82] C. Verduyn, E. Postma, W.A. Scheffers, J.P. Van Dijken, Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation, Yeast. 8 (1992) 501–517. doi:10.1002/yea.320080703.

[83] B. MacLean, D.M. Tomazela, N. Shulman, M. Chambers, G.L. Finney, B. Frewen, et al., Skyline: An open source document editor for creating and analyzing targeted proteomics experiments, Bioinformatics. 26 (2010) 966–968. doi:10.1093/bioinformatics/btq054.

[84] T. Glatter, C. Ludwig, E. Ahrné, R. Aebersold, A.J.R. Heck, A. Schmidt, Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion, J. Proteome Res. 11 (2012) 5145–5156. doi:10.1021/pr300273g.

[85] External-RNA-Controls-Consortium, Proposed methods for testing and selecting the ERCC external RNA controls., BMC Genomics. 6 (2005) 150. doi:10.1186/1471-2164-6-150.

[86] A. Zeileis, G. Grothendieck, ZOO: S3 Infrastructure for Regular and Irregular Time Series, J. Stat. Softw. 14 (2005) 1–27.

[87] R. Core Development Team, R: A Language and Environment for Statistical Computing, (2014). http://www.r-project.org/.

[88] D.W. Huang, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources., Nat. Protoc. 4 (2009) 44–57. doi:10.1038/nprot.2008.211.

[89] I. Fellows, Word Clouds, R Packag. Version 2.5. (2014). http://cran.r-project.org/package=wordcloud.

[90] A.A. Kalaitzis, N.D. Lawrence, A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression., BMC Bioinformatics. 12 (2011) 180. doi:10.1186/1471-2105-12-180.

[91] J. Schaefer, R. Opgen-Rhein, K. Strimmer, GeneNet: Modeling and Inferring Gene Networks, (2015). http://cran.r-project.org/package=GeneNet.

[92] M.E.J. Newman, Finding community structure in networks using the eigenvectors of matrices, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 74 (2006). doi:10.1103/PhysRevE.74.036104.

[93] L.N. Trefethen, D. Bau III, Numerical linear algebra, 1997. doi:10.1137/1.9780898719574.

Page 11: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

141

A system wide view of replicative aging in budding yeast

B

[94] C.L. Lawson, R.J. Hanson, Solving least squares problems, 1995. doi:10.2307/2005340.

[95] K.M. Mullen, I.H.M. van Stokkum, nnls: The Lawson-Hanson algorithm for non-negative least squares (NNLS), (2012). http://cran.r-project.org/package=nnls.

[96] J. Schäfer, K. Strimmer, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics., Stat. Appl. Genet. Mol. Biol. 4 (2005) Article32. doi:10.2202/1544-6115.1175.

[97] S. Falcon, R. Gentleman, Using GOstats to test gene lists for GO term association, Bioinformatics. 23 (2007) 257–258. doi:10.1093/bioinformatics/btl567.

[98] M. Carlson, org.Sc.sgd.db: Genome wide annotation for Yeast, (n.d.).

[99] C.E. Finch, R.E. Tanzi, Genetics of aging, Science (80-. ). 278 (1997) 407–411. doi:10.1126/science.278.5337.407.

[100] S.L. Rea, D. Wu, J.R. Cypser, J.W. Vaupel, T.E. Johnson, A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans., Nat. Genet. 37 (2005) 894–898. doi:10.1038/ng1608.

[101] Z. Pincus, T. Smith-Vikos, F.J. Slack, MicroRNA predictors of longevity in caenorhabditis elegans, PLoS Genet. 7 (2011). doi:10.1371/journal.pgen.1002306.

[102] J.R. Delaney, A. Chou, B. Olsen, D. Carr, C. Murakami, U. Ahmed, et al., End-of-life cell cycle arrest contributes to stochasticity of yeast replicative aging, FEMS Yeast Res. 13 (2013) 267–276. doi:10.1111/1567-1364.12030.

[103] X. Manière, a. Krisko, F.X. Pellay, J.-M. Di Meglio, P. Hersen, I. Matic, High transcript levels of heat-shock genes are associated with shorter lifespan of Caenorhabditis elegans, Exp. Gerontol. 60 (2014) 12–17. doi:10.1016/j.exger.2014.09.005.

[104] A.A. Barton, Some Aspects of Cell Division in Saccharomyces cerevisiae, J. Gen. Microbiol. 4 (1950) 84–86. doi:10.1099/00221287-4-1-84.

[105] Z. Xie, Y. Zhang, K. Zou, O. Brandman, C. Luo, Q. Ouyang, et al., Molecular phenotyping of aging in single yeast cells using a novel microfluidic device, Aging Cell. 11 (2012) 599–606. doi:10.1111/j.1474-9726.2012.00821.x.

[106] S. Fehrmann, C. Paoletti, Y. Goulev, A. Ungureanu, H. Aguilaniu, G. Charvin, Aging yeast cells undergo a sharp entry into senescence unrelated to the loss of mitochondrial membrane potential, Cell Rep. 5 (2013) 1589–1599. doi:10.1016/j.celrep.2013.11.013.

Page 12: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

142

Bibliography

B

[107] F. Moretto, I. Sagot, B. Daignan-Fornier, B. Pinson, A pharmaco-epistasis strategy reveals a new cell size controlling pathway in yeast., Mol. Syst. Biol. 9 (2013) 707. doi:10.1038/msb.2013.60.

[108] C. He, S.K. Tsuchiyama, Q.T. Nguyen, E.N. Plyusnina, S.R. Terrill, S. Sahibzada, et al., Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import, PLoS Genet. 10 (2014) e1004860. doi:10.1371/journal.pgen.1004860.

[109] A.R.D. Ganley, M. Breitenbach, B.K. Kennedy, T. Kobayashi, Yeast hypertrophy: Cause or consequence of aging? Reply to Bilinski et al, FEMS Yeast Res. 12 (2012) 267–268. doi:10.1111/j.1567-1364.2012.00796.x.

[110] M. Kaeberlein, Hypertrophy and senescence factors in yeast aging. A reply to Bilinski et al., FEMS Yeast Res. 12 (2012) 269–270. doi:10.1111/j.1567-1364.2012.00798.x.

[111] J. Yang, H. Dungrawala, H. Hua, A. Manukyan, L. Abraham, W. Lane, et al., Cell size and growth rate are major determinants of replicative lifespan., Cell Cycle. 10 (2011) 144–155. doi:10.4161/cc.10.1.14455.

[112] T. Biliński, R. Zadrag-Tecza, G. Bartosz, Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast, FEMS Yeast Res. 12 (2012) 97–101. doi:10.1111/j.1567-1364.2011.00759.x.

[113] R. Zadrag, M. Kwolek-Mirek, G. Bartosz, T. Bilinski, Relationship between the replicative age and cell volume in Saccharomyces cerevisiae, Acta Biochim. Pol. 53 (2006) 747–751. doi:20061338A [pii].

[114] J.R. Delaney, C.J. Murakami, B. Olsen, B.K. Kennedy, M. Kaeberlein, Quantitative evidence for early life fitness defects from 32 longevity-associated alleles in yeast, Cell Cycle. 10 (2011) 156–165. doi:10.4161/cc.10.1.14457.

[115] Z. Xie, K.A. Jay, D.L. Smith, Y. Zhang, Z. Liu, J. Zheng, et al., Early Telomerase Inactivation Accelerates Aging Independently of Telomere Length, Cell. 160 (2015) 928–939. doi:10.1016/j.cell.2015.02.002.

[116] D. Rudra, J.R. Warner, What better measure than ribosome synthesis?, Genes Dev. 18 (2004) 2431–2436. doi:10.1101/gad.1256704.

[117] P. Jorgensen, I. Rupeš, J.R. Sharom, L. Schneper, J.R. Broach, M. Tyers, A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size, Genes Dev. 18 (2004) 2491–2505. doi:10.1101/gad.1228804.

[118] M.C. Jo, W. Liu, L. Gu, W. Dang, L. Qin, High-throughput analysis of yeast replicative aging using a microfluidic system, Proc. Natl. Acad. Sci. (2015) 201510328. doi:10.1073/pnas.1510328112.

Page 13: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

143

A system wide view of replicative aging in budding yeast

B

[119] J.M. Skotheim, S. Di Talia, E.D. Siggia, F.R. Cross, Positive feedback of G1 cyclins ensures coherent cell cycle entry., Nature. 454 (2008) 291–296. doi:10.1038/nature07118.

[120] W.-K. Huh, J. V Falvo, L.C. Gerke, A.S. Carroll, R.W. Howson, J.S. Weissman, et al., Global analysis of protein localization in budding yeast., Nature. 425 (2003) 686–691. doi:10.1038/nature02026.

[121] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods. 9 (2012) 671–675. doi:10.1038/nmeth.2089.

[122] T. Therneau, A Package for Survival Analysis in S. R package version, Survival (Lond). (2012). http://r-forge.r-project.org.

[123] G.R. Warnes, gplots: Various R programming tools for plotting data, J. Phycol. 33 (2012) 569–575. doi:10.1111/j.0022-3646.1997.00569.x.

[124] Y. Xia, G.M. Whitesides, SOFT LITHOGRAPHY, Annu. Rev. Mater. Sci. 28 (1998) 153–184. doi:10.1146/annurev.matsci.28.1.153.

[125] A. Mata, A.J. Fleischman, S. Roy, Fabrication of multi-layer SU-8 microstructures, J. Micromechanics Microengineering. 16 (2006) 276–284. doi:10.1088/0960-1317/16/2/012.

[126] Y. Huang, B. Agrawal, P. a Clark, J.C. Williams, J.S. Kuo, Evaluation of cancer stem cell migration using compartmentalizing microfluidic devices and live cell imaging., J. Vis. Exp. (2011) e3297. doi:10.3791/3297.

[127] C.Q. Scheckhuber, N. Erjavec, a Tinazli, a Hamann, T. Nyström, H.D. Osiewacz, Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models., Nat. Cell Biol. 9 (2007) 99–105. doi:10.1038/ncb1524.

[128] K.A. Steinkraus, M. Kaeberlein, B.K. Kennedy, Replicative aging in yeast: the means to the end., Annu. Rev. Cell Dev. Biol. 24 (2008) 29–54. doi:10.1146/annurev.cellbio.23.090506.123509.

[129] P. Fabrizio, V.D. Longo, The chronological life span of Saccharomyces cerevisiae., Methods Mol. Biol. 371 (2007) 89–95. doi:10.1007/978-1-59745-361-5_8.

[130] V.D. Longo, G.S. Shadel, M. Kaeberlein, B. Kennedy, Replicative and chronological aging in saccharomyces cerevisiae, Cell Metab. 16 (2012) 18–31. doi:10.1016/j.cmet.2012.06.002.

Page 14: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

144

Bibliography

B

[131] P. Laun, L. Ramachandran, S. Jarolim, E. Herker, P. Liang, J. Wang, et al., A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae, in: FEMS Yeast Res., 2005: pp. 1261–1272. doi:10.1016/j.femsyr.2005.07.006.

[132] I.M. Conboy, T.A. Rando, Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches, 11 (2012) 2260–2267. doi:10.4161/cc.20437.

[133] N.R. Austriaco, L.P. Guarente, Changes of telomere length cause reciprocal changes in the lifespan of mother cells in Saccharomyces cerevisiae., Proc. Natl. Acad. Sci. U. S. A. 94 (1997) 9768–9772. doi:10.1073/pnas.94.18.9768.

[134] S. Kim, B. Villeponteau, S.M. Jazwinski, Effect of replicative age on transcriptional silencing near telomeres in Saccharomyces cerevisiae., Biochem. Biophys. Res. Commun. 219 (1996) 370–376. doi:10.1006/bbrc.1996.0240.

[135] N.P. D’Mello, S.M. Jazwinski, Telomere length constancy during aging of Saccharomyces cerevisiae, J. Bacteriol. 173 (1991) 6709–6713.

[136] I. Müller, Parental age and the life-span of zygotes of Saccharomyces cerevisiae, Antonie Van Leeuwenhoek. 51 (1985) 1–10. doi:10.1007/BF00444223.

[137] S.-C. Mei, C. Brenner, Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous., PLoS Biol. 13 (2015) e1002048. doi:10.1371/journal.pbio.1002048.

[138] J. Vijg, Y. Suh, Genome instability and aging., Annu. Rev. Physiol. 75 (2013) 645–68. doi:10.1146/annurev-physiol-030212-183715.

[139] G. FAILLA, The aging process and cancerogenesis., Ann. N. Y. Acad. Sci. 71 (1958) 1124–1140. doi:10.1111/j.1749-6632.1958.tb54674.x.

[140] L. Szilard, On the nature of the aging process, (1958) 30–45. doi:10.1073/pnas.45.1.30.

[141] J.H.J. Hoeijmakers, DNA damage, aging, and cancer., N. Engl. J. Med. 361 (2009) 1475–1485. doi:10.1056/NEJMra0804615.

[142] A.A. Moskalev, M. V. Shaposhnikov, E.N. Plyusnina, A. Zhavoronkov, A. Budovsky, H. Yanai, et al., The role of DNA damage and repair in aging through the prism of Koch-like criteria, Ageing Res. Rev. 12 (2013) 661–684. doi:10.1016/j.arr.2012.02.001.

Page 15: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

145

A system wide view of replicative aging in budding yeast

B

[143] C.R. Burtner, B.K. Kennedy, Progeria syndromes and ageing: what is the connection?, Nat. Rev. Mol. Cell Biol. 11 (2010) 567–578. doi:10.1038/nrm2944.

[144] R.D. Kolodner, C.D. Putnam, K. Myung, Maintenance of genome stability in Saccharomyces cerevisiae., Science. 297 (2002) 552–557. doi:10.1126/science.1075277.

[145] M. McVey, M. Kaeberlein, H.A. Tissenbaum, L. Guarente, The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination, Genetics. 157 (2001) 1531–1542.

[146] L.L.M. Hoopes, M. Budd, W. Choe, T. Weitao, J.L. Campbell, Mutations in DNA replication genes reduce yeast life span., Mol. Cell. Biol. 22 (2002) 4136–4146. doi:10.1128/MCB.22.12.4136-4146.2002.

[147] M. a McMurray, D.E. Gottschling, An age-induced switch to a hyper-recombinational state., Science. 301 (2003) 1908–11. doi:10.1126/science.1087706.

[148] S. Gravel, S.P. Jackson, Increased genome instability in aging yeast., Cell. 115 (2003) 1–2. http://www.ncbi.nlm.nih.gov/pubmed/14531992.

[149] A. Kaya, A. V. Lobanov, V.N. Gladyshev, Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae, Aging Cell. (2014). doi:10.1111/acel.12290.

[150] D.A. Sinclair, L. Guarente, Extrachromosomal rDNA circles - A cause of aging in yeast, Cell. 91 (1997) 1033–1042. doi:10.1016/S0092-8674(00)80493-6.

[151] P.A. Defossez, R. Prusty, M. Kaeberlein, S.J. Lin, P. Ferrigno, P.A. Silver, et al., Elimination of replication block protein Fob1 extends the life span of yeast mother cells, Mol. Cell. 3 (1999) 447–455. doi:10.1016/S1097-2765(00)80472-4.

[152] A.A. Falcón, J.P. Aris, Plasmid accumulation reduced life span in Saccharomyces cerevisiae, J. Biol. Chem. 278 (2003) 41607–41617. doi:10.1074/jbc.M307025200.

[153] T. Kobayashi, A new role of the rDNA and nucleolus in the nucleus - RDNA instability maintains genome integrity, BioEssays. 30 (2008) 267–272. doi:10.1002/bies.20723.

[154] A.R.D. Ganley, S. Ide, K. Saka, T. Kobayashi, The Effect of Replication Initiation on Gene Amplification in the rDNA and Its Relationship to Aging, Mol. Cell. 35 (2009) 683–693. doi:10.1016/j.molcel.2009.07.012.

Page 16: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

146

Bibliography

B

[155] K. Saka, S. Ide, A.R.D. Ganley, T. Kobayashi, Cellular senescence in yeast is regulated by rDNA noncoding transcription, Curr. Biol. 23 (2013) 1794–1798. doi:10.1016/j.cub.2013.07.048.

[156] E.X. Kwan, E.J. Foss, S. Tsuchiyama, G.M. Alvino, L. Kruglyak, M. Kaeberlein, et al., A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan., PLoS Genet. 9 (2013) e1003329. doi:10.1371/journal.pgen.1003329.

[157] A.R.D. Ganley, T. Kobayashi, Ribosomal DNA and cellular senescence: New evidence supporting the connection between rDNA and aging, FEMS Yeast Res. 14 (2014) 49–59. doi:10.1111/1567-1364.12133.

[158] R. Sweeney, V.A. Zakian, Extrachromosomal elements cause a reduced division potential in nib 1 strains of Saccharomyces cerevisiae., Genetics. 122 (1989) 749–757.

[159] B. Sarg, E. Koutzamani, W. Helliger, I. Rundquist, H.H. Lindner, Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging, J. Biol. Chem. 277 (2002) 39195–39201. doi:10.1074/jbc.M205166200.

[160] I. Cheung, H.P. Shulha, Y. Jiang, A. Matevossian, J. Wang, Z. Weng, et al., Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex., Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 8824–8829. doi:10.1073/pnas.1001702107.

[161] M.F. Fraga, M. Esteller, Epigenetics and aging: the targets and the marks, Trends Genet. 23 (2007) 413–418. doi:10.1016/j.tig.2007.05.008.

[162] S. Han, A. Brunet, Histone methylation makes its mark on longevity, Trends Cell Biol. 22 (2012) 42–49. doi:10.1016/j.tcb.2011.11.001.

[163] E.L. Greer, T.J. Maures, A.G. Hauswirth, E.M. Green, D.S. Leeman, G.S. Maro, et al., Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans., Nature. 466 (2010) 383–387. doi:10.1038/nature09195.

[164] A.P. Siebold, R. Banerjee, F. Tie, D.L. Kiss, J. Moskowitz, P.J. Harte, Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance., Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 169–174. doi:10.1073/pnas.0907739107.

[165] C. Jin, J. Li, C.D. Green, X. Yu, X. Tang, D. Han, et al., Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway, Cell Metab. 14 (2011) 161–172. doi:10.1016/j.cmet.2011.07.001.

Page 17: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

147

A system wide view of replicative aging in budding yeast

B

[166] R.E. Marioni, S. Shah, A.F. McRae, B.H. Chen, E. Colicino, S.E. Harris, et al., DNA methylation age of blood predicts all-cause mortality in later life, Genome Biol. 16 (2015) 1–12. doi:10.1186/s13059-015-0584-6.

[167] M.J. Jones, S.J. Goodman, M.S. Kobor, DNA methylation and healthy human aging, Aging Cell. (2015) n/a–n/a. doi:10.1111/acel.12349.

[168] M. Kaeberlein, M. McVey, L. Guarente, The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms, Genes Dev. 13 (1999) 2570–2580. doi:10.1101/gad.13.19.2570.

[169] L. Guarente, Sirtuins, aging, and metabolism, Cold Spring Harb. Symp. Quant. Biol. 76 (2011) 81–90. doi:10.1101/sqb.2011.76.010629.

[170] W. Dang, K.K. Steffen, R. Perry, J.A. Dorsey, F.B. Johnson, A. Shilatifard, et al., Histone H4 lysine 16 acetylation regulates cellular lifespan., Nature. 459 (2009) 802–807. doi:10.1038/nature08085.

[171] N. Suka, K. Luo, M. Grunstein, Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin, Nat Genet. 32 (2002) 378–383. doi:10.1038/ng1017\rng1017 [pii].

[172] M.A. McCormick, A.G. Mason, S.J. Guyenet, W. Dang, R.M. Garza, M.K. Ting, et al., The SAGA Histone Deubiquitinase Module Controls Yeast Replicative Lifespan via Sir2 Interaction, Cell Rep. 8 (2014) 477–486. doi:10.1016/j.celrep.2014.06.037.

[173] J. Feser, D. Truong, C. Das, J.J. Carson, J. Kieft, T. Harkness, et al., Elevated Histone Expression Promotes Life Span Extension, Mol. Cell. 39 (2010) 724–735. doi:10.1016/j.molcel.2010.08.015.

[174] F. Capuano, M. Mülleder, R. Kok, H.J. Blom, M. Ralser, Cytosine DNA methylation is found in drosophila melanogaster but absent in saccharomyces cerevisiae, schizosaccharomyces pombe, and other yeast species, Anal. Chem. 86 (2014) 3697–3702. doi:10.1021/ac500447w.

[175] I. Saez, D. Vilchez, The Mechanistic Links Between Proteasome Activity, Aging and Age-related Diseases., Curr. Genomics. 15 (2014) 38–51. doi:10.2174/138920291501140306113344.

[176] H. Koga, S. Kaushik, A.M. Cuervo, Protein Homeostasis and Aging: the importance of exquisite quality control, Ageing Res. Rev. 10 (2012) 205–215. doi:10.1016/j.arr.2010.02.001.Protein.

[177] S.K. Calderwood, A. Murshid, T. Prince, The shock of aging: Molecular chaperones and the heat shock response in longevity and aging - A mini-review, Gerontology. 55 (2009) 550–558. doi:10.1159/000225957.

Page 18: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

148

Bibliography

B

[178] G. Morrow, M. Samson, S. Michaud, R.M. Tanguay, Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress., FASEB J. 18 (2004) 598–599. doi:10.1096/fj.03-0860fje.

[179] G.A. Walker, G.J. Lithgow, Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals., Aging Cell. 2 (2003) 131–139. doi:10.1046/j.1474-9728.2003.00045.x.

[180] W.C. Chiang, T.T. Ching, H.C. Lee, C. Mousigian, A.L. Hsu, HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity, Cell. 148 (2012) 322–334. doi:10.1016/j.cell.2011.12.019.

[181] A.-L. Hsu, C.T. Murphy, C. Kenyon, Regulation of aging and age-related disease by DAF-16 and heat-shock factor., Science. 300 (2003) 1142–1145. doi:10.1126/science.1083701.

[182] J.-O. Pyo, S.-M. Yoo, H.-H. Ahn, J. Nah, S.-H. Hong, T.-I. Kam, et al., Overexpression of Atg5 in mice activates autophagy and extends lifespan., Nat. Commun. 4 (2013) 2300. doi:10.1038/ncomms3300.

[183] G. Reverter-Branchat, E. Cabiscol, J. Tamarit, J. Ros, Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae. Common targets and prevention by calorie restriction, J. Biol. Chem. 279 (2004) 31983–31989. doi:10.1074/jbc.M404849200.

[184] H. Aguilaniu, L. Gustafsson, M. Rigoulet, T. Nyström, Asymmetric inheritance of oxidatively damaged proteins during cytokinesis., Science. 299 (2003) 1751–1753. doi:10.1126/science.1080418.

[185] E. Unal, B. Kinde, A. Amon, Gametogenesis eliminates age-induced cellular damage and resets life span in yeast., Science. 332 (2011) 1554–1557. doi:10.1126/science.1204349.

[186] M. Kaeberlein, K.T. Kirkland, S. Fields, B.K. Kennedy, Genes determining yeast replicative life span in a long-lived genetic background, Mech. Ageing Dev. 126 (2005) 491–504. doi:10.1016/j.mad.2004.10.007.

[187] V. Andersson, S. Hanzén, B. Liu, M. Molin, T. Nyström, Enhancing protein disaggregation restores proteasome activity in aged cells, Aging (Albany. NY). 5 (2013) 802–812.

[188] U. Kruegel, B. Robison, T. Dange, G. Kahlert, J.R. Delaney, S. Kotireddy, et al., Elevated proteasome capacity extends replicative lifespan in saccharomyces cerevisiae, PLoS Genet. 7 (2011). doi:10.1371/journal.pgen.1002253.

Page 19: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

149

A system wide view of replicative aging in budding yeast

B

[189] Y. Kamei, Y. Tamada, Y. Nakayama, E. Fukusaki, Y. Mukai, Changes in transcription and metabolism during the early stage of replicative cellular senescence in budding yeast., J. Biol. Chem. 289 (2014) 32081–93. doi:10.1074/jbc.M114.600528.

[190] S.D.L. Postnikoff, M.E. Malo, B. Wong, T.A.A. Harkness, The yeast forkhead transcription factors fkh1 and fkh2 regulate lifespan and stress response together with the anaphase-promoting complex, PLoS Genet. 8 (2012). doi:10.1371/journal.pgen.1002583.

[191] D. Harman, Aging: a theory based on free radical and radiation chemistry., J. Gerontol. 11 (1956) 298–300. doi:10.1093/geronj/11.3.298.

[192] D.R. Green, L. Galluzzi, G. Kroemer, Mitochondria and the autophagy-inflammation-cell death axis in organismal aging., Science. 333 (2011) 1109–1112. doi:10.1126/science.1201940.

[193] K. Wang, D.J. Klionsky, Mitochondria removal by autophagy, Autophagy. 7 (2011) 297–300. doi:10.4161/auto.7.3.14502.

[194] M. Breitenbach, M. Rinnerthaler, J. Hartl, A. Stincone, J. Vowinckel, H. Breitenbach-Koller, et al., Mitochondria in ageing: There is metabolism beyond the ROS, FEMS Yeast Res. 14 (2014) 198–212. doi:10.1111/1567-1364.12134.

[195] J.R. McFaline-Figueroa, J. Vevea, T.C. Swayne, C. Zhou, C. Liu, G. Leung, et al., Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast, Aging Cell. 10 (2011) 885–895. doi:10.1111/j.1474-9726.2011.00731.x.

[196] J.R. Veatch, M.A. McMurray, Z.W. Nelson, D.E. Gottschling, Mitochondrial Dysfunction Leads to Nuclear Genome Instability via an Iron-Sulfur Cluster Defect, Cell. 137 (2009) 1247–1258. doi:10.1016/j.cell.2009.04.014.

[197] P.A. Kirchman, S. Kim, C.Y. Lai, S. Michal Jazwinski, Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae, Genetics. 152 (1999) 179–190.

[198] J. Yang, M. a Mccormick, J. Zheng, Z. Xie, M. Tsuchiya, S. Tsuchiyama, et al., Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “ aging factors ” and mechanism of lifespan asymmetry, 112 (2015). doi:10.1073/pnas.1506054112.

[199] F. Tang, J.W. Watkins, M. Bermudez, R. Gray, A. Gaban, K. Portie, et al., A life-span extending form of autophagy employs the vacuole-vacuole fusion machinery, Autophagy. 4 (2008) 874–886. doi:6556 [pii].

Page 20: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

150

Bibliography

B

[200] M. Boselli, J. Rock, E. Ünal, S.S. Levine, A. Amon, Effects of Age on Meiosis in Budding Yeast, Dev. Cell. 16 (2009) 844–855. doi:10.1016/j.devcel.2009.05.013.

[201] S.M. Jazwinski, S. Kim, C.Y. Lai, A. Benguria, Epigenetic stratification: the role of individual change in the biological aging process., Exp. Gerontol. 33 (1998) 571–580. doi:10.1016/S0531-5565(98)00029-1.

[202] S.P. Kale, S.M. Jazwinski, Differential response to UV stress and DNA damage during the yeast replicative life span, Dev. Genet. 18 (1996) 154–160. doi:10.1002/(SICI)1520-6408(1996)18:2<154::AID-DVG8>3.0.CO;2-8.

[203] S.J. Lin, P.A. Defossez, L. Guarente, Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae., Science. 289 (2000) 2126–2128. doi:10.1126/science.289.5487.2126.

[204] J.W. Bartholomew, T. Mittwer, Demonstration of yeast bud scars with the electron microscope, J. Bacteriol. 65 (1953) 272–275.

Page 21: University of Groningen A system wide view of replicative ... than for strictly personal use, ... Transcriptional profiling of aging in human muscle reveals a common ... Omics technologies

151

A system wide view of replicative aging in budding yeast

B