Top Banner
Monte Carlo Ray Tracing for understanding Canopy Scattering P. Lewis 1,2 , M. Disney 1,2 , J. Hillier 1 , J. Watt 1 , P. Saich 1,2 1. University College London 2. NERC Centre for Terrestrial Carbon Dynamics
40

University College London NERC Centre for Terrestrial Carbon Dynamics

Jan 19, 2016

Download

Documents

mizell

Monte Carlo Ray Tracing for understanding Canopy Scattering P. Lewis 1,2 , M. Disney 1,2 , J. Hillier 1 , J. Watt 1 , P. Saich 1,2. University College London NERC Centre for Terrestrial Carbon Dynamics. Motivation: 4D plant modelling and numerical scattering simulation. Model development - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: University College London  NERC Centre for Terrestrial Carbon Dynamics

Monte Carlo Ray Tracingfor understanding Canopy Scattering

P. Lewis1,2, M. Disney1,2, J. Hillier1, J. Watt1, P. Saich1,2

1. University College London

2. NERC Centre for Terrestrial Carbon Dynamics

Page 2: University College London  NERC Centre for Terrestrial Carbon Dynamics

Motivation: 4D plant modelling and numerical scattering simulation

● Model development– Develop understanding of canopy scattering mechanisms

● in arbitrarily complex scenes– Develop and test simpler models

● Inversion constraint– Expected development of ‘structure’ over time

● Synergy– Structure links optical and microwave

● Sensor simulation– Simulate new sensors

Page 3: University College London  NERC Centre for Terrestrial Carbon Dynamics

Wheat Dynamic Model Developed by INRA

• ADEL-wheat

• Winter wheat (cv Soisson)

• Developed by:– monitoring development

and organ extension at two densities

– Characterising plant 3D geometry

• Driven by thermal time since planting

Page 4: University College London  NERC Centre for Terrestrial Carbon Dynamics

Wheat Model Development:collaboration with B. Andrieu and C. Fournier

• 2004 Experiments– Test parameterisation– Develop senescence

function– Varietal study

• 2005 Experiments– Radiometric validation

Also Tree dynamic modelTreeGrow (R. Leersnijder)

Page 5: University College London  NERC Centre for Terrestrial Carbon Dynamics

Simulation Tools: drat: Monte Carlo Ray Tracer

● Inverse ray tracer● previously called ararat

– Advanced RAdiometric Ray Tracer● Requires specification of location of primitives● Multiple object instances from cloning

– Shoot cloning on trees● Includes ‘volumetric’ primatives

– Turbid medium

Page 6: University College London  NERC Centre for Terrestrial Carbon Dynamics

DRAT

Page 7: University College London  NERC Centre for Terrestrial Carbon Dynamics

DRAT

•Diffuse path

Page 8: University College London  NERC Centre for Terrestrial Carbon Dynamics

DRAT

•Direct path

Page 9: University College London  NERC Centre for Terrestrial Carbon Dynamics

Outputs• Image from viewer

• Direct/diffuse components

• Reflectance as a function of scattering order

• First-Order Sunlit/Shaded per material’• Distance-resolved (LiDAR)

0.0001

0.001

0.01

0.1

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

scattering order

co

ntr

ibu

tio

n t

o r

efl

ec

tan

ce

Canopy A Canopy B

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

scattering order

co

ntr

ibu

tio

n t

o r

efl

ec

tan

ce

Diffuse: A Diffuse: B Direct: A Direct: B

0

0.1

0.2

0.3

0.4

0.5

0.6

450

550

650

750

850

950

1050

1150

1250

1350

1450

1550

1650

1750

1850

1950

2050

2150

2250

2350

2450

wavelength / nm

dir

ecti

on

al-h

emis

ph

eric

al r

efle

ctan

ce

A B Leaf Single Scattering Albedo * 0.5 Soil Reflectance

• Spectral BRF/Radiance

Page 10: University College London  NERC Centre for Terrestrial Carbon Dynamics

An alternative: Forward Ray Tracing

● E.g. Raytran● Can have same output information● Trace photon trajectories from illumination

– to all output directions● Much slower to simulate BRDF

– In fact, requires finite angular bin for simulations● Likely same speed for simulation at all view

angles

Page 11: University College London  NERC Centre for Terrestrial Carbon Dynamics

RAMI: Pinty et al. 2004 http://www.enamors.org/RAMI/Phase_2/phase_2.htm

Turbid medium

Page 12: University College London  NERC Centre for Terrestrial Carbon Dynamics

RAMI: Pinty et al. 2004 http://www.enamors.org/RAMI/Phase_2/phase_2.htm

Page 13: University College London  NERC Centre for Terrestrial Carbon Dynamics

RAMI: Pinty et al. 2004 http://www.enamors.org/RAMI/Phase_2/phase_2.htm

Page 14: University College London  NERC Centre for Terrestrial Carbon Dynamics

RAMI: Pinty et al. 2004 http://www.enamors.org/RAMI/Phase_2/phase_2.htm

Page 15: University College London  NERC Centre for Terrestrial Carbon Dynamics
Page 16: University College London  NERC Centre for Terrestrial Carbon Dynamics

RAMI model intercomparison

● Extremely useful to community– Test of implementation– Comparison of models

● Similar results for homogeneous canopies● Some significant variations between models

– Even between numerical models for heterogeneous scenes– Partly due to specificity of geometric representations

● E.g. high spatial resolution simulations● RAMI 3 preparations under way

– Led by Pinty et al.

Page 17: University College London  NERC Centre for Terrestrial Carbon Dynamics

A) 1500 odays B) 2000 odays

LAI 1.4 and 6.4canopy cover 51% and 97%

solar zenith angle 35o

view zenith angle 0o

How can we use numerical model solution to ‘understand’ signal?

Decouple ‘structural’ effects from material ‘spectral’ properties

Page 18: University College London  NERC Centre for Terrestrial Carbon Dynamics

Lumped parameter modelling

● Assume:– Scattering from leaves with s.s. albedo – soil with Lambertian reflectance s

● Examine ‘black soil’ scattering for non-absortive canopy– = 1

– s = 0

Page 19: University College London  NERC Centre for Terrestrial Carbon Dynamics

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

scattering order

co

ntr

ibu

tio

n t

o r

efl

ec

tan

ce

Diffuse: A Diffuse: B Direct: A Direct: B

Scattering ‘well-behaved’ for O(2+)

Slope of Direct ~= diffuse for O(2+)Lewis & Disney, 1998

Page 20: University College London  NERC Centre for Terrestrial Carbon Dynamics

B.S. solution

• Similar to Knyazikhin et al., (1998)

• Can model as:

• Where:

• N.B. is ‘p’ term in Knyazikhin et al. (1998) etc. and Smolander & Stenberg (2005)

1

22

1bs

2

3

Obs

Obs

‘recollision probability’

Page 21: University College London  NERC Centre for Terrestrial Carbon Dynamics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Thermal Time / degree days

se

mi-

em

pir

ica

l mo

de

l pa

ram

ete

rs

cover 1-exp(-LAI/2)

1

22

1bs

Page 22: University College London  NERC Centre for Terrestrial Carbon Dynamics

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

450 550 650 750 850 950 1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250 2350 2450

wavelength / nm

refl

ecta

nce

Diffuse: A Diffuse: A (approx) Diffuse: A: difference*100

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

450 550 650 750 850 950 1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250 2350 2450

wavelength / nm

re

fle

cta

nc

e

Diffuse: B Diffuse: B (approx) Diffuse: B: difference

Canopy A

Canopy B

Page 23: University College London  NERC Centre for Terrestrial Carbon Dynamics

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

450

550

650

750

850

950

1050

1150

1250

1350

1450

1550

1650

1750

1850

1950

2050

2150

2250

2350

2450

wavelength / nm

refl

ec

tan

ce

Direct A Direct A (approx) Direct A: difference*10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

450

550

650

750

850

950

1050

1150

1250

1350

1450

1550

1650

1750

1850

1950

2050

2150

2250

2350

2450

wavelength / nm

refl

ec

tan

ce

Direct B Direct B (approx) Direct B: difference

Can assume

To make calculation of direct+diffuse simpler

1

22

1bs

Diffuse

Direct

1

22

1bs

Page 24: University College London  NERC Centre for Terrestrial Carbon Dynamics

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

thermal time / degree days

se

mi-

em

pir

ica

l m

od

el

pa

ram

ete

rs

direct directdiffusediffuse

But 1, 2 differ for direct/diffuse (obviously)

Page 25: University College London  NERC Centre for Terrestrial Carbon Dynamics

Rest of signal ‘S’ solution

-6

-5

-4

-3

-2

-1

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

scattering order

log

(co

ntr

ibu

tio

n t

o r

efl

ec

tan

ce

)

Diffuse: Thermal Time 1500 degree days Direct: Thermal Time 1500 degree days

Diffuse: Thermal Time 2100 degree days Direct: Thermal Time 2100 degree days

Page 26: University College London  NERC Centre for Terrestrial Carbon Dynamics

Rest of signal ‘S’ solution

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

wavelength / nm

re

fle

cta

nc

e

Total - S solution

1st Order

2nd Order

3rd Order

4th+ Order

Total

Canopy A

Canopy B

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

wavelength / nm

re

fle

cta

nc

e

Total - S solution

1st Order

2nd Order

3rd Order

4th+ Order

Page 27: University College London  NERC Centre for Terrestrial Carbon Dynamics

S. solution

• Simulate = 1 s = 1 and subtract B.S. solution and 1st O soil-only interaction (1)

12s

rest

2

3

OS

OS

Or more accurate if include s2 term as well

Page 28: University College London  NERC Centre for Terrestrial Carbon Dynamics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

Thermal Time / degree days

se

mi-

em

pir

ica

l mo

de

l pa

ram

ete

rs

Page 29: University College London  NERC Centre for Terrestrial Carbon Dynamics

0.000

0.002

0.004

0.006

0.008

0.010

0.012

wavelength / nm

Diffuse B Direct B Diffuse B (approx) Direct B (approx)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

wavelength / nm

re

fle

cta

nc

e

Diffuse A Direct A Diffuse A (approx) Direct A (approx)

Canopy A

Canopy B

Page 30: University College London  NERC Centre for Terrestrial Carbon Dynamics

Summary

● Can simulate for = 1 s = 0 – BS solution

● And for = 1 s = 1– S solution

● Simple parametric model:

– Or include higher order soil interactions● Use 3D dynamic model to study lumped parameter terms

– And to facilitate inversion for arbitrary , s

112

22

11s

scanopy

Page 31: University College London  NERC Centre for Terrestrial Carbon Dynamics

Inversion● Using lumped parameterisation of CR:

– ADEL-wheat simulations at 100oday intervals● Structure as a fn. of thermal time

– Optical simulations● LUT of lumped parameter terms

● Data: – 3 airborne EO datasets over Vine Farm, Cambridgeshire, UK (2002)– ASIA (11 channels) + ESAR sensor

● Other unknowns– PROSPECT-REDUX for leaf– Price soil spectral PCs

● LUT inversion – Solve for equivalent thermal time and leaf/soil parameters– Constrained by thermal time interval of observations

● +/- tolerance (100odays)

Page 32: University College London  NERC Centre for Terrestrial Carbon Dynamics

y = 1.0134x

R2 = 0.9741

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

modelled

mea

sure

d

46 Acres (plots 1-3) Linear (46 Acres (plots 1-3))

• Able to simulate mean field reflectance scattering using drat/CASM/ADEL-wheat

• Reasonable match against expected thermal time

• Processing comparisons with generalised field measures now

• Similar inversion results for optical and microwave

• so can use either

Page 33: University College London  NERC Centre for Terrestrial Carbon Dynamics

Summary

● 4D models provide structural expectation● Can use for optical and/or microwave● Compare solutions via model intercomparison

– RAMI● Can simulate canopy reflectance via simple

parametric model– Thence inversion

Page 34: University College London  NERC Centre for Terrestrial Carbon Dynamics
Page 35: University College London  NERC Centre for Terrestrial Carbon Dynamics

Example: Closed Sitka forest

1

lcanopy

l

a

c

Page 36: University College London  NERC Centre for Terrestrial Carbon Dynamics

Example: Closed Sitka forest BRF

1

lcanopy

l

a

c

Page 37: University College London  NERC Centre for Terrestrial Carbon Dynamics

Microwave modelling

● Existing coherent scattering model (CASM)– add single scattering amplitudes with appropriate phase

terms

– then ‘square’ to determine backscattering coefficient

– Attenuation based requires approximations

F f eji k r

j

i j

( ).2

4

AF F *

Page 38: University College London  NERC Centre for Terrestrial Carbon Dynamics

Microwave modelling

● Need to treat carefully:– 3-d extinction

● esp for discontinuous forest canopies– leaf curvature

● esp for cereal crops

Page 39: University College London  NERC Centre for Terrestrial Carbon Dynamics

ERS-2 comparisonUsing ADEL-wheat/CASM

Two roughness values (s = 0.003 and 0.005)

Note sensitivity to soil in early season but later in the season the gross features of the temporal profile are similar

Page 40: University College London  NERC Centre for Terrestrial Carbon Dynamics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Canopy Cover Proportion

sem

i-em

piri

cal m

od

el p

ara

me

ters

1-exp(-LAI/2)