Top Banner
Introduction Hochschild homology SNLC for algebras over algebraically closed filed CDC for quasi-stratified algebras On the global dimension of an algebra Shiping Liu Universit´ e de Sherbrooke April 13 - 15, 2012 Shiping Liu On the global dimension of an algebra
132

Universit e de Sherbrooke

Feb 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

On the global dimension of an algebra

Shiping Liu

Universite de Sherbrooke

April 13 - 15, 2012

Shiping Liu On the global dimension of an algebra

Page 2: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Motivation

Let Λ be artin algebra.

mod Λ: finitely generated right Λ-modules.

Problem

Find easy invariants to determine whether gdim Λ isfinite or infinite.

Shiping Liu On the global dimension of an algebra

Page 3: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Motivation

Let Λ be artin algebra.

mod Λ: finitely generated right Λ-modules.

Problem

Find easy invariants to determine whether gdim Λ isfinite or infinite.

Shiping Liu On the global dimension of an algebra

Page 4: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Motivation

Let Λ be artin algebra.

mod Λ: finitely generated right Λ-modules.

Problem

Find easy invariants to determine whether gdim Λ isfinite or infinite.

Shiping Liu On the global dimension of an algebra

Page 5: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Extension quiver

Definition

The extension quiver E (Λ) of Λ has

vertices the non-isomorphic simple Λ-modules,

single arrows S → T with Ext1(S , T ) 6= 0.

Shiping Liu On the global dimension of an algebra

Page 6: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Extension quiver

Definition

The extension quiver E (Λ) of Λ has

vertices the non-isomorphic simple Λ-modules,

single arrows S → T with Ext1(S , T ) 6= 0.

Shiping Liu On the global dimension of an algebra

Page 7: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Extension quiver

Definition

The extension quiver E (Λ) of Λ has

vertices the non-isomorphic simple Λ-modules,

single arrows S → T with Ext1(S , T ) 6= 0.

Shiping Liu On the global dimension of an algebra

Page 8: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

No Loop Conjectures

Proposition

If E (Λ) has no oriented cycle, then gdim(Λ) <∞.

The converse of the above result is not true.

No Loop Conjecture (Zacharia, 1985)

If gdim(Λ) <∞, then E (Λ) has no loop.

Since gdim(Λ) = sup{pdim(S) | S simple Λ-modules }, we have

Strong No Loop Conjecture (Zacharia, 1990)

If S simple with pdim(S) <∞, then E (Λ) has noloop at S .

Shiping Liu On the global dimension of an algebra

Page 9: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

No Loop Conjectures

Proposition

If E (Λ) has no oriented cycle, then gdim(Λ) <∞.

The converse of the above result is not true.

No Loop Conjecture (Zacharia, 1985)

If gdim(Λ) <∞, then E (Λ) has no loop.

Since gdim(Λ) = sup{pdim(S) | S simple Λ-modules }, we have

Strong No Loop Conjecture (Zacharia, 1990)

If S simple with pdim(S) <∞, then E (Λ) has noloop at S .

Shiping Liu On the global dimension of an algebra

Page 10: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

No Loop Conjectures

Proposition

If E (Λ) has no oriented cycle, then gdim(Λ) <∞.

The converse of the above result is not true.

No Loop Conjecture (Zacharia, 1985)

If gdim(Λ) <∞, then E (Λ) has no loop.

Since gdim(Λ) = sup{pdim(S) | S simple Λ-modules }, we have

Strong No Loop Conjecture (Zacharia, 1990)

If S simple with pdim(S) <∞, then E (Λ) has noloop at S .

Shiping Liu On the global dimension of an algebra

Page 11: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

No Loop Conjectures

Proposition

If E (Λ) has no oriented cycle, then gdim(Λ) <∞.

The converse of the above result is not true.

No Loop Conjecture (Zacharia, 1985)

If gdim(Λ) <∞, then E (Λ) has no loop.

Since gdim(Λ) = sup{pdim(S) | S simple Λ-modules }, we have

Strong No Loop Conjecture (Zacharia, 1990)

If S simple with pdim(S) <∞, then E (Λ) has noloop at S .

Shiping Liu On the global dimension of an algebra

Page 12: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

No Loop Conjectures

Proposition

If E (Λ) has no oriented cycle, then gdim(Λ) <∞.

The converse of the above result is not true.

No Loop Conjecture (Zacharia, 1985)

If gdim(Λ) <∞, then E (Λ) has no loop.

Since gdim(Λ) = sup{pdim(S) | S simple Λ-modules }, we have

Strong No Loop Conjecture (Zacharia, 1990)

If S simple with pdim(S) <∞, then E (Λ) has noloop at S .

Shiping Liu On the global dimension of an algebra

Page 13: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Cartan determinant

P1, . . . , Pn the non-iso indec projectives in mod Λ.

Si = Pi/rad Pi , i = 1, . . . , n, the non-iso simples.

mij : multiplicity of Si as composition factor of Pj .

Definition

1) The Cartan matrix of Λ is

C (Λ) = (mij)n×n

2) The Cartan determinant of Λ is

cd(Λ) = detC (Λ)

Shiping Liu On the global dimension of an algebra

Page 14: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Cartan determinant

P1, . . . , Pn the non-iso indec projectives in mod Λ.

Si = Pi/rad Pi , i = 1, . . . , n, the non-iso simples.

mij : multiplicity of Si as composition factor of Pj .

Definition

1) The Cartan matrix of Λ is

C (Λ) = (mij)n×n

2) The Cartan determinant of Λ is

cd(Λ) = detC (Λ)

Shiping Liu On the global dimension of an algebra

Page 15: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Cartan determinant

P1, . . . , Pn the non-iso indec projectives in mod Λ.

Si = Pi/rad Pi , i = 1, . . . , n, the non-iso simples.

mij : multiplicity of Si as composition factor of Pj .

Definition

1) The Cartan matrix of Λ is

C (Λ) = (mij)n×n

2) The Cartan determinant of Λ is

cd(Λ) = detC (Λ)

Shiping Liu On the global dimension of an algebra

Page 16: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Cartan determinant

P1, . . . , Pn the non-iso indec projectives in mod Λ.

Si = Pi/rad Pi , i = 1, . . . , n, the non-iso simples.

mij : multiplicity of Si as composition factor of Pj .

Definition

1) The Cartan matrix of Λ is

C (Λ) = (mij)n×n

2) The Cartan determinant of Λ is

cd(Λ) = detC (Λ)

Shiping Liu On the global dimension of an algebra

Page 17: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Cartan determinant

P1, . . . , Pn the non-iso indec projectives in mod Λ.

Si = Pi/rad Pi , i = 1, . . . , n, the non-iso simples.

mij : multiplicity of Si as composition factor of Pj .

Definition

1) The Cartan matrix of Λ is

C (Λ) = (mij)n×n

2) The Cartan determinant of Λ is

cd(Λ) = detC (Λ)

Shiping Liu On the global dimension of an algebra

Page 18: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Cartan determinant conjecture

Proposition (Eilenberg, 1954)

If gdim Λ <∞, then C (Λ) is invertible over Z,

and consequently, cd(Λ) = ±1.

Cartan Determiant Conjecture (Auslander)

If gdim Λ <∞, then cd(Λ) = 1.

Shiping Liu On the global dimension of an algebra

Page 19: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Cartan determinant conjecture

Proposition (Eilenberg, 1954)

If gdim Λ <∞, then C (Λ) is invertible over Z,

and consequently, cd(Λ) = ±1.

Cartan Determiant Conjecture (Auslander)

If gdim Λ <∞, then cd(Λ) = 1.

Shiping Liu On the global dimension of an algebra

Page 20: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Cartan determinant conjecture

Proposition (Eilenberg, 1954)

If gdim Λ <∞, then C (Λ) is invertible over Z,

and consequently, cd(Λ) = ±1.

Cartan Determiant Conjecture (Auslander)

If gdim Λ <∞, then cd(Λ) = 1.

Shiping Liu On the global dimension of an algebra

Page 21: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Status quo for artin algebras

Theorem

1 No Loop Conjecture and Cartan DeterminantConjecture are Morita invariant and hold in case

1) (GGZ , Z ) gdim Λ = 2;

2) (BFVZ ) Λ left serial.

2) (BF , Wick) Λ standardly stratified.

2 Cartan Determinant Conjecture holds if Λ graded.

Remark

None of the two conjectures is established forgeneral artin algebras.

Shiping Liu On the global dimension of an algebra

Page 22: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Status quo for artin algebras

Theorem

1 No Loop Conjecture and Cartan DeterminantConjecture are Morita invariant and hold in case

1) (GGZ , Z ) gdim Λ = 2;

2) (BFVZ ) Λ left serial.

2) (BF , Wick) Λ standardly stratified.

2 Cartan Determinant Conjecture holds if Λ graded.

Remark

None of the two conjectures is established forgeneral artin algebras.

Shiping Liu On the global dimension of an algebra

Page 23: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Status quo for artin algebras

Theorem

1 No Loop Conjecture and Cartan DeterminantConjecture are Morita invariant and hold in case

1) (GGZ , Z ) gdim Λ = 2;

2) (BFVZ ) Λ left serial.

2) (BF , Wick) Λ standardly stratified.

2 Cartan Determinant Conjecture holds if Λ graded.

Remark

None of the two conjectures is established forgeneral artin algebras.

Shiping Liu On the global dimension of an algebra

Page 24: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Status quo for artin algebras

Theorem

1 No Loop Conjecture and Cartan DeterminantConjecture are Morita invariant and hold in case

1) (GGZ , Z ) gdim Λ = 2;

2) (BFVZ ) Λ left serial.

2) (BF , Wick) Λ standardly stratified.

2 Cartan Determinant Conjecture holds if Λ graded.

Remark

None of the two conjectures is established forgeneral artin algebras.

Shiping Liu On the global dimension of an algebra

Page 25: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Status quo for artin algebras

Theorem

1 No Loop Conjecture and Cartan DeterminantConjecture are Morita invariant and hold in case

1) (GGZ , Z ) gdim Λ = 2;

2) (BFVZ ) Λ left serial.

2) (BF , Wick) Λ standardly stratified.

2 Cartan Determinant Conjecture holds if Λ graded.

Remark

None of the two conjectures is established forgeneral artin algebras.

Shiping Liu On the global dimension of an algebra

Page 26: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Status quo for artin algebras

Theorem

1 No Loop Conjecture and Cartan DeterminantConjecture are Morita invariant and hold in case

1) (GGZ , Z ) gdim Λ = 2;

2) (BFVZ ) Λ left serial.

2) (BF , Wick) Λ standardly stratified.

2 Cartan Determinant Conjecture holds if Λ graded.

Remark

None of the two conjectures is established forgeneral artin algebras.

Shiping Liu On the global dimension of an algebra

Page 27: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Brief history of NLC in algebracially closed case

Theorem

Let A finite dimensional algebra over k = k .

1 (Lenzing, 1969; Igusa, 1990) NLC holds.

2 (Skorodumov, 2010) SNLC holds if A isrepresentation-finite.

3 Other partial solutions of SNLC obtained byBurgess-Saorin, Diracca-Koenig,Green-Sølberg-Zacharia, Mamaridis-Papista,Paquette, Liu-Morin, Igusa, Zacharia.

Shiping Liu On the global dimension of an algebra

Page 28: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Brief history of NLC in algebracially closed case

Theorem

Let A finite dimensional algebra over k = k .

1 (Lenzing, 1969; Igusa, 1990) NLC holds.

2 (Skorodumov, 2010) SNLC holds if A isrepresentation-finite.

3 Other partial solutions of SNLC obtained byBurgess-Saorin, Diracca-Koenig,Green-Sølberg-Zacharia, Mamaridis-Papista,Paquette, Liu-Morin, Igusa, Zacharia.

Shiping Liu On the global dimension of an algebra

Page 29: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Brief history of NLC in algebracially closed case

Theorem

Let A finite dimensional algebra over k = k .

1 (Lenzing, 1969; Igusa, 1990) NLC holds.

2 (Skorodumov, 2010) SNLC holds if A isrepresentation-finite.

3 Other partial solutions of SNLC obtained byBurgess-Saorin, Diracca-Koenig,Green-Sølberg-Zacharia, Mamaridis-Papista,Paquette, Liu-Morin, Igusa, Zacharia.

Shiping Liu On the global dimension of an algebra

Page 30: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Objective of this talk

1 Establish Strong No Loop Conjecture for finitedimensional algebras over an algebraically closedfield (Liu, Igusa, Paquette, 2011).

2 Establish Cartan Determinant Conjecture forquasi-stratified artin algebras (Liu, Paquette,2006).

Shiping Liu On the global dimension of an algebra

Page 31: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Objective of this talk

1 Establish Strong No Loop Conjecture for finitedimensional algebras over an algebraically closedfield (Liu, Igusa, Paquette, 2011).

2 Establish Cartan Determinant Conjecture forquasi-stratified artin algebras (Liu, Paquette,2006).

Shiping Liu On the global dimension of an algebra

Page 32: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Zeroth Hochschild homology group

Fix artin algebra Λ with radical J .

Definition

1) [Λ, Λ] = {∑

i (ai bi − bi ai ) | ai , bi ∈ Λ}.

2) HH0(Λ) = Λ/[Λ, Λ].

3) Say HH0(Λ) is radical-trivial if J ⊆ [Λ, Λ].

Shiping Liu On the global dimension of an algebra

Page 33: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Zeroth Hochschild homology group

Fix artin algebra Λ with radical J .

Definition

1) [Λ, Λ] = {∑

i (ai bi − bi ai ) | ai , bi ∈ Λ}.

2) HH0(Λ) = Λ/[Λ, Λ].

3) Say HH0(Λ) is radical-trivial if J ⊆ [Λ, Λ].

Shiping Liu On the global dimension of an algebra

Page 34: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Zeroth Hochschild homology group

Fix artin algebra Λ with radical J .

Definition

1) [Λ, Λ] = {∑

i (ai bi − bi ai ) | ai , bi ∈ Λ}.2) HH0(Λ) = Λ/[Λ, Λ].

3) Say HH0(Λ) is radical-trivial if J ⊆ [Λ, Λ].

Shiping Liu On the global dimension of an algebra

Page 35: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Zeroth Hochschild homology group

Fix artin algebra Λ with radical J .

Definition

1) [Λ, Λ] = {∑

i (ai bi − bi ai ) | ai , bi ∈ Λ}.2) HH0(Λ) = Λ/[Λ, Λ].

3) Say HH0(Λ) is radical-trivial if J ⊆ [Λ, Λ].

Shiping Liu On the global dimension of an algebra

Page 36: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Trace of matrices

Definition

For A = (aij) ∈ Mn(Λ), one defines

tr(A) = (a11 + · · ·+ ann) + [Λ, Λ] ∈ HH0(Λ).

Proposition

If A ∈ Mm×n(Λ) and B ∈ Mn×m(Λ), then

tr(AB) = tr(BA).

Shiping Liu On the global dimension of an algebra

Page 37: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Trace of matrices

Definition

For A = (aij) ∈ Mn(Λ), one defines

tr(A) = (a11 + · · ·+ ann) + [Λ, Λ] ∈ HH0(Λ).

Proposition

If A ∈ Mm×n(Λ) and B ∈ Mn×m(Λ), then

tr(AB) = tr(BA).

Shiping Liu On the global dimension of an algebra

Page 38: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

1 Let P = e1Λ⊕ · · · ⊕ enΛ, with ei idempotents.

2 Given ϕ ∈ EndΛ(P).

3 Write ϕ = (ϕij)n×n, where ϕij ∈ ei Λej .

4 Define

tr(ϕ) = tr ((ϕij)n×n) ∈ HH0(Λ).

Shiping Liu On the global dimension of an algebra

Page 39: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

1 Let P = e1Λ⊕ · · · ⊕ enΛ, with ei idempotents.

2 Given ϕ ∈ EndΛ(P).

3 Write ϕ = (ϕij)n×n, where ϕij ∈ ei Λej .

4 Define

tr(ϕ) = tr ((ϕij)n×n) ∈ HH0(Λ).

Shiping Liu On the global dimension of an algebra

Page 40: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

1 Let P = e1Λ⊕ · · · ⊕ enΛ, with ei idempotents.

2 Given ϕ ∈ EndΛ(P).

3 Write ϕ = (ϕij)n×n, where ϕij ∈ ei Λej .

4 Define

tr(ϕ) = tr ((ϕij)n×n) ∈ HH0(Λ).

Shiping Liu On the global dimension of an algebra

Page 41: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Trace of endomorphisms of modules of fin proj dimension

Given ϕ ∈ EndΛ(M) with finite projective resolution

0 // Pn// Pn−1

// · · · // P0// M // 0.

Construct commutative diagram

0 // Pn//

ϕn��

Pn−1//

ϕn−1��

· · · // P0//

ϕ0��

M //

ϕ��

0

0 // Pn// Pn−1

// · · · // P0d0 // M // 0.

Definetr(ϕ) =

∑ni=0(−1)i tr(ϕi ) ∈ HH0(Λ).

Theorem (Lenzing)

If gdim(Λ) <∞, then HH0(Λ) is radical-trivial.

Shiping Liu On the global dimension of an algebra

Page 42: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Trace of endomorphisms of modules of fin proj dimension

Given ϕ ∈ EndΛ(M) with finite projective resolution

0 // Pn// Pn−1

// · · · // P0// M // 0.

Construct commutative diagram

0 // Pn//

ϕn��

Pn−1//

ϕn−1��

· · · // P0//

ϕ0��

M //

ϕ��

0

0 // Pn// Pn−1

// · · · // P0d0 // M // 0.

Definetr(ϕ) =

∑ni=0(−1)i tr(ϕi ) ∈ HH0(Λ).

Theorem (Lenzing)

If gdim(Λ) <∞, then HH0(Λ) is radical-trivial.

Shiping Liu On the global dimension of an algebra

Page 43: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Trace of endomorphisms of modules of fin proj dimension

Given ϕ ∈ EndΛ(M) with finite projective resolution

0 // Pn// Pn−1

// · · · // P0// M // 0.

Construct commutative diagram

0 // Pn//

ϕn��

Pn−1//

ϕn−1��

· · · // P0//

ϕ0��

M //

ϕ��

0

0 // Pn// Pn−1

// · · · // P0d0 // M // 0.

Definetr(ϕ) =

∑ni=0(−1)i tr(ϕi ) ∈ HH0(Λ).

Theorem (Lenzing)

If gdim(Λ) <∞, then HH0(Λ) is radical-trivial.

Shiping Liu On the global dimension of an algebra

Page 44: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Trace of endomorphisms of modules of fin proj dimension

Given ϕ ∈ EndΛ(M) with finite projective resolution

0 // Pn// Pn−1

// · · · // P0// M // 0.

Construct commutative diagram

0 // Pn//

ϕn��

Pn−1//

ϕn−1��

· · · // P0//

ϕ0��

M //

ϕ��

0

0 // Pn// Pn−1

// · · · // P0d0 // M // 0.

Definetr(ϕ) =

∑ni=0(−1)i tr(ϕi ) ∈ HH0(Λ).

Theorem (Lenzing)

If gdim(Λ) <∞, then HH0(Λ) is radical-trivial.

Shiping Liu On the global dimension of an algebra

Page 45: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-trace of endomorphisms of projective modules

Fix primitive idempotent e2 = e, and set Λe = Λ/Λ(1− e)Λ.

∃ algebra morphism pe : Λ→ Λe : x 7→ x + Λ(1− e)Λ.

This induces group morphism

He : HH0(Λ)→ HH0(Λe) : x + [Λ, Λ] 7→ pe(x) + [Λe , Λe ].

For ϕ ∈ EndΛ(P) with P projective, define e-trace by

tre(ϕ) = He(tr(ϕ)) ∈ HH0(Λe).

Lemma

Let ϕ ∈ EndΛ(P) with P projective. If eΛ is not summand ofP, then tre(ϕ) = 0.

Shiping Liu On the global dimension of an algebra

Page 46: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-trace of endomorphisms of projective modules

Fix primitive idempotent e2 = e, and set Λe = Λ/Λ(1− e)Λ.

∃ algebra morphism pe : Λ→ Λe : x 7→ x + Λ(1− e)Λ.

This induces group morphism

He : HH0(Λ)→ HH0(Λe) : x + [Λ, Λ] 7→ pe(x) + [Λe , Λe ].

For ϕ ∈ EndΛ(P) with P projective, define e-trace by

tre(ϕ) = He(tr(ϕ)) ∈ HH0(Λe).

Lemma

Let ϕ ∈ EndΛ(P) with P projective. If eΛ is not summand ofP, then tre(ϕ) = 0.

Shiping Liu On the global dimension of an algebra

Page 47: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-trace of endomorphisms of projective modules

Fix primitive idempotent e2 = e, and set Λe = Λ/Λ(1− e)Λ.

∃ algebra morphism pe : Λ→ Λe : x 7→ x + Λ(1− e)Λ.

This induces group morphism

He : HH0(Λ)→ HH0(Λe) : x + [Λ, Λ] 7→ pe(x) + [Λe , Λe ].

For ϕ ∈ EndΛ(P) with P projective, define e-trace by

tre(ϕ) = He(tr(ϕ)) ∈ HH0(Λe).

Lemma

Let ϕ ∈ EndΛ(P) with P projective. If eΛ is not summand ofP, then tre(ϕ) = 0.

Shiping Liu On the global dimension of an algebra

Page 48: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-trace of endomorphisms of projective modules

Fix primitive idempotent e2 = e, and set Λe = Λ/Λ(1− e)Λ.

∃ algebra morphism pe : Λ→ Λe : x 7→ x + Λ(1− e)Λ.

This induces group morphism

He : HH0(Λ)→ HH0(Λe) : x + [Λ, Λ] 7→ pe(x) + [Λe , Λe ].

For ϕ ∈ EndΛ(P) with P projective, define e-trace by

tre(ϕ) = He(tr(ϕ)) ∈ HH0(Λe).

Lemma

Let ϕ ∈ EndΛ(P) with P projective. If eΛ is not summand ofP, then tre(ϕ) = 0.

Shiping Liu On the global dimension of an algebra

Page 49: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-trace of endomorphisms of projective modules

Fix primitive idempotent e2 = e, and set Λe = Λ/Λ(1− e)Λ.

∃ algebra morphism pe : Λ→ Λe : x 7→ x + Λ(1− e)Λ.

This induces group morphism

He : HH0(Λ)→ HH0(Λe) : x + [Λ, Λ] 7→ pe(x) + [Λe , Λe ].

For ϕ ∈ EndΛ(P) with P projective, define e-trace by

tre(ϕ) = He(tr(ϕ)) ∈ HH0(Λe).

Lemma

Let ϕ ∈ EndΛ(P) with P projective. If eΛ is not summand ofP, then tre(ϕ) = 0.

Shiping Liu On the global dimension of an algebra

Page 50: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-bounded modules

Se = eΛ/e rad Λ, simple supported by e.

Say MΛ is e-bounded if Exti(M , Se) = 0, for i >> 0,

that is, M has e-bounded projective resolution

· · · // Pi// Pi−1

// · · · // P0// M // 0,

where eΛ not summand of Pi , for i >> 0.

A filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M

is e-bounded if Mi/Mi+1 is e-bounded, for i = 0, 1, . . . , r .

If idim Se <∞, then every MΛ is e-bounded.

Shiping Liu On the global dimension of an algebra

Page 51: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-bounded modules

Se = eΛ/e rad Λ, simple supported by e.

Say MΛ is e-bounded if Exti(M , Se) = 0, for i >> 0,

that is, M has e-bounded projective resolution

· · · // Pi// Pi−1

// · · · // P0// M // 0,

where eΛ not summand of Pi , for i >> 0.

A filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M

is e-bounded if Mi/Mi+1 is e-bounded, for i = 0, 1, . . . , r .

If idim Se <∞, then every MΛ is e-bounded.

Shiping Liu On the global dimension of an algebra

Page 52: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-bounded modules

Se = eΛ/e rad Λ, simple supported by e.

Say MΛ is e-bounded if Exti(M , Se) = 0, for i >> 0,

that is, M has e-bounded projective resolution

· · · // Pi// Pi−1

// · · · // P0// M // 0,

where eΛ not summand of Pi , for i >> 0.

A filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M

is e-bounded if Mi/Mi+1 is e-bounded, for i = 0, 1, . . . , r .

If idim Se <∞, then every MΛ is e-bounded.

Shiping Liu On the global dimension of an algebra

Page 53: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-bounded modules

Se = eΛ/e rad Λ, simple supported by e.

Say MΛ is e-bounded if Exti(M , Se) = 0, for i >> 0,

that is, M has e-bounded projective resolution

· · · // Pi// Pi−1

// · · · // P0// M // 0,

where eΛ not summand of Pi , for i >> 0.

A filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M

is e-bounded if Mi/Mi+1 is e-bounded, for i = 0, 1, . . . , r .

If idim Se <∞, then every MΛ is e-bounded.

Shiping Liu On the global dimension of an algebra

Page 54: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-bounded modules

Se = eΛ/e rad Λ, simple supported by e.

Say MΛ is e-bounded if Exti(M , Se) = 0, for i >> 0,

that is, M has e-bounded projective resolution

· · · // Pi// Pi−1

// · · · // P0// M // 0,

where eΛ not summand of Pi , for i >> 0.

A filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M

is e-bounded if Mi/Mi+1 is e-bounded, for i = 0, 1, . . . , r .

If idim Se <∞, then every MΛ is e-bounded.

Shiping Liu On the global dimension of an algebra

Page 55: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-trace of endomorphisms of e-bounded modules

Given ϕ ∈ EndΛ(M) with e-bounded projective resolution

· · · // Pi// Pi−1

// · · · // P0// M // 0.

Construct commutative diagram

· · · // Pi//

ϕi��

Pi−1//

ϕi−1��

· · · // P0//

ϕ0��

M //

ϕ��

0

· · · // Pidi // Pi−1

// · · · // P0d0 // M // 0.

Define tre(ϕ) =∑∞

i=0(−1)i tre(ϕi ) ∈ HH0(Λe).

Remark

If idim Se <∞, then tre(ϕ) defined for any endomorphismϕ ∈ mod Λ.

Shiping Liu On the global dimension of an algebra

Page 56: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-trace of endomorphisms of e-bounded modules

Given ϕ ∈ EndΛ(M) with e-bounded projective resolution

· · · // Pi// Pi−1

// · · · // P0// M // 0.

Construct commutative diagram

· · · // Pi//

ϕi��

Pi−1//

ϕi−1��

· · · // P0//

ϕ0��

M //

ϕ��

0

· · · // Pidi // Pi−1

// · · · // P0d0 // M // 0.

Define tre(ϕ) =∑∞

i=0(−1)i tre(ϕi ) ∈ HH0(Λe).

Remark

If idim Se <∞, then tre(ϕ) defined for any endomorphismϕ ∈ mod Λ.

Shiping Liu On the global dimension of an algebra

Page 57: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-trace of endomorphisms of e-bounded modules

Given ϕ ∈ EndΛ(M) with e-bounded projective resolution

· · · // Pi// Pi−1

// · · · // P0// M // 0.

Construct commutative diagram

· · · // Pi//

ϕi��

Pi−1//

ϕi−1��

· · · // P0//

ϕ0��

M //

ϕ��

0

· · · // Pidi // Pi−1

// · · · // P0d0 // M // 0.

Define tre(ϕ) =∑∞

i=0(−1)i tre(ϕi ) ∈ HH0(Λe).

Remark

If idim Se <∞, then tre(ϕ) defined for any endomorphismϕ ∈ mod Λ.

Shiping Liu On the global dimension of an algebra

Page 58: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

e-trace of endomorphisms of e-bounded modules

Given ϕ ∈ EndΛ(M) with e-bounded projective resolution

· · · // Pi// Pi−1

// · · · // P0// M // 0.

Construct commutative diagram

· · · // Pi//

ϕi��

Pi−1//

ϕi−1��

· · · // P0//

ϕ0��

M //

ϕ��

0

· · · // Pidi // Pi−1

// · · · // P0d0 // M // 0.

Define tre(ϕ) =∑∞

i=0(−1)i tre(ϕi ) ∈ HH0(Λe).

Remark

If idim Se <∞, then tre(ϕ) defined for any endomorphismϕ ∈ mod Λ.

Shiping Liu On the global dimension of an algebra

Page 59: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Additivity of the e-trace

Lemma

Let modΛ have commutative diagram with exact rows

0 // Lu //

φ��

Mv //

ϕ

��

N

ψ��

// 0

0 // Lu // M

v // N // 0.

If any two of L, M, N are e-bounded, then

tre(ϕ) = tre(φ) + tre(ψ).

Shiping Liu On the global dimension of an algebra

Page 60: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Additivity of the e-trace

Lemma

Let modΛ have commutative diagram with exact rows

0 // Lu //

φ��

Mv //

ϕ

��

N

ψ��

// 0

0 // Lu // M

v // N // 0.

If any two of L, M, N are e-bounded, then

tre(ϕ) = tre(φ) + tre(ψ).

Shiping Liu On the global dimension of an algebra

Page 61: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1//

ϕi+1��

Mi//

ϕi��

Mi/Mi+1

0��

// 0

0 // Mi+1// Mi

// Mi/Mi+1// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra

Page 62: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1//

ϕi+1��

Mi//

ϕi��

Mi/Mi+1

0��

// 0

0 // Mi+1// Mi

// Mi/Mi+1// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra

Page 63: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1//

ϕi+1��

Mi//

ϕi��

Mi/Mi+1

0��

// 0

0 // Mi+1// Mi

// Mi/Mi+1// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra

Page 64: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1//

ϕi+1��

Mi//

ϕi��

Mi/Mi+1

0��

// 0

0 // Mi+1// Mi

// Mi/Mi+1// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra

Page 65: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1//

ϕi+1��

Mi//

ϕi��

Mi/Mi+1

0��

// 0

0 // Mi+1// Mi

// Mi/Mi+1// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra

Page 66: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1//

ϕi+1��

Mi//

ϕi��

Mi/Mi+1

0��

// 0

0 // Mi+1// Mi

// Mi/Mi+1// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra

Page 67: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result on HH0

Theorem

If idimSe <∞, then HH0(Λe) is radical-trivial.

Proof. Let x = x + Λ(1− e)Λ ∈ rad(Λe), where x ∈ Λ.

Then x = a, where an+1 = 0 for some n ≥ 0.

Since idimSe <∞, we have e-bounded filtration

0 = an+1Λ ⊆ anΛ ⊆ · · · ⊆ aΛ ⊆ Λ.

Consider ϕ : Λ→ Λ : y 7→ ay . Then ϕ(aiΛ) ⊆ ai+1Λ.

Hence

a + [Λe ,Λe ] = tre((a)) = tre(ϕ) = 0 + [Λe ,Λe ].

That is, x ∈ [Λe ,Λe ].

Shiping Liu On the global dimension of an algebra

Page 68: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result on HH0

Theorem

If idimSe <∞, then HH0(Λe) is radical-trivial.

Proof. Let x = x + Λ(1− e)Λ ∈ rad(Λe), where x ∈ Λ.

Then x = a, where an+1 = 0 for some n ≥ 0.

Since idimSe <∞, we have e-bounded filtration

0 = an+1Λ ⊆ anΛ ⊆ · · · ⊆ aΛ ⊆ Λ.

Consider ϕ : Λ→ Λ : y 7→ ay . Then ϕ(aiΛ) ⊆ ai+1Λ.

Hence

a + [Λe ,Λe ] = tre((a)) = tre(ϕ) = 0 + [Λe ,Λe ].

That is, x ∈ [Λe ,Λe ].

Shiping Liu On the global dimension of an algebra

Page 69: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result on HH0

Theorem

If idimSe <∞, then HH0(Λe) is radical-trivial.

Proof. Let x = x + Λ(1− e)Λ ∈ rad(Λe), where x ∈ Λ.

Then x = a, where an+1 = 0 for some n ≥ 0.

Since idimSe <∞, we have e-bounded filtration

0 = an+1Λ ⊆ anΛ ⊆ · · · ⊆ aΛ ⊆ Λ.

Consider ϕ : Λ→ Λ : y 7→ ay . Then ϕ(aiΛ) ⊆ ai+1Λ.

Hence

a + [Λe ,Λe ] = tre((a)) = tre(ϕ) = 0 + [Λe ,Λe ].

That is, x ∈ [Λe ,Λe ].

Shiping Liu On the global dimension of an algebra

Page 70: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result on HH0

Theorem

If idimSe <∞, then HH0(Λe) is radical-trivial.

Proof. Let x = x + Λ(1− e)Λ ∈ rad(Λe), where x ∈ Λ.

Then x = a, where an+1 = 0 for some n ≥ 0.

Since idimSe <∞, we have e-bounded filtration

0 = an+1Λ ⊆ anΛ ⊆ · · · ⊆ aΛ ⊆ Λ.

Consider ϕ : Λ→ Λ : y 7→ ay . Then ϕ(aiΛ) ⊆ ai+1Λ.

Hence

a + [Λe ,Λe ] = tre((a)) = tre(ϕ) = 0 + [Λe ,Λe ].

That is, x ∈ [Λe ,Λe ].

Shiping Liu On the global dimension of an algebra

Page 71: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result on HH0

Theorem

If idimSe <∞, then HH0(Λe) is radical-trivial.

Proof. Let x = x + Λ(1− e)Λ ∈ rad(Λe), where x ∈ Λ.

Then x = a, where an+1 = 0 for some n ≥ 0.

Since idimSe <∞, we have e-bounded filtration

0 = an+1Λ ⊆ anΛ ⊆ · · · ⊆ aΛ ⊆ Λ.

Consider ϕ : Λ→ Λ : y 7→ ay . Then ϕ(aiΛ) ⊆ ai+1Λ.

Hence

a + [Λe ,Λe ] = tre((a)) = tre(ϕ) = 0 + [Λe ,Λe ].

That is, x ∈ [Λe ,Λe ].

Shiping Liu On the global dimension of an algebra

Page 72: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result on HH0

Theorem

If idimSe <∞, then HH0(Λe) is radical-trivial.

Proof. Let x = x + Λ(1− e)Λ ∈ rad(Λe), where x ∈ Λ.

Then x = a, where an+1 = 0 for some n ≥ 0.

Since idimSe <∞, we have e-bounded filtration

0 = an+1Λ ⊆ anΛ ⊆ · · · ⊆ aΛ ⊆ Λ.

Consider ϕ : Λ→ Λ : y 7→ ay . Then ϕ(aiΛ) ⊆ ai+1Λ.

Hence

a + [Λe ,Λe ] = tre((a)) = tre(ϕ) = 0 + [Λe ,Λe ].

That is, x ∈ [Λe ,Λe ].

Shiping Liu On the global dimension of an algebra

Page 73: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result on HH0

Theorem

If idimSe <∞, then HH0(Λe) is radical-trivial.

Proof. Let x = x + Λ(1− e)Λ ∈ rad(Λe), where x ∈ Λ.

Then x = a, where an+1 = 0 for some n ≥ 0.

Since idimSe <∞, we have e-bounded filtration

0 = an+1Λ ⊆ anΛ ⊆ · · · ⊆ aΛ ⊆ Λ.

Consider ϕ : Λ→ Λ : y 7→ ay . Then ϕ(aiΛ) ⊆ ai+1Λ.

Hence

a + [Λe ,Λe ] = tre((a)) = tre(ϕ) = 0 + [Λe ,Λe ].

That is, x ∈ [Λe ,Λe ].

Shiping Liu On the global dimension of an algebra

Page 74: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ a ∈ J(Λe)⇒ a ∈ [Λe ,Λe ].

⇒ 0 = f (a) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.

Shiping Liu On the global dimension of an algebra

Page 75: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ a ∈ J(Λe)⇒ a ∈ [Λe ,Λe ].

⇒ 0 = f (a) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.

Shiping Liu On the global dimension of an algebra

Page 76: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ a ∈ J(Λe)⇒ a ∈ [Λe ,Λe ].

⇒ 0 = f (a) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.

Shiping Liu On the global dimension of an algebra

Page 77: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ a ∈ J(Λe)⇒ a ∈ [Λe ,Λe ].

⇒ 0 = f (a) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.

Shiping Liu On the global dimension of an algebra

Page 78: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ a ∈ J(Λe)⇒ a ∈ [Λe ,Λe ].

⇒ 0 = f (a) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.

Shiping Liu On the global dimension of an algebra

Page 79: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ a ∈ J(Λe)⇒ a ∈ [Λe ,Λe ].

⇒ 0 = f (a) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.

Shiping Liu On the global dimension of an algebra

Page 80: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ a ∈ J(Λe)⇒ a ∈ [Λe ,Λe ].

⇒ 0 = f (a) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.

Shiping Liu On the global dimension of an algebra

Page 81: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ a ∈ J(Λe)⇒ a ∈ [Λe ,Λe ].

⇒ 0 = f (a) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.

Shiping Liu On the global dimension of an algebra

Page 82: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ a ∈ J(Λe)⇒ a ∈ [Λe ,Λe ].

⇒ 0 = f (a) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.

Shiping Liu On the global dimension of an algebra

Page 83: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ a ∈ J(Λe)⇒ a ∈ [Λe ,Λe ].

⇒ 0 = f (a) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.

Shiping Liu On the global dimension of an algebra

Page 84: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ a ∈ J(Λe)⇒ a ∈ [Λe ,Λe ].

⇒ 0 = f (a) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.

Shiping Liu On the global dimension of an algebra

Page 85: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result

Theorem

Let A fin dim alg over field k with S simple of dimension one.If E (A) has a loop at S, then pdim(S) = idim(S) =∞.

Proof. Let S = Se with e primitive idempotent.

dim Se = 1⇒ e basic, and eA = ke + eJ

⇒ eAe/eJ2e commutative.

If idim(S) <∞ or pdim(S) <∞, then Ext1(S ,S) = 0.

That is, E (A) no loop at S .

Shiping Liu On the global dimension of an algebra

Page 86: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result

Theorem

Let A fin dim alg over field k with S simple of dimension one.If E (A) has a loop at S, then pdim(S) = idim(S) =∞.

Proof. Let S = Se with e primitive idempotent.

dim Se = 1⇒ e basic, and eA = ke + eJ

⇒ eAe/eJ2e commutative.

If idim(S) <∞ or pdim(S) <∞, then Ext1(S ,S) = 0.

That is, E (A) no loop at S .

Shiping Liu On the global dimension of an algebra

Page 87: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result

Theorem

Let A fin dim alg over field k with S simple of dimension one.If E (A) has a loop at S, then pdim(S) = idim(S) =∞.

Proof. Let S = Se with e primitive idempotent.

dim Se = 1⇒ e basic, and eA = ke + eJ

⇒ eAe/eJ2e commutative.

If idim(S) <∞ or pdim(S) <∞, then Ext1(S ,S) = 0.

That is, E (A) no loop at S .

Shiping Liu On the global dimension of an algebra

Page 88: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result

Theorem

Let A fin dim alg over field k with S simple of dimension one.If E (A) has a loop at S, then pdim(S) = idim(S) =∞.

Proof. Let S = Se with e primitive idempotent.

dim Se = 1⇒ e basic, and eA = ke + eJ

⇒ eAe/eJ2e commutative.

If idim(S) <∞ or pdim(S) <∞, then Ext1(S ,S) = 0.

That is, E (A) no loop at S .

Shiping Liu On the global dimension of an algebra

Page 89: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result

Theorem

Let A fin dim alg over field k with S simple of dimension one.If E (A) has a loop at S, then pdim(S) = idim(S) =∞.

Proof. Let S = Se with e primitive idempotent.

dim Se = 1⇒ e basic, and eA = ke + eJ

⇒ eAe/eJ2e commutative.

If idim(S) <∞ or pdim(S) <∞, then Ext1(S ,S) = 0.

That is, E (A) no loop at S .

Shiping Liu On the global dimension of an algebra

Page 90: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main result

Theorem

Let A fin dim alg over field k with S simple of dimension one.If E (A) has a loop at S, then pdim(S) = idim(S) =∞.

Proof. Let S = Se with e primitive idempotent.

dim Se = 1⇒ e basic, and eA = ke + eJ

⇒ eAe/eJ2e commutative.

If idim(S) <∞ or pdim(S) <∞, then Ext1(S ,S) = 0.

That is, E (A) no loop at S .

Shiping Liu On the global dimension of an algebra

Page 91: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main consequences

Let A be finite dimensional algebra over a field k .

Call A elementary if every simple is of dimension one.or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjectureholds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k ,then Strong No Loop Conjecture holds.

Proof. Since k = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra

Page 92: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main consequences

Let A be finite dimensional algebra over a field k .Call A elementary if every simple is of dimension one.

or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjectureholds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k ,then Strong No Loop Conjecture holds.

Proof. Since k = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra

Page 93: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main consequences

Let A be finite dimensional algebra over a field k .Call A elementary if every simple is of dimension one.or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjectureholds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k ,then Strong No Loop Conjecture holds.

Proof. Since k = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra

Page 94: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main consequences

Let A be finite dimensional algebra over a field k .Call A elementary if every simple is of dimension one.or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjectureholds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k ,then Strong No Loop Conjecture holds.

Proof. Since k = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra

Page 95: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main consequences

Let A be finite dimensional algebra over a field k .Call A elementary if every simple is of dimension one.or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjectureholds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k ,then Strong No Loop Conjecture holds.

Proof. Since k = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra

Page 96: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Main consequences

Let A be finite dimensional algebra over a field k .Call A elementary if every simple is of dimension one.or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjectureholds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k ,then Strong No Loop Conjecture holds.

Proof. Since k = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra

Page 97: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Terminology

Let Λ artin algebra.

If Λ = 0, set gdim(Λ) = −1 and cd(Λ) = 1.

Definition

Let I be two-sided ideal in Λ.

1) Let t > 0 minimal with I t = I t+1, idempotent part of I .

2) I t = ΛeΛ with e2 = e, called maximal idempotent in I .

Remark

1) I nilpotent ⇔ its maximal idempotent is zero.

2) I idempotent ⇔ I coincides with its idempotent part.

Shiping Liu On the global dimension of an algebra

Page 98: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Terminology

Let Λ artin algebra.

If Λ = 0, set gdim(Λ) = −1 and cd(Λ) = 1.

Definition

Let I be two-sided ideal in Λ.

1) Let t > 0 minimal with I t = I t+1, idempotent part of I .

2) I t = ΛeΛ with e2 = e, called maximal idempotent in I .

Remark

1) I nilpotent ⇔ its maximal idempotent is zero.

2) I idempotent ⇔ I coincides with its idempotent part.

Shiping Liu On the global dimension of an algebra

Page 99: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Terminology

Let Λ artin algebra.

If Λ = 0, set gdim(Λ) = −1 and cd(Λ) = 1.

Definition

Let I be two-sided ideal in Λ.

1) Let t > 0 minimal with I t = I t+1, idempotent part of I .

2) I t = ΛeΛ with e2 = e, called maximal idempotent in I .

Remark

1) I nilpotent ⇔ its maximal idempotent is zero.

2) I idempotent ⇔ I coincides with its idempotent part.

Shiping Liu On the global dimension of an algebra

Page 100: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Terminology

Let Λ artin algebra.

If Λ = 0, set gdim(Λ) = −1 and cd(Λ) = 1.

Definition

Let I be two-sided ideal in Λ.

1) Let t > 0 minimal with I t = I t+1, idempotent part of I .

2) I t = ΛeΛ with e2 = e, called maximal idempotent in I .

Remark

1) I nilpotent ⇔ its maximal idempotent is zero.

2) I idempotent ⇔ I coincides with its idempotent part.

Shiping Liu On the global dimension of an algebra

Page 101: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Terminology

Let Λ artin algebra.

If Λ = 0, set gdim(Λ) = −1 and cd(Λ) = 1.

Definition

Let I be two-sided ideal in Λ.

1) Let t > 0 minimal with I t = I t+1, idempotent part of I .

2) I t = ΛeΛ with e2 = e, called maximal idempotent in I .

Remark

1) I nilpotent ⇔ its maximal idempotent is zero.

2) I idempotent ⇔ I coincides with its idempotent part.

Shiping Liu On the global dimension of an algebra

Page 102: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Terminology

Let Λ artin algebra.

If Λ = 0, set gdim(Λ) = −1 and cd(Λ) = 1.

Definition

Let I be two-sided ideal in Λ.

1) Let t > 0 minimal with I t = I t+1, idempotent part of I .

2) I t = ΛeΛ with e2 = e, called maximal idempotent in I .

Remark

1) I nilpotent ⇔ its maximal idempotent is zero.

2) I idempotent ⇔ I coincides with its idempotent part.

Shiping Liu On the global dimension of an algebra

Page 103: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Terminology

Let Λ artin algebra.

If Λ = 0, set gdim(Λ) = −1 and cd(Λ) = 1.

Definition

Let I be two-sided ideal in Λ.

1) Let t > 0 minimal with I t = I t+1, idempotent part of I .

2) I t = ΛeΛ with e2 = e, called maximal idempotent in I .

Remark

1) I nilpotent ⇔ its maximal idempotent is zero.

2) I idempotent ⇔ I coincides with its idempotent part.

Shiping Liu On the global dimension of an algebra

Page 104: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Reduction algorithm

Definition

Let I be two-sided ideal in Λ.

1) I is left projective if ΛI projective.

2) I is right projective if I Λ projective.

Theorem

Let I � Λ left or right projective with maximal idempotent e.

1) gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I ) <∞.

2) cd(Λ) = cd(eΛe) cd(Λ/I ).

Shiping Liu On the global dimension of an algebra

Page 105: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Reduction algorithm

Definition

Let I be two-sided ideal in Λ.

1) I is left projective if ΛI projective.

2) I is right projective if I Λ projective.

Theorem

Let I � Λ left or right projective with maximal idempotent e.

1) gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I ) <∞.

2) cd(Λ) = cd(eΛe) cd(Λ/I ).

Shiping Liu On the global dimension of an algebra

Page 106: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Reduction algorithm

Definition

Let I be two-sided ideal in Λ.

1) I is left projective if ΛI projective.

2) I is right projective if I Λ projective.

Theorem

Let I � Λ left or right projective with maximal idempotent e.

1) gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I ) <∞.

2) cd(Λ) = cd(eΛe) cd(Λ/I ).

Shiping Liu On the global dimension of an algebra

Page 107: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Reduction algorithm

Definition

Let I be two-sided ideal in Λ.

1) I is left projective if ΛI projective.

2) I is right projective if I Λ projective.

Theorem

Let I � Λ left or right projective with maximal idempotent e.

1) gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I ) <∞.

2) cd(Λ) = cd(eΛe) cd(Λ/I ).

Shiping Liu On the global dimension of an algebra

Page 108: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Reduction algorithm

Definition

Let I be two-sided ideal in Λ.

1) I is left projective if ΛI projective.

2) I is right projective if I Λ projective.

Theorem

Let I � Λ left or right projective with maximal idempotent e.

1) gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I ) <∞.

2) cd(Λ) = cd(eΛe) cd(Λ/I ).

Shiping Liu On the global dimension of an algebra

Page 109: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Reduction algorithm

Definition

Let I be two-sided ideal in Λ.

1) I is left projective if ΛI projective.

2) I is right projective if I Λ projective.

Theorem

Let I � Λ left or right projective with maximal idempotent e.

1) gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I ) <∞.

2) cd(Λ) = cd(eΛe) cd(Λ/I ).

Shiping Liu On the global dimension of an algebra

Page 110: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Standard stratification (CPS)

Definition

Let I = ΛeΛ with e primitive idempotent. Say I right stratifying ifI Λ is projective.

Definition

Λ is right standardly stratified if it admits chain of ideals

0 = I0 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ,

Ii+1/Ii is right stratifying in Λ/Ii , i = 0, . . . , r .

Shiping Liu On the global dimension of an algebra

Page 111: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Standard stratification (CPS)

Definition

Let I = ΛeΛ with e primitive idempotent. Say I right stratifying ifI Λ is projective.

Definition

Λ is right standardly stratified if it admits chain of ideals

0 = I0 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ,

Ii+1/Ii is right stratifying in Λ/Ii , i = 0, . . . , r .

Shiping Liu On the global dimension of an algebra

Page 112: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Quasi-stratification

Definition

Let I � Λ with maximal idempotent e being zero or primitive.

Call I quasi-stratifying if I Λ or ΛI is projective.

Definition

Λ is quasi-stratified if it admits a chain of ideals

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ,

Ii+1/Ii is quasi-stratifying in Λ/Ii , i = 0, . . . , r .

Shiping Liu On the global dimension of an algebra

Page 113: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Quasi-stratification

Definition

Let I � Λ with maximal idempotent e being zero or primitive.

Call I quasi-stratifying if I Λ or ΛI is projective.

Definition

Λ is quasi-stratified if it admits a chain of ideals

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ,

Ii+1/Ii is quasi-stratifying in Λ/Ii , i = 0, . . . , r .

Shiping Liu On the global dimension of an algebra

Page 114: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Quasi-stratification

Definition

Let I � Λ with maximal idempotent e being zero or primitive.

Call I quasi-stratifying if I Λ or ΛI is projective.

Definition

Λ is quasi-stratified if it admits a chain of ideals

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ,

Ii+1/Ii is quasi-stratifying in Λ/Ii , i = 0, . . . , r .

Shiping Liu On the global dimension of an algebra

Page 115: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Theorem (Liu, Paquette, 2006)

Let Λ be quasi-stratified. Then gdim(Λ) <∞⇔ cd(A) = 1.

Proof. Consider quasi-stratification chain

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ.

Let e be maximal idempotent in I1.

1) r = 1⇒ Λ = ΛeΛ with e primitive ⇒Λ ≈ eΛe.

Hence, gdim(Λ) <∞⇔ eJe = 0⇔ cd(A) = 1.

2) r > 1⇒ A/I1 has quasi-stratification chain

0 = I1/I1 ⊂ · · · ⊂ Ir/I1 ⊂ Ir+1/I1 = Λ/I1.

Since cd(Λ) = cd(eΛe) cd(Λ/I1), and

gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I1) <∞,The statement follows from inductive hypothesis.

Shiping Liu On the global dimension of an algebra

Page 116: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Theorem (Liu, Paquette, 2006)

Let Λ be quasi-stratified. Then gdim(Λ) <∞⇔ cd(A) = 1.

Proof. Consider quasi-stratification chain

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ.

Let e be maximal idempotent in I1.

1) r = 1⇒ Λ = ΛeΛ with e primitive ⇒Λ ≈ eΛe.

Hence, gdim(Λ) <∞⇔ eJe = 0⇔ cd(A) = 1.

2) r > 1⇒ A/I1 has quasi-stratification chain

0 = I1/I1 ⊂ · · · ⊂ Ir/I1 ⊂ Ir+1/I1 = Λ/I1.

Since cd(Λ) = cd(eΛe) cd(Λ/I1), and

gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I1) <∞,The statement follows from inductive hypothesis.

Shiping Liu On the global dimension of an algebra

Page 117: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Theorem (Liu, Paquette, 2006)

Let Λ be quasi-stratified. Then gdim(Λ) <∞⇔ cd(A) = 1.

Proof. Consider quasi-stratification chain

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ.

Let e be maximal idempotent in I1.

1) r = 1⇒ Λ = ΛeΛ with e primitive ⇒Λ ≈ eΛe.

Hence, gdim(Λ) <∞⇔ eJe = 0⇔ cd(A) = 1.

2) r > 1⇒ A/I1 has quasi-stratification chain

0 = I1/I1 ⊂ · · · ⊂ Ir/I1 ⊂ Ir+1/I1 = Λ/I1.

Since cd(Λ) = cd(eΛe) cd(Λ/I1), and

gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I1) <∞,The statement follows from inductive hypothesis.

Shiping Liu On the global dimension of an algebra

Page 118: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Theorem (Liu, Paquette, 2006)

Let Λ be quasi-stratified. Then gdim(Λ) <∞⇔ cd(A) = 1.

Proof. Consider quasi-stratification chain

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ.

Let e be maximal idempotent in I1.

1) r = 1⇒ Λ = ΛeΛ with e primitive ⇒Λ ≈ eΛe.

Hence, gdim(Λ) <∞⇔ eJe = 0⇔ cd(A) = 1.

2) r > 1⇒ A/I1 has quasi-stratification chain

0 = I1/I1 ⊂ · · · ⊂ Ir/I1 ⊂ Ir+1/I1 = Λ/I1.

Since cd(Λ) = cd(eΛe) cd(Λ/I1), and

gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I1) <∞,The statement follows from inductive hypothesis.

Shiping Liu On the global dimension of an algebra

Page 119: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Theorem (Liu, Paquette, 2006)

Let Λ be quasi-stratified. Then gdim(Λ) <∞⇔ cd(A) = 1.

Proof. Consider quasi-stratification chain

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ.

Let e be maximal idempotent in I1.

1) r = 1⇒ Λ = ΛeΛ with e primitive ⇒Λ ≈ eΛe.

Hence, gdim(Λ) <∞⇔ eJe = 0⇔ cd(A) = 1.

2) r > 1⇒ A/I1 has quasi-stratification chain

0 = I1/I1 ⊂ · · · ⊂ Ir/I1 ⊂ Ir+1/I1 = Λ/I1.

Since cd(Λ) = cd(eΛe) cd(Λ/I1), and

gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I1) <∞,The statement follows from inductive hypothesis.

Shiping Liu On the global dimension of an algebra

Page 120: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Theorem (Liu, Paquette, 2006)

Let Λ be quasi-stratified. Then gdim(Λ) <∞⇔ cd(A) = 1.

Proof. Consider quasi-stratification chain

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ.

Let e be maximal idempotent in I1.

1) r = 1⇒ Λ = ΛeΛ with e primitive ⇒Λ ≈ eΛe.

Hence, gdim(Λ) <∞⇔ eJe = 0⇔ cd(A) = 1.

2) r > 1⇒ A/I1 has quasi-stratification chain

0 = I1/I1 ⊂ · · · ⊂ Ir/I1 ⊂ Ir+1/I1 = Λ/I1.

Since cd(Λ) = cd(eΛe) cd(Λ/I1), and

gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I1) <∞,The statement follows from inductive hypothesis.

Shiping Liu On the global dimension of an algebra

Page 121: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Theorem (Liu, Paquette, 2006)

Let Λ be quasi-stratified. Then gdim(Λ) <∞⇔ cd(A) = 1.

Proof. Consider quasi-stratification chain

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ.

Let e be maximal idempotent in I1.

1) r = 1⇒ Λ = ΛeΛ with e primitive ⇒Λ ≈ eΛe.

Hence, gdim(Λ) <∞⇔ eJe = 0⇔ cd(A) = 1.

2) r > 1⇒ A/I1 has quasi-stratification chain

0 = I1/I1 ⊂ · · · ⊂ Ir/I1 ⊂ Ir+1/I1 = Λ/I1.

Since cd(Λ) = cd(eΛe) cd(Λ/I1), and

gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I1) <∞,The statement follows from inductive hypothesis.

Shiping Liu On the global dimension of an algebra

Page 122: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Theorem (Liu, Paquette, 2006)

Let Λ be quasi-stratified. Then gdim(Λ) <∞⇔ cd(A) = 1.

Proof. Consider quasi-stratification chain

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ.

Let e be maximal idempotent in I1.

1) r = 1⇒ Λ = ΛeΛ with e primitive ⇒Λ ≈ eΛe.

Hence, gdim(Λ) <∞⇔ eJe = 0⇔ cd(A) = 1.

2) r > 1⇒ A/I1 has quasi-stratification chain

0 = I1/I1 ⊂ · · · ⊂ Ir/I1 ⊂ Ir+1/I1 = Λ/I1.

Since cd(Λ) = cd(eΛe) cd(Λ/I1), and

gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I1) <∞,

The statement follows from inductive hypothesis.

Shiping Liu On the global dimension of an algebra

Page 123: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Theorem (Liu, Paquette, 2006)

Let Λ be quasi-stratified. Then gdim(Λ) <∞⇔ cd(A) = 1.

Proof. Consider quasi-stratification chain

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ.

Let e be maximal idempotent in I1.

1) r = 1⇒ Λ = ΛeΛ with e primitive ⇒Λ ≈ eΛe.

Hence, gdim(Λ) <∞⇔ eJe = 0⇔ cd(A) = 1.

2) r > 1⇒ A/I1 has quasi-stratification chain

0 = I1/I1 ⊂ · · · ⊂ Ir/I1 ⊂ Ir+1/I1 = Λ/I1.

Since cd(Λ) = cd(eΛe) cd(Λ/I1), and

gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I1) <∞,The statement follows from inductive hypothesis.

Shiping Liu On the global dimension of an algebra

Page 124: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Example

Let Λ be given by

2

σ

��β

��>>>>>

α ��>>>>>

@@�����

ε@@�����

3,γ

oo

σ2 = σβ = βγ = γδ = εα = εσ = εβ = δα− δσα = 0.

Λ neither left nor right standardly stratified.

Λ quasi-stratified with quasi-stratification chain

0 ⊂ < ε > ⊂ < ε, α > ⊂ < ε, α, δ > ⊂ < ε, α, δ, e2 >⊂ < ε, α, δ, e2, e3 > ⊂ Λ,

where first ideal left projective, others right projective over thequotient by the preceding one.

Shiping Liu On the global dimension of an algebra

Page 125: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Example

Let Λ be given by

2

σ

��β

��>>>>>

α ��>>>>>

@@�����

ε@@�����

3,γ

oo

σ2 = σβ = βγ = γδ = εα = εσ = εβ = δα− δσα = 0.

Λ neither left nor right standardly stratified.

Λ quasi-stratified with quasi-stratification chain

0 ⊂ < ε > ⊂ < ε, α > ⊂ < ε, α, δ > ⊂ < ε, α, δ, e2 >⊂ < ε, α, δ, e2, e3 > ⊂ Λ,

where first ideal left projective, others right projective over thequotient by the preceding one.

Shiping Liu On the global dimension of an algebra

Page 126: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Example

Let Λ be given by

2

σ

��β

��>>>>>

α ��>>>>>

@@�����

ε@@�����

3,γ

oo

σ2 = σβ = βγ = γδ = εα = εσ = εβ = δα− δσα = 0.

Λ neither left nor right standardly stratified.

Λ quasi-stratified with quasi-stratification chain

0 ⊂ < ε > ⊂ < ε, α > ⊂ < ε, α, δ > ⊂ < ε, α, δ, e2 >⊂ < ε, α, δ, e2, e3 > ⊂ Λ,

where first ideal left projective, others right projective over thequotient by the preceding one.

Shiping Liu On the global dimension of an algebra

Page 127: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

Example

Let Λ be given by

2

σ

��β

��>>>>>

α ��>>>>>

@@�����

ε@@�����

3,γ

oo

σ2 = σβ = βγ = γδ = εα = εσ = εβ = δα− δσα = 0.

Λ neither left nor right standardly stratified.

Λ quasi-stratified with quasi-stratification chain

0 ⊂ < ε > ⊂ < ε, α > ⊂ < ε, α, δ > ⊂ < ε, α, δ, e2 >⊂ < ε, α, δ, e2, e3 > ⊂ Λ,

where first ideal left projective, others right projective over thequotient by the preceding one.

Shiping Liu On the global dimension of an algebra

Page 128: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

How to find quasi-stratification chain

0 ⊂ < ε > ⊂ < ε, α > ⊂ < ε, α, δ > .

2

σ

��β

��<<<<<

α ��<<<<< σ2 = σβ = βγ = γδ = δα− δσα = 0

1

δ

AA�����3,

γoo

2

σ

��β

��<<<<< σ2 = σβ = βγ = γδ = 0.

1

δ

AA�����3,

γoo

Shiping Liu On the global dimension of an algebra

Page 129: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

How to find quasi-stratification chain

0 ⊂ < ε > ⊂ < ε, α > ⊂ < ε, α, δ > .

2

σ

��β

��<<<<<

α ��<<<<< σ2 = σβ = βγ = γδ = δα− δσα = 0

1

δ

AA�����3,

γoo

2

σ

��β

��<<<<< σ2 = σβ = βγ = γδ = 0.

1

δ

AA�����3,

γoo

Shiping Liu On the global dimension of an algebra

Page 130: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

How to find quasi-stratification chain

< ε, α, δ > ⊂ < ε, α, δ, e2 >⊂ < ε, α, δ, e2, e3 > ⊂ Λ.

2

σ

��β

��<<<<< σ2 = σβ = βγ = 0.

1 3γoo

1 3.γoo

1.

Shiping Liu On the global dimension of an algebra

Page 131: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

How to find quasi-stratification chain

< ε, α, δ > ⊂ < ε, α, δ, e2 >⊂ < ε, α, δ, e2, e3 > ⊂ Λ.

2

σ

��β

��<<<<< σ2 = σβ = βγ = 0.

1 3γoo

1 3.γoo

1.

Shiping Liu On the global dimension of an algebra

Page 132: Universit e de Sherbrooke

IntroductionHochschild homology

SNLC for algebras over algebraically closed filedCDC for quasi-stratified algebras

How to find quasi-stratification chain

< ε, α, δ > ⊂ < ε, α, δ, e2 >⊂ < ε, α, δ, e2, e3 > ⊂ Λ.

2

σ

��β

��<<<<< σ2 = σβ = βγ = 0.

1 3γoo

1 3.γoo

1.

Shiping Liu On the global dimension of an algebra