Top Banner
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE - UFRN CENTRO DE CIÊNCIAS EXATAS DA TERRA - CCET INSTITUTO DE QUÍMICA - IQ Misson Marques Stossberg Produção de Biodiesel a partir da Reação de Transesterificação por Rota Metílica utilizando Óxido Bimetálico (Ca/Nb) Natal, RN. 2018
75

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE - UFRN … · 2. Transesterificação - Monografia. 3. Biodiesel - Monografia. I. Gondim, Amanda Duarte. II. Araújo, Aruzza Mabel de Morais.

Oct 24, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE - UFRN

    CENTRO DE CIÊNCIAS EXATAS DA TERRA - CCET

    INSTITUTO DE QUÍMICA - IQ

    Misson Marques Stossberg

    Produção de Biodiesel a partir da Reação de Transesterificação por Rota

    Metílica utilizando Óxido Bimetálico (Ca/Nb)

    Natal, RN.

    2018

  • Misson Marques Stossberg

    Produção de Biodiesel a partir da Reação de Transesterificação por Rota

    Metílica utilizando Óxido Bimetálico (Ca/Nb)

    Natal, RN.

    2018

  • Misson Marques Stossberg

    Produção de Biodiesel a partir da Reação de Transesterificação por Rota

    Metílica utilizando Óxido Bimetálico (Ca/Nb)

    Trabalho de conclusão de curso

    apresentado ao curso de Química

    Bacharelado da Universidade

    Federal do Rio Grande do Norte,

    parte integrante dos requisitos

    necessários para a obtenção do

    grau de Bacharel em Química.

    Orientadora: Profª. Drª Amanda Duarte Gondim.

    Co-orientadora: Prof.ª Drª. Aruzza Mabel de Morais Araújo

    Natal, RN.

    2018

  • Universidade Federal do Rio Grande do Norte - UFRN

    Sistema de Bibliotecas - SISBI

    Catalogação de Publicação na Fonte. UFRN - Biblioteca Central Zila Mamede

    Stossberg, Misson Marques. Produção de biodiesel a partir da reação de transesterificação

    por rota metílica utilizando óxido bimetálico (Ca/Nb) / Misson Marques Stossberg. - 2019.

    74 f.: il.

    Monografia (graduação) - Universidade Federal do Rio Grande do

    Norte, Centro de Ciências Exatas da Terra, Instituto de Química,

    Curso de Química Bacharelado. Natal, RN, 2018.

    Orientadora: Profª. Drª. Amanda Duarte Gondim.

    Coorientadora: Profª. Drª. Aruzza Mabel de Morais Araújo.

    1. Biocombustíveis - Monografia. 2. Transesterificação - Monografia. 3. Biodiesel - Monografia. I. Gondim, Amanda Duarte.

    II. Araújo, Aruzza Mabel de Morais. III. Título.

    RN/UF/BCZM CDU 620.1

    Elaborado por Ana Cristina Cavalcanti Tinôco - CRB-15/262

  • Misson Marques Stossberg

    Produção de Biodiesel a partir da Reação de Transesterificação por Rota

    Metílica utilizando Óxido Bimetálico (Ca/Nb)

    Trabalho de conclusão de curso

    apresentado ao curso de Química

    Bacharelado da Universidade

    Federal do Rio Grande do Norte,

    parte integrante dos requisitos

    necessários para a obtenção do

    grau de Bacharel em Química.

    Aprovado em ____/____/_____

    ________________________________________________

    Profª. Drª Amanda Duarte Gondim (Orientadora) (UFRN)

    Universidade Federal do Rio Grande do Norte

    ________________________________________________

    Prof.ª Drª. Aruzza Mabel de Morais Araújo (Co-Orientadora) (UFRN)

    Universidade Federal do Rio Grande do Norte

    ________________________________________________

    Prof.ª Luzia Patrícia Fernandes de Carvalho Galvão (UnP)

  • Dedico este trabalho a Deus, ao meu pai,

    Damião Alves Marques, minha mãe, Sandra de

    Menezes Stossberg, a minha tia, Janeide Alves

    Marques e a minha avó materna, Margarida

    Stossberg “in memorian”.

  • AGRADECIMENTOS

    A Deus, porque Ele nunca me deixou em nenhum momento, cuidou de mim

    em cada detalhe, e me deu muitas forças para conquistar essa vitória.

    Aos meus pais, Damião Alves Marques e Sandra de Menezes Stossberg

    por todo amor, carinho, apoio e orações feitas pela minha vida. Obrigado por

    sempre estarem comigo nos principais momentos da minha vida, e não há

    palavras que possam decifrar o grande amor que tenho por vocês.

    A minha avó materna, Margarida Maria Stossberg (in memorian) por todo o

    amor e por ter contribuído com valores que me ajudaram a me tornar quem sou.

    A minha tia, Janeide Alves Marques por todo amor, carinho e apoio que me

    foi dado durante esses 4 anos de graduação.

    A minha orientadora, Prof.ª Drª Amanda Duarte Gondim, pela grande

    oportunidade desse trabalho, pela amizade, paciência e por todo conhecimento

    me foi passado.

    A minha Co-orientadora, Prof.ª Drª Aruzza Mabel, pela enorme ajuda,

    amizade e conhecimento que me foi concedido durante todo o desenvolvimento do

    projeto.

    Aos meus amigos que conquistei durante todo o curso, Juliany Borba,

    Habinadabe Lima, Andresa Lima, Mayra Dalila, Edmilson Matias, Gerion Azevedo,

    William Barbosa, Giovanna Bergamim, Thaís Freire, José Rodrigues, Felipe

    Souza, Mateus Assis, Lorena Marques, Talita Pontes, Juliana Rodrigues, José

    Claudiano, Nurielly, Rafaella, Pedro, por cada momento que passamos juntos.

    Aos meus amigos do Laboratório de Catálise e Petroquímica (LCP), João,

    Vicente, Karoline, Isabelle, Fernanda, Gabriela, Alyxandra, Danielle, Márcio por

    toda amizade, pelos bons momentos e toda ajuda que me deram.

    A toda UFRN, ao Instituto de Química, e a todos os professores por todos

    os conhecimentos apresentados durante todo a graduação.

    E a todos que contribuíram para a conclusão desse trabalho.

  • RESUMO

    Nos tempos hodiernos, há uma grande procura por energias renováveis

    devido ao uso de combustíveis fósseis causar problemas ambientais como à

    emissão do efeito estufa. Assim, o biodiesel passa ser uma alternativa para à

    substituição do diesel. O biodiesel consiste em um combustível derivado de óleos

    vegetais e gorduras animais, que são formados por ésteres de alquila, ésteres de

    ácido graxo e ácidos carboxílicos de cadeia longa através da reação de

    transesterificação. Os catalisadores mais utilizados para o processo de

    transesterificação são os homogêneos, mas apresentam uma elevada toxicidade e

    dificuldade para a separação do produto final. Portanto foi utilizado neste trabalho

    um catalisador heterogêneo (CaO/Nb2O5) que tem como o principal objetivo de

    sintetizar e caracterizar o catalisador (CaO/Nb2O5), além de aplicar o catalisador

    na reação de transesterificação do óleo de algodão em busca de melhores

    condições de reações. Os biodieseis obtidos foram avaliados por análise térmica

    (TGA/DTG), infravermelho por transformada de Fourier (FTIR), densidade,

    viscosidade, índice de acidez e ressonância magnética nuclear (RMN). A síntese

    do óxido bi metálico foi feita na proporção molar 1:1 de Ca/Nb e em seguida

    calcinado à 600ºC. Para a confirmação da obtenção do catalisador foram

    aplicadas técnicas como a Difratometria de Raios-X (DRX), Análises Térmicas

    (TGA/DTG), Espectroscopia de Infravermelho com Transformada de Fourier

    (FTIR) e Microscopia Eletrônica de Varredura (MEV). O óleo de algodão foi

    analisado por termogravimetria, para obtermos a perda de massa com a variação

    da temperatura em função do tempo, além de todas outras análises feitas com os

    biodieseis. O catalisador foi aplicado na reação de transesterificação por rota

    metílica com razão molar metanol:óleo 1:15, 10% de catalisador, por 5 horas, com

    variação de temperatura de 60ºC, 90ºC e 120ºC, e assim, os biodieseis obtidos

    apresentaram uma pequena taxa de conversão de triglicerídeos em ésteres.

    Palavras chaves: Biocombustíveis. Transesterificação. Biodiesel. Catalisador

    heterogêneo. Óxido bi metálico.

  • ABSTRACT

    In modern times, there is a great demand for renewable energies due to the

    use of fossil fuels cause environmental problems such as the emission of the

    greenhouse effect. Thus, biodiesel becomes an alternative to diesel replacement.

    Biodiesel consists of a fuel derived from vegetable oils and animal fats, which are

    formed by alkyl esters, fatty acid esters and long chain carboxylic acids through the

    transesterification reaction. The catalysts most used for the transesterification

    process are the homogeneous ones, but they present a high toxicity and difficulty

    for the separation of the final product. Therefore, a heterogeneous catalyst (CaO /

    Nb2O5) was used in this work, which has as main objective to synthesize and

    characterize the catalyst (CaO / Nb2O5), besides applying the catalyst in the

    transesterification reaction of the cotton oil in search of better reactions. The

    biodiesel obtained was evaluated by thermal analysis (TGA / DTG), Fourier

    transform infrared (FTIR), density, viscosity, acidity index and nuclear magnetic

    resonance (NMR). The synthesis of the bi-metallic oxide was made in the 1: 1

    molar ratio of Ca / Nb and then calcined at 600 ° C. The X-ray diffraction (XRD),

    Thermal Analysis (TGA / DTG), Infrared Spectroscopy with Fourier Transform

    (FTIR) and Scanning Electron Microscopy (SEM) techniques were applied to

    confirm the catalyst acquisition. The cotton oil was analyzed by thermogravimetry

    to obtain mass loss with temperature variation as a function of time, in addition to

    all other analyzes made with biodiesis. The catalyst was applied in the

    transesterification reaction by a methanol: 1:15 molar ratio, 10% catalyst, for 5

    hours, with temperature variation of 60ºC, 90ºC and 120ºC, and thus, the biodiesel

    obtained showed a small conversion rate of triglycerides to esters.

    Keywords: Biofuels. Transesterification. Biodiesel. Heterogeneous catalyst. Bi-

    metallic oxide

  • LISTA DE FIGURAS

    Figura 1: Fluxograma da produção do biodiesel………………….. 22

    Figura 2:

    Perfil Nacional de matérias-primas consumidas para a

    produção de biodiesel……………………………………..

    27

    Figura 3:

    Histórico do percentual das matérias-primas utilizadas

    para a produção de biodiesel na região nordeste……...

    28

    Figura 4:

    Reação de transesterificação…………………………….

    29

    Figura 5:

    Processo de síntese do catalisador (CaO/Nb2O5):

    Secagem, pulverização e calcinação…………………....

    34

    Figura 6:

    Esquema de obtenção do catalisador

    (CaO/Nb2O5)...................................................................

    35

    Figura 7:

    Papel filtro com catalisador e óleo……………………….

    37

    Figura 8:

    Sistema de refluxo utilizado na reação de

    transesterificação do óleo de algodão…………………...

    38

    Figura 9:

    Sistema de refluxo com o banho de areia para o

    aquecimento uniforme na reação de transesterificação

    do óleo de algodão………………………………………...

    39

    Figura 10:

    Funil de separação pós-filtração………………………....

    40

    Figura 11:

    Lavagem do biodiesel com água levemente aquecida...

    41

  • Figura 12:

    Esquema de obtenção do biodiesel de algodão………..

    42

    Figura 13:

    Difratograma de raios-x do catalisador CaO/ Nb2O5…...

    46

    Figura 14:

    Espectro de Infravermelho do catalisador CaO/ Nb2O5..

    47

    Figura 15:

    Curvas de TGA e DTG do catalisador

    CaO/Nb2O5……….............................................................................................

    48

    Figura 16:

    Microscopia Eletrônica de Varredura do CaO/Nb2O5 (a)

    5.000x (b)10000x (c) 30000x……………………………..

    49

    Figura 17:

    Difratograma de raios-x do catalisador CaO/ Nb2O5

    recuperado………………………………………………….

    52

    Figura 18:

    Curvas de TGA e DTG dos biodieseis de algodão e do

    o óleo………………………………………………………..

    53

    Figura 19:

    Curvas de DTG dos biodieseis de algodão e do o óleo.

    53

    Figura 20:

    Gráfico de rendimento dos biodieseis de algodão nas

    condições especificadas (Razão metanol:óleo 15:1;

    10%, 5h) variando as temperaturas em 60 ºC, 90 ºC e

    120 ºC……………………………………………………….

    55

    Figura 21:

    Espectros de FTIR do óleo de algodão; Biodiesel 1

    (Bio 1); Biodiesel 2 (Bio 2); Biodiesel 3 (Bio 3)...............

    56

  • Figura 22: Espectro de RMN 1H do óleo de algodão comercial…... 59

    Figura 23:

    Espectro de RMN 13C do óleo de algodão comercial….....................................................................

    61

    Figura 24:

    Espectro de RMN 1H do biodiesel 1……………………..

    62

    Figura 25:

    Espectro de RMN 1H do biodiesel 2……………………..

    62

    Figura 26:

    Espectro de RMN 1H do biodiesel 3……………………..

    63

    Figura 27:

    Espectro de RMN 13C do biodiesel 1…………………….

    64

    Figura 28:

    Espectro de RMN 13C do biodiesel 2…………………….

    64

    Figura 29:

    Espectro de RMN 13C do biodiesel 3…………………….

    65

  • LISTA DE TABELAS

    Tabela 1: Especificações nacionais para o biodiesel no Brasil.

    23

    Tabela 2:

    Composição em ácidos graxos do óleo de algodão.

    25

    Tabela 3:

    Percentual de matérias-primas utilizadas para produção de biodiesel por região em setembro de 2018.

    28

    Tabela 4:

    Exemplos de utilização de catalisadores mistos na reação de transesterificação.

    32

    Tabela 5:

    Condições reacionais para a reação de transesterificação.

    38

    Tabela 6:

    EDS do catalisador Ca/Nb2O5.

    51

    Tabela 7

    Dados termogravimétricos do óleo de algodão e

    dos biodieseis.

    54

    Tabela 8:

    Atribuição de grupamentos funcionais através das bandas de absorção e do número de onda.

    57

    Tabela 9:

    Índice de acidez do óleo de algodão e dos biodieseis.

    58

    Tabela 10:

    Densidade da amostra de biodiesel de algodão.

    59

    Tabela 11:

    Identificação dos grupos funcionais a partir do deslocamento químico.

    61

    Tabela 12:

    Identificação dos grupos funcionais presentes no biodiesel 1, 2 e 3 a partir do deslocamento químico.

    63

  • LISTA DE SIGLAS E SÍMBOLOS

    ABNT - Associação Brasileira de Normas Técnicas.

    AIE - Agência Internacional de Energia.

    ANP - Agência Nacional de Petróleo, Gás Natural e Biocombustíveis.

    ASTM - American Standard Testing Methods.

    Ct - Concentração (N) da solução de NaOH obtida na padronização.

    DRX - Difratometria de Raios-X.

    EDS - Energia Dispersiva de Raios-X.

    EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária.

    FTIR - Infravermelho por Transformada por Fourier FTIR.

    g - Gramas.

    IA - Índice de Acidez.

    KOH - Hidróxido de Potássio.

    m - Massa.

    MEV - Microscopia Eletrônica de Varredura

    Min. - Minutos.

    mL - Mililítros.

    NaOH - Hidróxido de Sódio.

    Nb2O5 - Pentóxido de Nióbio.

    s - Segundos.

    t -Tempo.

    TG/DTG - Análise Termogravimétrica.

    V - Viscosidade Cinemática.

  • SUMÁRIO

    1. INTRODUÇÃO..................................................................................................17

    2. OBJETIVOS......................................................................................................19

    2.1 OBJETIVO GERAL......................................................................................19

    2.2 OBJETIVO ESPECÍFICO.............................................................................19

    3. FUNDAMENTAÇÃO TEÓRICA........................................................................20

    3.1 BIOCOMBUSTÍVEIS....................................................................................20

    3.2 BIODIESEL..................................................................................................21

    3.3 ÓLEOS VEGETAIS......................................................................................23

    3.4 ÓLEO DE ALGODÃO.................................................................................25

    3.5 REAÇÃO DE TRANSESTERIFICAÇÃO.....................................................29

    3.6 CATALISADORES.......................................................................................30

    3.7 ÓXIDO BI METÁLICO APLICADOS A PRODUÇÃO DE BIODIESEL.........31

    3. METODOLOGIA................................................................................................33

    4.1 SÍNTESE DO CATALISADOR BIMETÁLICO............................................33

    4.2 CARACTERIZAÇÃO DO CATALISADOR.................................................35

    4.2.1 DIFRAÇÃO DE RAIOS-X..................................................................36

    4.2.2 INFRAVERMELHO POR TRANSFORMADA DE FOURIER............36

    4.2.3 MICROSCOPIA ELETRÔNICA DE VARREDURA...........................36

    4.2.4 ANÁLISE TERMOGRAVIMÉTRICA.................................................36

    4.3 RECUPERAÇÃO DO CATALISADOR SINTETIZADO...............................37

    4.4 REAÇÃO DE TRANSESTERIFICAÇÃO.....................................................37

  • 4.5 CARACTERIZAÇÃO DO ÓLEOS E DOS BIODIESEIS..........................43

    4.5.1 TERMOGRAVIMETRIA..................................................................43

    4.5.2 INFRAVERMELHO COM TRANSFORMADA DE FOURIER.........43

    4.5.3 ÍNDICE DE ACIDEZ.......................................................................43

    4.5.4 VISCOSIDADE E DENSIDADE.....................................................44

    4.5.5 RESSONÂNCIA MAGNÉTICA NUCLEAR....................................44

    5. RESULTADOS E DISCUSSÃO.........................................................................46

    5.1 CARACTERIZAÇÃO DO CATALISADOR..................................................46

    5.1.1 DIFRAÇÃO DE RAIOS-X (DRX)........................................................45

    5.1.2 INFRAVERMELHO COM TRANSFORMADA DE FOURIER (FTIR).46

    5.1.3 TERMOGRAVIMETRIA (TGA/DTG)..................................................48

    5.1.4 MICROSCOPIA ELETRÔNICA DE VARREDURA (MEV).................49

    5.2 DIFRAÇÃO DE RAIOS-X DO CATALISADOR RECUPERADO.................51

    5.2.1 DIFRAÇÃO DE RAIOS-X (DRX)........................................................51

    5.3 CARACTERIZAÇÃO DO ÓLEO E DOS BIODIESEIS...............................52

    5.3.1 TERMOGRAVIMETRIA (TGA/DTG)..................................................52

    5.3.2 INFRAVERMELHO COM TRANSFORMADA DE FOURIER (FTIR).55

    5.3.3 ÍNDICE DE ACIDEZ...........................................................................57

    5.3.4 VISCOSIDADE E DENSIDADE..........................................................58

    5.4.5 RESSONÂNCIA MAGNÉTICA NUCLEAR.........................................59

    6. CONCLUSÃO.....................................................................................................67

    7.REFERÊNCIAS BIBLIOGRÁFICAS...................................................................68

  • 17

    1. INTRODUÇÃO

    Existe em nossa contemporaneidade uma grande preocupação acerca da

    utilização de combustíveis fósseis, como petróleo, carvão, gás natural e as

    principais razões são preocupações ambientais, como poluição do ar e mudanças

    climáticas. Com isso, há uma necessidade de utilização de fontes alternativas, que

    reduzam os impactos ambientais, que sejam de origem renovável, apresentem um

    preço acessível, e diversifiquem à matriz energética (BULUT, 2018).

    Dentre as opções de combustíveis líquidos renováveis, o biodiesel está

    alcançando grande aceitação por ser derivado de fontes renováveis e apresentar

    menores riscos ambientais (CALISKAN, 2017). O biodiesel é um combustível

    renovável, e apresenta uma menor toxicidade se comparado ao diesel

    convencional (AL-ZUHAIR, LING, JUN, 2007; BOZBAS, 2008). As principais

    propriedades desse combustível são a menor emissão de dióxido e monóxido de

    carbono, isenção de enxofre, ponto de fulgor maior (ALEGRIA, A.; ARRIBA, M. J.

    R.; CUELLAR, J., 2014; ZUO, D.; LANE, J.; CULY, D.; SCHULTZ, M.; PULLAR,

    A.; WAXMAN, M., 2013).

    Óleos vegetais são biomassas que são extraídos de plantas e vegetais,

    sendo utilizados na indústria alimentícia, cosmética, farmacêutica, e pode ser uma

    das principais matérias primas para a produção do biodiesel. As principais

    matérias-primas utilizadas para produção de biodiesel no Brasil são os óleos de

    soja, sebo bovino, e o óleo de algodão é o terceiro mais utilizado (ANP, 2018).

    A transesterificação de óleos vegetais ou gorduras, com um álcool de

    cadeia curta, na presença de um catalisador, produz ésteres, que são o biodiesel,

    e o glicerol como subproduto (SÀNCHEZ et al., 2014).

    Atualmente o biodiesel é produzido industrialmente pela reação de

    transesterificação através da catálise homogênea no processo de

    transesterificação usando hidróxido de sódio (NaOH) ou hidróxido de potássio

    (KOH) (ALAMU et al.2008; DMYTRYSHYN et al. 2004). Os catalisadores

    homogêneos não podem ser reutilizados, devido à complexidade de sua

    recuperação na reação, e posteriormente haver a necessidade de uma etapa de

    neutralização do catalisador com ácido e lavagem com água para que haja a

  • 18

    separação do catalisador e dos ésteres, porém, isso gerará águas residuais, que

    levam questões ambientais e custos adicionais a produção (VICENTE, et al.,

    2007). A solução para esses problemas que são enfrentados foi amenizada com o

    surgimento dos catalisadores heterogêneos, como zeólitas (SASIDHARAN,

    KUMAR, 2004). Esses catalisadores foram aplicados no processo de

    transesterificação, e estudos mostraram que o óxido de cálcio (CaO) é um potente

    catalisador na reação de transesterificação, com resultados de 94% de rendimento

    (GRANADOS et al., 2007), porém o óxido de cálcio não é estável e tende a

    lixiviação para o meio da reação, o que reduz a atividade do catalisador (KOUZU

    et al. 2009;). Uma das maneiras de melhorar o desempenho e a estabilidade do

    óxido de cálcio é misturando-o com outros óxidos metálicos.

    Nesse trabalho o óxido de cálcio foi misturado com o óxido de nióbio e

    houve a avaliação catalítica da transesterificação do óleo de algodão e metanol.

    Portanto, este trabalho se propõe a síntese e caracterização do catalisador

    heterogêneo (CaO/Nb2O5). Além do estudo do melhor tempo reacional, melhor

    temperatura, razão metanol:óleo e variação de catalisador na produção de

    biodiesel.

  • 19

    2. OBJETIVOS

    2.1 OBJETIVO GERAL

    O objetivo geral deste trabalho foi sintetizar e caracterizar o catalisador

    heterogêneo CaO/Nb2O5, e avaliar a atividade catalítica na produção do biodiesel

    de algodão através da reação de transesterificação via rota metílica.

    2.2 OBJETIVO ESPECÍFICO

    ● Sintetizar o catalisador heterogêneo (CaO/Nb2O5), através do método de

    impregnação por via úmida;

    ● Caracterizar o catalisador através de técnicas como Difração de Raios-X

    (DRX), Espectroscopia de Infravermelho por Transformada de Fourier

    (FTIR), Microscopia Eletrônica de Varredura (MEV) e Análise

    Termogravimétrica (TGA/DTG);

    ● Avaliar a atividade do catalisador através da reação de transesterificação

    do óleo de algodão variando a temperatura de reação;

    ● Caracterizar o biodiesel obtido através de técnicas como Análises

    Termogravimétricas (TGA/DTG), Espectroscopia de Infravermelho por

    Transformada de Fourier (FTIR), Índice de Acidez, Viscosidade e

    Densidade e Ressonância Magnética Nuclear (RMN).

  • 20

    3. FUNDAMENTAÇÃO TEÓRICA

    3.1 BIOCOMBUSTÍVEIS

    A energia é um dos requisitos mais importantes para a vida moderna.

    Atualmente é o bem mais exigido pelos consumidores e por várias indústrias em

    todo o mundo. É o principal componente que comanda o crescimento econômico

    de um país (CLEVERLAND et al., 2000). O crescimento exponencial da energia foi

    iniciado pela queima de hidrocarbonetos fósseis, como o carvão no século XIX,

    seguidos pelo petróleo no século XX, e agora sustentado pelo gás natural

    (SAYRE, 2010). Atualmente, a maior fração de energia utilizada é derivada de

    combustível fóssil, sendo globalmente valorizados, porém, geram consequências

    desfavoráveis como a poluição (LIU et al., 2007). Os elevados preços do petróleo

    e a necessidade de redução de emissão de gases com efeito estufa tornam as

    energias renováveis umas das melhores maneiras de redução dessa dependência

    com o petróleo (MARCHETTI; MIGUEL; ERRAZU,2005; DERMIBAS, 2007). Esse

    consumo de combustíveis fósseis gera poluentes que são emitidos para

    atmosfera, como dióxido de enxofre (SO2), óxidos de nitrogênio (NOx), óxido de

    carbono (CO), dióxido de carbono (CO2), compostos orgânicos voláteis (COV’s) e

    alguns metais pesados. Porém, as necessidades de implantação de novas fontes

    de matriz energética mais limpas crescem a cada ano (JHA; SOREN, 2016;

    CAPRARIIS et al, 2017). A emissão de dióxido de carbono apresentou um

    aumento de 2,5% ao ano, e resultou em um aumento de 2ºC na temperatura

    mundial (FRIEDLINGSTEIN et al., 2014).

    De acordo com o cenário existente, há uma necessidade de redução de

    emissão de CO2 em transportes, devido serem responsáveis por um total de 23%

    no total de emissões. A eletricidade tem sido uma opção promissora para a

    redução do CO2 em transportes, contudo, há uma previsão de que os

    biocombustíveis sejam a principal alternativa para a redução do dióxido de

    carbono no setor automobilístico (AHLGREN et al., 2017). Os biocombustíveis são

    derivados de biomassa e vem sendo implementados no mercado por emitir menos

  • 21

    gases poluentes ao meio ambiente se comparado ao de origem fóssil. O Brasil

    apresenta um alto potencial para a produção de energia e biocombustíveis a partir

    de biomassa, devido apresentar uma vasta área territorial que pode ser aplicada

    para cultivo de matérias-primas, e assim evitar que haja o desmatamento

    (WELFLE, 2017).

    De acordo com a Agência Internacional de Energia (AIE), o consumo total

    de biocombustíveis até 2060 está previsto para ser de 30,07%, seguido pela

    eletricidade em 27%. Para atender essa futura demanda, há uma necessidade de

    aumentar em 10 vezes a produção de biocombustíveis. A taxa de crescimento

    médio anual de biocombustíveis de 2006-2016 foi de 14,1% (HO et al., 2014).

    3.2 BIODIESEL

    O biodiesel é um combustível renovável, um produto limpo, seguro e não

    perigoso devido ter a presença de biodegradabilidade, e ter natureza neutra em

    carbono (ROY; WANG; ALAWI, 2014). O biodiesel pode ser obtido por diversos

    processos, sendo a principal a reação de transesterificação, que é o método

    amplamente utilizado devido sua eficiência e simplicidade técnica. Quimicamente,

    o biodiesel é um combustível composto de ésteres metílicos de ácidos graxos,

    produzido pela reação de transesterificação, que consiste na interação entre o

    óleo e álcool na presença de um catalisador, conforme pode ser ilustrado na

    Figura 1. As principais matérias-primas para produção do biodiesel são óleos

    vegetais, gorduras animais, resíduos de cozinhas e microalgas (Resolução ANP

    nº45 de 25/08/2014; SILVA et al., 2015; OLIVEIRA; COSTA, 2006; YAAKOB et al.,

    2013).

  • 22

    Figura 1: Fluxograma da produção do biodiesel

    Fonte: RODRIGUES; RONDINA, 2013.

    Dentre as fontes alternativas de energia, entre essas, o biodiesel está

    recebendo maior ênfase por poder ser produzido a partir de uma ampla variedade

    de recursos, incluindo até óleo de cozinha já utilizado (EMBRAPA, 2018;

    OLKIEWICZ et al., 2016; KNOTHE, 2008) . Há uma série de opções tecnológicas

    para a produção do biodiesel baseado na qualidade da matéria-prima,

    possibilitando uma menor despesa geral na produção (MANDOLESI et al., 2013).

    Se comparado ao diesel convencional, o biodiesel possui maior flexibilidade,

    biodegradabilidade, lubricidade inerte, não possui enxofre, apresenta uma menor

    quantidade de monóxido de carbono, dióxido de carbono, fumaça e

    hidrocarbonetos, e têm mais oxigênio livre do que a gasolina convencional

    (ELLABBAN; ABU-RUB; BLAABJERG, 2014; HASAN; RAHMAN, 2017). A

    presença desse oxigênio livre resulta em uma combustão incompleta e uma

    redução de emissões (FAZAL; HASEEB; MASJUKI, 2011; QUANJI et al., 2016).

    Além disso, o biodiesel apresenta uma melhor qualidade na emissão dos gases de

    escape, devido o carbono orgânico presente ser de origem fotossintética. Os

    principais desafios associados ao biodiesel como combustível é estar associado

  • 23

    ao elevado custo de produção, menor conteúdo energético e liberação de óxidos

    de nitrogênio quando são queimados. Entretanto, o custo elevado de produção

    que dificulta a maior utilização (ANUAR; ABDULLAH, 2016; LIN et al., 2011;

    MARCHETTI; MIGUEL; ERRAZU, 2008).

    O biodiesel deve atender aos parâmetros exigidos por normas técnicas

    como a ASTM D6751 (American Standard Testing Methods, 2003), ou a

    Resolução Nº 45 da ANP, que é responsável pelas propriedades necessárias para

    que o produto venha ser distribuído, e algumas especificações podem ser

    analisadas na Tabela 1 (ANP, 2014; KNOTHE et al., 2006).

    Tabela 1: Especificações nacionais para o biodiesel no Brasil.

    Propriedades Limites Métodos

    Ponto de fulgor (ºC) 100 mín. NBR14598; D93;

    EN/ISO3679

    Viscosidade cinemática a

    40ºC (mm2/s)

    3,0 a 6,0 NBR10441; D445;

    EN/ISO3104

    Teor de éster (%, m/m) 96,5 mín. NBR15764; EN14103

    Índice de acidez (mg KOH/g) 0,50 máx. NBR14448; D664; EN14104

    Massa específica a 20ºC

    (kg/m3 )

    850 a 900 NBR7148/14065;

    D1298/4052; EN/ISO

    3675/12815

    Fonte: ANP.

    O biodiesel deve apresentar alta pureza, não apresentar traços de glicerina,

    catalisador residual, ou álcool excedente da reação.

    3.3 ÓLEOS VEGETAIS

    Óleos vegetais são misturas de ácidos graxos que apresentam uma faixa

    percentual em volta de 98% que compreende a massa total do óleo e uma mistura

    de componentes menores que correspondem uma diversidade de estruturas

    químicas (MEDEIROS, 2016). Ácidos graxos são ácidos carboxílicos de cadeia

  • 24

    longa, variando de 4 a 30 carbonos, livres ou esterificados. Quando os ácidos

    graxos estão na forma saturada, apresentam apenas ligações simples entre os

    carbonos e pouca reatividade química, e quando estão na forma insaturada há a

    presença de uma ou mais ligações duplas na cadeia carbônica, maior reatividade

    e apresentam uma maior suscetibilidade à termo-oxidação (CALLE; PELKMANS;

    WALTER, 2009).

    A utilização de óleos vegetais como combustíveis deu-se antes do século

    XX, quando o Rudolf Diesel aplicou o óleo de amendoim como combustível de

    motores a Diesel, obtendo êxito referente a eficiência se comparado aos

    combustíveis fósseis (ISSARIYAKUL; DALAI, 2014). Porém, devido a alguns

    motivos, como altos custos para a aplicação, os cientistas voltaram a priorizar os

    combustíveis fósseis, deixando os óleos vegetais como um combustível de

    emergência nas duas guerras mundiais que houveram, e apenas após a crise do

    petróleo, que ocorreu a partir de 1973, que fez com que os cientistas tivessem

    uma atenção maior à cerca desses óleos no Brasil e em todo mundo (ARAÚJO et

    al., 2017; BIODIESELBR, 2017; CASTRO, 2017).

    O Brasil dispõe de um grande potencial para o cultivo de diversas

    oleaginosas para a extração de óleos devido possuírem condições privilegiadas

    relacionadas ao clima e ao solo. As principais oleaginosas produzidas no país são

    o óleo de soja, girassol, algodão, macaúba, canola, babaçu, oiticica, milho,

    amendoim, entre outros (COSTA, 2004; MAPA, 2014; CESAR et al., 2015).

    Alguns óleos vegetais possuem alta viscosidade, o que ocasiona sérios

    problemas ao motor de um veículo. Com isso, vários estudos vêm sendo

    realizados para minimização desses problemas e poder gerar um maior valor

    agregado ao produto. Dentre as reações para obtenção do biodiesel que mais se

    destacam são as do óleo de girassol (SAYDUT et al., 2016), óleo de soja (JOSHI

    et al., 2017) e óleo de palma (KUSS et al., 2015).

  • 25

    3.4 ÓLEO DE ALGODÃO

    O algodoeiro (Gossypium hirsutum latifolium Hutch LR), originário da Índia,

    é uma planta de clima quente, não tolera o frio, e pode ser colhida de duas a três

    vezes durante um ano (EMBRAPA, 2006, s. p.; MEDEIROS, 2016).

    O óleo de algodão é uma das mais significativas culturas de oleaginosas no

    Brasil (BIODIESELBR, 2018). Dessa planta pode ser aproveitado em média 100%,

    pode se extrair fibras que são aplicadas na indústria têxtil, a semente que pode ser

    utilizada na indústria alimentícia, destinada a produção de óleo vegetal, produção

    de biodiesel e óleos lubrificantes, e na indústria de cosméticos, por ser uma ótima

    produtora de proteínas para preparo de rações de animais (SANCHES;

    MALERBO-SOUZA, 2004). O algodão tem subprodutos que são o línter, com 60%

    do óleo, a casca e a amêndoa (EMBRAPA, 2006).

    As sementes de algodão são excelentes fontes de óleo, proteínas e

    apresentam qualidade nos seus ácidos graxos e aminoácidos, com isso

    representam uma importante fonte alimentícia para o suplemento dietético

    deficiente em áreas pobres do mundo (GILHAM; FERREIRA; FREIRE, 1999). A

    maneira de obtenção do óleo de algodão é através do rompimento do tecido e das

    paredes das células, que assim diminui a distância do centro da semente até a

    sua superfície, facilitando a saída do óleo. A desintegração dos grãos podem

    ativar enzimas celulares, como a lipase e a peroxidase, que apresentam um efeito

    negativo na qualidade do óleo. O óleo bruto passa por três etapas para o refino,

    que são degomagem, neutralização e clarificação, e essa última etapa é muito

    importante devido a partir dela descobrir a estabilidade e qualidade do produto

    final (MORETTO; FETT, 1980). O óleo de algodão possui em maior quantidade o

    ácido Linoleico e Oleico, como ilustrado na Tabela 2.

  • 26

    Tabela 2: Composição em ácidos graxos do óleo de algodão.

    Ácidos Graxos Composição (% em peso)

    Ácido Láurico (C12:0) 0-0,2

    Ácido Mirístico (C14:0) 0,6–1,0

    Ácido Palmítico (C16:0) 21,4–26,4

    Ácido Esteárico (C18:0) 2,1–3,3

    Ácido Oleico (C18:1) 14,7-21,7

    Ácido Linoleico (C18:2) 46,7-58,2

    Ácido Linolênico (C18:3) 0-0,4

    Ácido Araquídico (C20:0) 0,2-0,5

    Fonte: GRIMALDI, 2017

    Como pode ser ilustrado na Figura 2, atualmente o óleo de algodão é a

    terceira matéria-prima mais utilizada para a produção de biodiesel, atrás apenas

    do óleo de soja e da gordura bovina.

  • 27

    Figura 2: Perfil Nacional de matérias-primas consumidas para a produção

    de biodiesel.

    Fonte: ANP, 2018.

    O óleo de algodão é bastante utilizado em nossa contemporaneidade

    devido apresentar um baixo valor comercial, por ser produzido em grande escala

    em diversas regiões do país, e principalmente na região nordeste, como ilustrado

    na Figura 3 e na Tabela 3.

  • 28

    Figura 3: Histórico do percentual das matérias-primas utilizadas para a

    produção de biodiesel na região nordeste.

    Fonte: ANP, 2018.

    Tabela 3: Percentual de matérias-primas utilizadas para produção de biodiesel por

    região em setembro de 2018.

    Região

    Matéria-Prima

    Norte Nordeste Centro-Oeste Sul Sudeste

    Óleo de Soja 60,87% 36,88% 78,78% 74,98% 26,94%

    Gordura Bovina 33,82% 26,00% 6,56% 12,95% 32,92%

    Óleo de algodão 0,86% 11,24% 1,67% 0,84% 1,77%

    Outros materiais

    graxos

    4,45% 11,48% 12,00% 9,20% 7,90%

    Óleo de

    Palma/Dendê

    - 14,20% 0,02% - -

    Óleo de milho - - 0,11% - 0,28%

    Fonte: ANP, 2018.

  • 29

    3.5 REAÇÃO DE TRANSESTERIFICAÇÃO

    Na literatura, existem quatro métodos utilizados para reduzir a elevada

    viscosidade de óleos vegetais que ocasionam problemas, como falhas nos

    sistemas de alimentação. Esses métodos são a pirólise, microemulsificação,

    misturas binárias com petrodiesel e transesterificação (KNOTHE et al., 2006;

    MONROV; GONZÁLEZ, 2014; CORSINI et al., 2015).

    A transesterificação é muito utilizada industrialmente que consiste

    basicamente na reação de triglicerídeos com um álcool de cadeia curta na

    presença de um catalisador à uma temperatura que seja inferior ao ponto de

    ebulição do álcool, produzindo assim alquil ésteres de ácidos graxos (biodiesel) e

    o glicerol como subproduto (BORGES; DIAZ, 2012; CERCADO; BALLESTEROS;

    CAPAREDA, 2018; CASTRO, 2017). A reação pode ser esquematizada na Figura

    4.

    Figura 4: Equação química da reação de transesterificação.

    Fonte: BORGES e DIAZ, 2012.

    Para que a reação de transesterificação possa ocorrer de maneira

    satisfatória é necessário o controle de algumas condições reacionais, como o tipo

    de álcool, razão molar óleo:álcool, tipo e quantidade de catalisador, e tempo

    reacional.

  • 30

    Na reação pode ser utilizado vários tipos de álcool como o metanol, etanol,

    propanol, butanol e isopropanol, porém o metanol é mais utilizado pelo baixo

    custo, alta polaridade e ter alta reatividade, gerando assim um maior rendimento

    da reação (MUSA, 2016; CASTRO, 2017).

    Tecnologias estão sendo incorporadas à reação afim da diminuição do

    tempo reacional e também, o aumento do rendimento do produto final (PRAGYA;

    PANDEY; SAHOO, 2013). A reação de transesterificação exige um maior tempo

    reacional se não houver a presença de um catalisador e o processo não é

    reversível. Os catalisadores utilizados na reação podem ser classificados como

    homogêneos e heterogêneos. Catalisadores homogêneos são muito utilizados

    devido gerar uma alta conversão em ésteres, porém, apresentam desvantagens

    que impulsionaram os estudos à cerca da semelhança de conversão com

    catalisadores heterogêneos que podem ser recuperados e reutilizados

    (EVANGELISTA et al., 2016).

    3.6 CATALISADORES

    Os catalisadores são utilizados com a principal finalidade de aumentar a

    velocidade, sem serem consumidos durante a reação, diminuindo o tempo

    reacional e a energia de ativação. A reação de transesterificação através da

    catálise homogênea básica é caracterizada pela utilização de alcóxidos,

    hidróxidos, metais alcalinos e carbonatos. Os catalisadores homogêneos alcalinos

    possuem um alto rendimento, e os triglicerídeos e o álcool precisam ser anidros,

    para que não haja reações indesejáveis no processo, como a saponificação

    (LORA; VENTURINI, 2012; SANTOS, 2016). A reação de transesterificação por

    via básica pode formar emulsões, pela presença de ácidos graxos livres e água

    que reagindo com o catalisador básico formam o sabão e essa ação emulsificante

    dificulta a recuperação do biodiesel formado na reação (EVANGELISTA, 2011;

    LORA; VENTURINI, 2012).

    Apesar dos catalisadores básicos homogêneos possuirem apresentarem

    melhores teores de conversões, a utilização de catalisadores heterogêneos vem

  • 31

    sendo alvo de estudos por apresentarem a característica de serem recuperados e

    reutilizados. Os catalisadores heterogêneos são formados de um suporte e uma

    fase ativa, e esse suporte têm a função de impedir que o catalisador seja

    transferido para a fase líquida da reação, e isso facilita a recuperação após a

    reação de transesterificação (SANTOS, 2016).

    As principais vantagens dos catalisadores heterogêneos são relacionadas a

    facilidade de separação em produtos líquidos, utilização de uma menor quantidade

    de água de lavagem, possuírem menos problemas na eliminação, seletividade,

    tempo de vida, e não serem corrosivos (BORGES; DIAS, 2012).

    Os catalisadores para a produção de biodiesel mais estudados são os que

    apresentam sítios ácidos ou básicos de Lewis, que se relacionam com a natureza

    dos óxidos e grau de hidratação superficial. Para reações de transesterificação,

    são mais eficazes catalisadores com presença de sítios básicos (YAN et al. ,2009;

    SILVA et al., 2015). A utilização do catalisador heterogêneo de KI/Zeólita natural

    na produção de biodiesel por rota metílica apresentou um rendimento de até

    98,96% de conversão (CASTRO, 2017).

    3.7 ÓXIDO BI METÁLICO APLICADOS A PRODUÇÃO DE BIODIESEL

    A utilização de óxidos metálicos vem sendo aplicado como catalisador em

    reação de transesterificação para obtenção de biodiesel por não formar emulsões

    e ter altas conversões em um tempo de reação menor, além de poder ser

    reutilizados (ABREU, 2004).

    A principal vantagem de usar o óxido de cálcio está relacionado a vantagem

    de ter resultados positivos de sua atividade catalítica, e ainda possuir uma vida útil

    maior se comparado com outros catalisadores, podendo ter 20 ciclos com bons

    rendimentos após as conversões, e ainda apresentar sítios ativos básicos fortes

    (LIU et al.,2008; SILVA, 2017).

    Para obter um catalisador de melhor qualidade podemos obter óxido misto

    que faz com que os íons de um óxido sejam substituídos por íons do outro óxido,

  • 32

    para melhorar a atividade catalítica e aumento da habilidade de anti-lixiviação

    (SILVA, 2017).

    Alguns pesquisadores já vêm testando alguns óxidos mistos em reações de

    transesterificação para obtenção de biodiesel, como pode ser ilustrado na Tabela

    4.

    Tabela 4: Exemplos de utilização de catalisadores mistos na reação de

    transesterificação.

    Catalisador

    (Óxidos

    mistos)

    Materia-Prima Condições

    Reacionais

    (Tempo

    reacional,

    temperatura,

    Razão

    álcool:óleo)

    % de

    conversão

    Referência

    TiO2–ZnO Oleo de Palma 5 h, 60ºC, 6:1

    (metanol)

    92,2 Madhuvilakkue e

    Piraman (2013).

    CaO-CeO2 Óleo de Soja 10 h, 64ºC, 20:1

    (metanol)

    85,8 Fernandes,

    Oliveira, Martins,

    Cardoso, Reis

    (2015); Lima

    (2006).

    Ca:Zn:K Óleo de Soja 6 h, 60ºC, 10:1

    (metanol)

    87,8 Araújo, Santos e

    Cestari (2013).

    MgAl0,5Ox Óleo de Soja 5 h, 78,5ºC, 30:1

    (etanol)

    35 Pilar, Biaggio e

    Cortez (2008).

    Fonte: Próprio autor

  • 33

    4. METODOLOGIA

    Nessa sessão foi abordado a síntese e caracterização do catalisador

    (Ca/Nb) e o teste catalítico na reação de transesterificação do óleo de algodão.

    4.1 SÍNTESE DO CATALISADOR BIMETÁLICO

    O catalisador bimetálico foi sintetizado a partir do Ca(OH)2 e o Nb2O5

    através do método de impregnação por via úmida. Inicialmente 18,353 g do

    Ca(OH)2 foram diluídos em 200 mL de H2O sob agitação magnética por 30 min,

    na temperatura ambiente. Em seguida, foi adicionado 32,517g do Nb2O5 na

    solução e a mesma ficou sob agitação por 5 horas. Após este tempo, a solução

    foi colocada na estufa a uma temperatura de 110°C por 12 h com a finalidade de

    remover a água presente na amostra. O sólido resultante foi macerado e

    seguidamente foi colocado na mufla por 7 h a uma temperatura de 600º C, com a

    finalidade de produzir os óxidos bi metálicos, e a formação dos sítios ativos.

    Na Figura 5 pode ser visualizado o esquema referente a síntese do catalisador.

  • 34

    Figura 5: Etapas de síntese do catalisador (CaO/Nb2O5): (a) Secagem, (b)

    pulverização e (c) calcinação.

    (a) (b)

    (c)

    Fonte: Próprio autor, 2018.

  • 35

    Figura 6: Fluxograma da síntese do catalisador (CaO/Nb2O5).

    FONTE: Próprio autor, 2018.

    4.2 CARACTERIZAÇÃO DO CATALISADOR

    O catalisador foi caracterizado por técnicas complementares, como:

    difração de Raios X (DRX), espectroscopia de infravermelho por transformada de

    Fourier (FTIR), microscopia eletrônica de varredura (MEV) e análise

    termogravimétrica (TG/DTG).

  • 36

    4.2.1 DIFRAÇÃO DE RAIOS-X (DRX)

    A difração de raios-X é uma técnica de análise estrutural e micro estrutural

    com a finalidade de identificar o tipos de estrutura cristalina de materiais e estimar

    seu parâmetro de rede. Os difratogramas de raios x dos materiais foram obtidos

    em um equipamento Bruker D2Phaser com um detector Lynxeye, utilizando

    radiação de cobre de λ=1,54Å, filtro de níquel, voltagem de 30 kV e corrente de

    tudo de 10mA. Todos os dados foram coletados na faixa de 2θ de 10-80º, fenda

    divergente de 0,6mm, fenda central de 1 mm, tempo de aquisição de 0,1 segundos

    e um passo de 0,02 graus.

    4.2.2 INFRAVERMELHO POR TRANSFORMADA DE FOURIER (FTIR)

    A espectroscopia de infravermelho por transformada de Fourier é

    considerada uma das principais técnicas para identificação de grupos funcionais

    de substâncias orgânicas, ligações presentes em amostras e vibrações

    moleculares, gerando picos característicos de cada substância (FORATO et al.,

    2010). Para a análise da amostra foi utilizado o espectrofotômetro de

    infravermelho com transformada de Fourier de IRAffinity-1, da empresa Shimadzu.

    4.2.3 MICROSCOPIA ELETRÔNICA DE VARREDURA (MEV)

    O MEV é instrumento muito versátil utilizado para a análise microestrutural

    de materiais sólidos, apresentando imagens com aparência tridimensional e a

    possibilidade de combinar a análise microestrutural com a microanálise química.

    Esta análise foi realizada no equipamento MEV-FEG, da empresa Zeiss, de

    modelo Auriga, e o EDS da empresa BRUKER, de modelo XFlas Detector 410M,

    com aproximações de 5000 a 30000 vezes para melhor visualização.

    4.2.4 ANÁLISE TERMOGRAVIMÉTRICA (TGA/DTG)

    As análises termogravimétricas (TGA/DTG) são análises térmicas que

    relacionam a variação da massa da amostra com o aumento da temperatura em

    função do tempo, e essa variação é a perca de massa (RUIS et al., 2014). A

    análise foi realizada em um equipamento analisador termogravimétrico de modelo

    TG209F1 Libra, do fabricante NETZSCH. Todos os ensaios foram realizados em

  • 37

    um cadinho de alumina, sob fluxo de na vazão de 20mL/min, com razão de

    aquecimento de 10ºC/min e variação de temperatura de 25-600 ºC.

    4.3 RECUPERAÇÃO DO CATALISADOR SINTETIZADO

    A recuperação do catalisador heterogêneo obtido foi realizada com a

    retirada da mistura de catalisador e óleo presente no papel filtro após a reação

    de transesterificação presente no funil simples, como pode ser ilustrado na

    Figura 7.

    Figura 7: Remoção do catalisador e óleo.

    Fonte: Próprio Autor, 2018.

    Após isso, a mistura foi calcinado na temperatura de 600°C, sob fluxo de

    oxigênio, durante 5 horas.

    4.4 REAÇÃO DE TRANSESTERIFICAÇÃO

    A reação de transesterificação foi realizada por rota metílica com o

    catalisador de CaO/Nb2O5 e óleo de algodão comercial sob agitação em um balão

    de 500 mL de fundo chato conectado a um condensador com sistema de refluxo,

    exemplificado na Figura 8, para que haja uma menor perca possível de material

  • 38

    com o aumento da temperatura. As condições reacionais escolhidas para os

    biodieseis sintetizados foram de 10 % de catalisador, razão óleo:metanol de 1:15,

    em um tempo reacional de 5 h, com a variação de temperatura de 60 °C, 90 °C e

    120 °C de modo a se obter um maior rendimento reacional, e todas essas

    condições podem ser ilustradas na Tabela 5.

    Tabela 5 – Condições reacionais para a reação de transesterificação.

    Experimento % Catalisador Óleo/Metanol Temperatura Tempo

    Biodiesel 1 10 1:15 60° C 5 h

    Biodiesel 2 10 1:15 90° C 5 h

    Biodiesel 3 10 1:15 120° C 5 h

    Fonte: Próprio autor, 2018.

    Figura 8: Sistema de refluxo utilizado na reação de transesterificação do óleo de

    algodão.

    Fonte: Próprio autor, 2018.

  • 39

    Na síntese do biodiesel na temperatura de 120 °C foi utilizado o banho de

    areia para o aquecimento da reação, com a finalidade de uniformizar o

    aquecimento das paredes do recipiente, como ilustrado na Figura 9.

    Figura 9: Sistema de refluxo com o banho de areia para o aquecimento

    uniforme durante reação de transesterificação do óleo de algodão.

    Fonte: Próprio autor, 2018.

    Logo após o término do tempo reacional, a mistura foi resfriada lentamente

    à temperatura ambiente, e o catalisador foi separado por filtração simples. Afim de

    haver uma separação mais efetiva do catalisador em relação à mistura reacional,

    visto que a presença do catalisador não é desejável. Após a filtração, a amostra foi

    colocada em um funil de separação com a finalidade de separar as fases. Na fase

    superior há a presença da mistura de catalisador e metanol, e na parte inferior, há

    a presença do biodiesel, como ilustrado na Figura 10.

  • 40

    Figura 10: Funil de separação pós-filtração.

    Fonte: Próprio autor, 2018.

    O biodiesel fica na parte inferior devido sua densidade ser maior, se

    comparado a fase da glicerina e etanol. Após a retirada da glicerina, o biodiesel foi

    purificado através de lavagens com água destilada levemente aquecida afim de se

    retirar alguma possível presença do catalisador, e esse esquema pode ser

    ilustrado na Figura 11.

  • 41

    Figura 11: Etapa de purificação biodiesel com água levemente aquecida.

    Fonte: Próprio autor, 2018.

    Logo em seguida, o biodiesel foi colocado na estufa a 100ºC por 12 horas,

    com a finalidade de remover a umidade do mesmo e após isso, foi analisado por

    termogravimetria afim de descobrir o teor de ésteres metílicos. O fluxograma de

    todo o processo de obtenção do biodiesel pode ser ilustrado na Figura 12.

  • 42

    Figura 12: Fluxograma da síntese do biodiesel do óleo algodão.

    FONTE: Próprio autor, 2018.

  • 43

    4.5 CARACTERIZAÇÃO DOS ÓLEOS E BIODIESEIS

    4.5.1 ANÁLISE TERMOGRAVIMETRICA (TGA/DTG)

    O biodiesel obtido foi analisado por análise termogravimétrica, com a

    finalidade de determinar a conversão de triglicerídeos em ésteres metílicos.

    Primeiramente, pesou-se 6 mg de amostra em um cadinho de Alumina, na

    velocidade de aquecimento 10°C/min, sob fluxo de nitrogênio de 20 mL/min e na

    rampa de temperatura de 25 °C até 600 °C.

    4.5.2 ESPECTROSCOPIA DE INFRAVERMELHO COM TRANSFORMADA DE

    FOURIER (FTIR)

    As análises dos biodieseis foram feitas em um espectrofotômetro de

    infravermelho com transformada de Fourier (FTIR) de modelo IRAffinity-1, da

    empresa Shimadzu, afim de se observar bandas de absorção referentes aos

    ácidos graxos e os ésteres. Os espectros de infravermelho obtidos estão em

    transmitância variando o comprimento de onda entre 4000 cm-1 a 700 cm-1.

    4.5.3 ÍNDICE DE ACIDEZ

    O índice de acidez é definido como número de miligramas de NaOH que

    geram a neutralização dos ácidos graxos em 1 grama de óleo ou gordura

    (CORREA, 2014). O índice de acidez foi realizado conforme a norma ASTM

    D664. Foram adicionados a um Erlenmeyer, 25 mL de solução (2:1) de éter e

    álcool etílico com mais 3 gotas de fenolftaleína, que foi o indicador utilizado. Em

    uma bureta foi colocada uma solução de NaOH 0,1N e foi realizada a titulação do

    branco, logo após, foram pesados 2 gramas de cada amostra e prosseguiu-se

    com a titulação. Para a realização do cálculo do índice de acidez, os dados

    obtidos foram substituídos na Equação 1.

    IA = [ (VA – VB) x Ct x 5,61] / m (Equação 1)

  • 44

    Onde: IA = Índice de Acidez; VA = Volume (mL) da Solução de NaOH a

    0,1N gasto na titulação da amostra; VB = Volume (mL) da solução de NaOH gasto

    na titulação da solução solvente (branco); Ct = Concentração (N) da solução de

    NaOH obtida na padronização e m = massa (g) da amostra.

    4.5.4 VISCOSIDADE E DENSIDADE

    As propriedades físico-químicas dos combustíveis, como densidade e

    viscosidade podem afetar o desempenho de motores (ALBUQUERQUE et al.,

    2009). A análise de viscosidade e densidade foram feitas simultaneamente por um

    viscosímetro SVM 3000 conforme as metodologias ASTM D445 para a

    viscosidade e ASTM D4052 para densidade. A análise foi feita com 5 mL da

    amostra no equipamento, e foram preenchidas duas células, para que

    respectivamente uma seja feita a análise de viscosidade a 40ºC, e a outra para

    densidade a 20ºC. A medição da viscosidade foi realizada em uma célula com um

    par de cilindros concêntricos em rotação e a medição da densidade ocorre em um

    tubo oscilador com formato U.

    4.5.5 RESSONÂNCIA MAGNÉTICA NUCLEAR (RMN)

    A ressonância magnética nuclear é um método espectroscópico utilizado

    para determinação da estrutura dos compostos, através da aplicação de um

    campo eletromagnético nos núcleos dos átomos. É uma ferramenta muito

    importante para a química orgânica, devido haver estudos de muitos núcleos, e

    principalmente do hidrogênio e carbono que são comumente utilizados.

    Diferentemente da espectroscopia de infravermelho, a Ressonância Magnética

    Nuclear (RMN) nos informa a cerca do número de átomos magneticamente

    distintos. A combinação de dados de infravermelho e RMN é suficiente para a

    determinação completa da estrutura da molécula desconhecida (PAVIA et al.,

    2001).

    Os espectros de Ressonância Magnética Nuclear de Hidrogênio (RMN 1H)

    e Carbono-13 (RMN 13C) uni e bidimensionais, foram obtidos em espectrômetro

    Bruker, modelo Avance III 300 MHz, no laboratório de Ressonância Magnética

  • 45

    Nuclear da Universidade Federal do Rio Grande do Norte, que opera nas

    frequências de 300,13 e 75,47 MHz RMN para hidrogênio (1H) e carbono (13C),

    respectivamente. As amostras a serem analisadas foram dissolvidas em alíquotas

    de 0,5 mL de clorofórmio (CDCl3) deuterado, comercializado pela Cambridge

    Isotope Laboratories.

    Os deslocamentos químicos (δ) foram expressos em partes por milhão

    (ppm) e referenciados. Desta forma, os espectros de Hidrogênio (1H) foram

    referenciados pelo pico do TetraMetilSilano (TMS). As multiplicidades dos sinais

    de hidrogênio nos espectros de RMN 1H foram indicadas segundo a convenção:

    simpleto (s), dupleto (d), duplo dupleto (dd), tripleto (t), quarteto (q) e multipleto

    (m).

  • 46

    5. RESULTADOS E DISCUSSÃO

    5.1 CARACTERIZAÇÃO DO CATALISADOR

    5.1.1 DIFRAÇÃO DE RAIOS-X (DRX)

    O difratograma de raios-x ilustrado na Figura 13, nos permite a identificação

    da estrutura do catalisador CaO/Nb2O5 e a partir disso, observou-se picos

    característicos dos óxidos bimetálicos.

    Figura 13: Difratograma de Raios-X do catalisador CaO/ Nb2O5.

    Observou-se os picos característicos em 2θ presente em 23º e 50º,

    referentes a formação do óxido de nióbio. O pico em 2θ = 30º é característico do

    óxido binário (CaNb2O6), que é uma mistura de óxidos.

  • 47

    5.1.2 ESPECTROSCOPIA DE INFRAVERMELHO COM TRANSFORMADA DE

    FOURIER (FTIR)

    Através da análise do espectro de infravermelho podemos obter

    informações importantes a respeito dos principais grupos funcionais existentes,

    como pode ser ilustrado na Figura 14.

    Figura 14: Espectro de Infravermelho do catalisador CaO/ Nb2O5.

    Através da Figura 14 pode ser observado a presença de uma banda em

    3639 cm-1 é referente aos grupos OH ligados ao CaO, e também pela saída de

    água. A banda intensa em 1454 cm-1 é referente as vibrações do carbonato (LI, et

    al., 2016; WONG et al., 2014). A banda em 873 cm-1 se refere ao NbO6 octaédrico

    altamente distorcido com a presença de uma ligação Nb=O (PAULIS et al. 1999).

    A presença de uma forte e larga banda próximo a 600 cm-1 pode ser devido a

    formação do óxido de nióbio.

  • 48

    5.1.3 TERMOGRAVIMETRIA (TGA/DTG)

    As análises termogravimétricas (TGA/DTG) foram realizadas com o objetivo

    de observar a decomposição do CaO/Nb2O5. A Figura 15 ilustra as curvas de TGA

    e DTG do catalisador CaO/Nb2O5.

    Figura 15: Curvas de TGA e DTG do catalisador CaO/Nb2O5.

    A partir desta análise, observou-se a degradação de massa com o aumento

    da temperatura. A curva de TGA nos mostra que até 160ºC ocorreu a primeira

    perda de massa que pode estar relacionada à água da superfície do catalisador, e

    na curva da DTG há a presença de um uma segunda perda de massa com um

    pico variando de 330 – 450ºC, que representa a saída do -OH para que haja a

    formação do CaO. A terceira perda de massa é em 430 – 780ºC que se refere a

    decomposição do Ca(OH)2.

  • 49

    5.1.4 MICROSCOPIA ELETRÔNICA DE VARREDURA (MEV)

    Através da análise de microscopia eletrônica de varredura, pode ser

    visualizado as estruturas tridimensionais do material. As micrografias do MEV-

    EDS podem ser destacadas na Figura 16. Através do MEV podemos obter

    imagens nítidas da morfologia da estrutura do material, e o EDS permite

    identificação.

    Figura 16: Microscopia Eletrônica de Varredura do CaO/Nb2O5 (a) 5.000x (b)

    10000x (c) 30000x

    (a)5000x

  • 50

    (b) 10000x

    (c) 30000x

  • 51

    Através do MEV-EDS, foi possível observar da cristalinidade do óxido de

    nióbio, que apresenta uma forma bem definida. A partir do EDS, que é uma

    ferramenta com grande importância na distribuição espacial de elementos

    químicos, podemos quantificar todos os elementos que estão presentes na

    amostra, como ilustrado na Tabela 6.

    Tabela 6: EDS do catalisador Ca/Nb2O5.

    ELEMENTO % PESO % PESO % ATÔMICO

    O 27.43 34.73 65.26

    Nb 26.34 33.35 10.79

    Ca 25.21 31.92 23.95

    Através do EDS foi possível ver a quantificação de cada elemento químico

    presente no catalisador, apresentando em maior quantidade de % atômico de

    65.26 o oxigênio, seguido do cálcio com 23.95.

    5.2 RECUPERAÇÃO DO CATALISADOR SINTETIZADO

    5.2.1 DIFRAÇÃO DE RAIOS-X (DRX) DO CATALISADOR RECUPERADO

    Após ser feita a recuperação, o catalisador foi caracterizado por difração de

    raios-x para verificar a presença de picos característicos do óxido cálcio e do óxido

    nióbio. No pico maior, em 2θ=30°, observou-se a presença do óxido binário, como

    pode ser ilustrado no difratograma de Raios-x presente na Figura 17.

  • 52

    Figura 17: Difratograma de raios-x do catalisador CaO/ Nb2O5 recuperado.

    5.3 CARACTERIZAÇÃO DO ÓLEO E DOS BIODIESEIS

    5.3.1 TERMOGRAVIMETRIA (TGA/DTG)

    As análises termogravimétricas (TG/DTG) foram realizadas com o objetivo

    de avaliar a reação de transesterificação através da diferença na temperatura de

    volatilização dos triglicerídeos e ésteres (SILVA et al., 2015). Através dessa

    análise foi possível obter o rendimento da reação, e assim determinar o teor de

    ésteres presentes. A Figura 18 e Figura 19 demonstraram as curvas TGA/DTG da

    amostra de óleo e dos biodieseis de algodão.

  • 53

    Figura 18: Curvas de TGA dos biodieseis de algodão e do o óleo.

    Figura 19: Curvas de DTG dos biodieseis de algodão e do o óleo.

  • 54

    Na Tabela 7 estão apresentados o intervalo de temperatura, a perda de

    massa e a massa residual para as etapas de perda de massa do óleo de algodão

    e os seus biodieseis.

    Tabela 7: Dados termogravimétricos do óleo de algodão e dos biodieseis.

    Amostra Eventos Intervalo de

    Temperatura

    (º C)

    Perda de

    Massa (%)

    Massa

    Residual (%)

    Óleo de Algodão 1 300-470 99,4 0,6

    Biodiesel 1 1

    2

    175-285

    285-470

    8,94

    90,14

    0,92

    Biodiesel 2 1

    2

    178-297

    297-470

    9,83

    88,65

    1,52

    Biodiesel 3 1

    2

    155-300

    300-470

    29,11

    69,34

    1,55

    Pode ser observado que o óleo de algodão apresentou apenas um evento

    de perda de massa de 99,4% e uma temperatura inicial de 300ºC que está

    relacionado a decomposição dos triglicerídeos (GONDIM, 2009).

    Os biodieseis de algodão apresentaram dois eventos de perda de massa.

    Para as curvas de TGA/DTG dos biodieseis que houve uma perda de massa entre

    155 – 330ºC mostrando a degradação dos ésteres metílicos, referente a

    conversão do biodiesel. A perda de massa entre 285º - 470ºC é referente aos

    triglicerídeos do óleo de algodão que não foram convertidos (RUIS et al., 2014).

    Diante dos valores de massa residual, o biodiesel 3 foi o que apresentou o

    maior valor, cerca de 1,55%, o que mostra os ácidos graxos livres existentes

  • 55

    (SANTOS, 2010). Comparando os três resultados das amostras de biodiesel,

    como ilustrado na Figura 20, o biodiesel 3 apresentou uma maior conversão, por

    apresentam um maior valor de perda de massa na faixa de 155-300 °C, referentes

    aos ésteres metílicos (CASTRO, 2017).

    Figura 20: Gráfico de rendimento dos biodieseis de algodão nas condições

    especificadas (Razão metanol:óleo 15:1; 10%, 5h) variando as temperaturas em

    60 ºC, 90 ºC e 120 ºC.

    Variar as proporções molares e determinar o tempo de reação são variáveis

    muito importantes para obtenção de bons rendimentos, mas em ambos os

    biodieseis produzidos, foram utilizados o mesmo tempo e a mesma proporção

    molar, e apenas variando a temperatura. A partir desse resultado foi determinado

    a melhor condição reacional para a reação de transesterificação, que foi a 10% de

    catalisador, com uma razão molar metanol:óleo 15:1, a uma temperatura de 120ºC

    durante 5 horas. A temperatura exerce um efeito muito significativo na reação de

    transesterificação, pode influenciar na catálise heterogênea (LUKIć et al., 2013).

    5.3.2 ESPECTROSCOPIA DE INFRAVERMELHO COM TRANSFORMADA DE

    FOURIER (FTIR)

    Por meio da interpretação dos espectros, podemos verificar as bandas de

    absorção referentes aos grupos funcionais que auxiliaram na identificação das

  • 56

    amostras de óleo de algodão e dos biodieseis. A Figura 21 ilustra os espectros de

    FTIR do óleo de algodão comparado com os biodieseis obtidos.

    Figura 21: Espectros de FTIR do óleo de algodão; Biodiesel 1 (Bio 1); Biodiesel 2

    (Bio 2); Biodiesel 3 (Bio 3).

    Os espectros do óleo e dos biodieseis de algodão foram semelhantes

    devido os ésteres e os triglicerídeos apresentarem estruturas similares (GONDIM,

    2009). De acordo com a Figura 21, há bandas de absorção entre 3010 cm-1 e 2855

    cm-1, que estão presentes no óleo de algodão e nos biodieseis, e essas bandas

    podem estar relacionadas ao estiramento assimétrico de grupos como o CH2 e

    CH3, e entre 1734 cm-1 e 1744 cm-1 existem bandas de absorção que referentes ao

    grupo carbonila (C=O) (SANTOS, 2016; SKOOG et al., 2002; WEMBABAZI et al,

    2015).

  • 57

    As absorções entre 1000 cm-1 e 1600 cm-1 ilustram o processo de

    transesterificação, e em 1380 cm-1 e 1180 cm-1 foram referentes a deformação O-

    CH2, O-CH3. As absorções em 1435 cm-1 é referente a deformação angular do CH3

    (BATISTA, 2016; SKOOG et al., 2002).

    As bandas existentes na região próxima de 3423 cm-1 são referentes as

    ligações O-H presentes na água ou álcool, o que indica que não houve remoção

    total do álcool, ou que não houve uma secagem efetiva para retirada da água

    (CASTRO, 2017; FOCKE et al., 2012).

    Tabela 8: Atribuição de grupamentos funcionais através das bandas de

    absorção e do número de onda.

    Posição (Número de Onda, cm-1) Atribuição

    3010 – 2855 Estiramento assimétrico CH2 e CH3

    1734 Carbonila (C=O)

    1380 – 1180 Deformação O-CH2 e O-CH3

    1435 Deformação angular do CH3

    3423 O-H

    Fonte: Próprio Autor, 2018.

    5.3.3 ÍNDICE DE ACIDEZ

    Na Tabela 9 são ilustrados os valores do índice de acidez dos biodieseis

    obtidos, e estão conforme as normas da ANP, de 0,5 mg KOH/g (Resolução ANP

    Nº 45 de 25/08/2014).

    Tabela 9: Índice de acidez do óleo de algodão e dos biodieseis.

    Amostras Índice de Acidez

    Óleo de Algodão 0,05

    Biodiesel 1 0,08

    Biodiesel 2 0,11

    Biodiesel 3 0,16

  • 58

    Através dos valores obtidos, observou-se que o valor de índice de acidez

    dos biodieseis não apresentaram os valores conforme os padrões das normas da

    ANP. Uma vez que os valores foram superiores ao do óleo vegetal, e isso pode

    ser explicado pelo fato de o biodiesel ser degradado facilmente em contato com a

    luz e a oxidação (PULLEN e SAEED, 2012).

    5.3.4 VISCOSIDADE E DENSIDADE

    A viscosidade e a densidade são propriedades muito importantes para se

    determinar a qualidade dos combustíveis. Os testes foram interpretados segundo

    os valores especificados pelas normas da ANP 45/2014, que ilustram que o valor

    limite para viscosidade cinemática é de 3,0 a 6,0 mm2/s, enquanto que a

    densidade é de 850 a 900 Kg/m3. O resultado dos testes de viscosidade e

    densidade, foram evidenciados na Tabela 10.

    Tabela 10: Valores de viscosidade e densidade do óleo de algodão e seus

    biodieseis.

    Amostras Viscosidade (mm2/s) Densidade (Kg/m3)

    Óleo de algodão 33,48 916,3

    Biodiesel 1 32,31 916,3

    Biodiesel 2 30,21 912,4

    Biodiesel 3 5,85 887,2

    Observou-se que os valores de viscosidade cinemática e densidade

    referentes aos biodieseis 2 e 3 apresentaram valores maiores do que o das

    especificações da ANP, indicando que esses combustíveis não apresentou a

    presença de ésteres significativos, podendo afetar a formação de depósitos no

    motor (GONDIM, 2009).

    Os valores de densidade superiores a 900Kg/m3 revelou que houve uma

    pequena conversão dos triglicerídeos em ésteres metílicos, e também haver uma

  • 59

    probabilidade de presença de água agregado ao combustível, o que causou essa

    alteração nos valores.

    O biodiesel 3 apresentou os valores de viscosidade e densidade inferiores,

    se comparados com o óleo de algodão, e esses valores estão dentro das

    especificações estabelecidas pela Resolução da ANP Nº 7/ 2008, o que comprova

    o resultado da análise termogravimétrica, por apresentar uma maior taxa de

    conversão em biodiesel se comparados aos demais biodieseis, e por haver a

    diminuição da cadeia após a reação, apresentando assim menores valores de

    viscosidade e densidade (GALVÃO et. al, 2011).

    5.3.5 RESSONÂNCIA MAGNÉTICA NUCLEAR

    Os espectros ilustrados na figura 22 e 23 são referentes a análise de

    hidrogênio e carbono no óleo de algodão comercial.

    Figura 22: Espectro de RMN 1H do óleo de algodão comercial.

  • 60

    Através do espectro de hidrogênio, observou-se um pico X em 7,25 ppm

    referente ao solvente utilizado, que foi o clorofórmio. O pico em 4,15 é referente ao

    grupo glicerol, e em 1,20 é referente ao grupo acil do triacilglicerol. Na Tabela 10,

    identificou-se os grupos funcionais presentes e os seus respectivos

    deslocamentos químicos.

    Tabela 11: Identificação dos grupos funcionais a partir do deslocamento químico.

    Posição dos hidrogênios Deslocamento Químico (ppm)

    Grupo Funcional

    A 5,30 HC=CH+CH-O B 4,15 - 4,30 CH2-O C 2,80 C=C-CH2-C=C D 2,35 CH2-C=O E 2,10 CH2-C=C F 1,65 CH2-C-C=O G 1,20 -CH2- H 0,85 CH3

    Ao se analisar o espectro de RMN 13C, pode ser notado picos em 18 e 35

    ppm referentes ao (-CH3), em 15 ppm relacionado ao grupo (-CH2) e um pico em

    175 ppm referente a ácidos carboxílicos, o que confirma a presença dos ácidos

    graxos presentes no óleo de algodão, conforme pode ser ilustrado na figura 23.

  • 61

    Figura 23: Espectro de RMN 13C do óleo de algodão comercial.

    Os espectros de RMN de 1H dos biodieseis produzidos podem ser

    ilustrados nas Figuras 24, 25 e 26. E ambos apresentaram picos característicos de

    ésteres metílicos, como podem ser ilustrados na Tabela 12.

  • 62

    Figura 24: Espectro de RMN 1H do biodiesel 1.

    Figura 25: Espectro de RMN 1H do biodiesel 2.

  • 63

    Figura 26: Espectro de RMN 1H do biodiesel 3.

    Tabela 12: Identificação dos grupos funcionais presentes no biodiesel 1, 2 e 3 a

    partir do deslocamento químico.

    Posição dos hidrogênios Deslocamento Químico (ppm)

    Grupo Funcional

    A 5,30 HC=CH B 3,6 CH3-O C 2,75 C=C-CH2-C=C D 2,35 CH2-C=O E 2,05 CH2-C=C F 1,65 CH2-C-C=O G 1,20 -CH2- H 0,85 CH3

    Ao se analisar o espectro de RMN de hidrogênio do biodiesel 3, pode ser

    notado que há um pico muito intenso com deslocamento químico em 3,6 ppm

    referente ao óleo transesterificado, dos grupos metóxi dos ésteres metílicos, e um

    pico em 2,30 referente ao α- carbono CH2 de todos os derivados de ácidos graxos

    (SILVERSTEIN, 2006). Essa análise nos mostrou que os demais resultados

    analisados, de que o biodiesel 3 foi o que apresentou o pico mais acentuado,

    referente a conversão dos ésteres metílicos.

  • 64

    Os espectros de RMN 13C referentes ao biodiesel 1, 2 e 3 são ilustrados

    nas Figuras 27, 28 e 29 a seguir.

    Figura 27: Espectro de RMN 13C do biodiesel 1.

    Figura 28: Espectro de RMN 13C do biodiesel 2.

  • 65

    Em ambos os espectros de RMN 13C nos mostram picos característicos da

    conversão do óleo de algodão em biodiesel, como em 174 ppm, referente aos

    ésteres, confirmando a conversão do biodiesel, e o pico em 48 ppm que é de

    álcool existente devido à baixa eficiência na lavagem do biodiesel. Os picos

    existentes entre 18-35 ppm são referentes ao clorofórmio, que foi o solvente

    utilizado.

    Figura 29: Espectro de RMN 13C do biodiesel 3.

    Na Figura 29 há uma inversão do pico referente aos ésteres metílicos se

    comparado com os picos dos espectros dos outros biodieseis. Essa inversão pode

    ser explicada devido ao pico do solvente, que está em 18-35 ppm também ter sido

    invertido no programa utilizado para configurar os espectros.

  • 66

    6. CONCLUSÃO

    O catalisador heterogêneo CaO/Nb2O5 foi sintetizado e caracterizado por

    técnicas analíticas (DRX, FTIR, TGA/DTG, MEV-EDS) na qual verificou-se a

    formação do catalisador e evidenciou a eficiência do método de impregnação por

    via úmida que foi utilizado.

    Foi feita a avaliação catalítica através da reação de transesterificação do

    óleo de algodão com a variação da temperatura e a caracterização dos biodieseis

    obtidos através das técnicas como Análises Termogravimétricas (TGA/DTG),

    Espectroscopia de Infravermelho por Transformada de Fourier (FTIR), Índice de

    Acidez, Viscosidade e Densidade e Ressonância Magnética Nuclear (RMN). .

    Através dos resultados obtidos do FTIR, pode ser observado absorções

    referentes ao processo de transesterificação, e bandas referentes as ligações O-H

    presente na água ou álcool, que comprova a baixa eficiência na lavagem e

    secagem do biodiesel.

    De acordo com os valores obtidos de viscosidade e densidade para as 3

    amostras de biodiesel, apenas o biodiesel 3 apresentou os valores dentro das

    especificações da ANP, comprovando a conversão do óleo, com baixo rendimento

    de 29,11%.

    Os valores do índice de acidez do óleo de algodão e dos 3 biodieseis não

    estão conforme os parâmetros da ANP.

    A técnica de RMN nos possibilitou confirmar a estrutura dos ésteres

    metílicos, e picos que comprovam a transesterificação do óleo.

    O biodiesel 3 apresentou melhores resultados de conversão e a partir disso,

    pode-se determinar a melhor condição reacional para a transesterificação (razão

    óleo:metanol 1:15, 10%, 120 °C e 5 h), sendo necessário mais estudos para

    utilização de outras condições para uma melhor conversão.

  • 67

    7. REFERÊNCIAS BIBLIOGRÁFICAS

    ABREU, F. R.; LIMA, D. G.; HAMÚ, E. H.; WOLF, C.; SUAREZ, P. A. Z.; Journal

    of Molecular Catalysis A: Chemical, v.209, p.29-33, 2004.

    AHLGREN, E.; HAGBERG, M.B.; GRAHN, M. Transport biofuels in global energy–economy modelling – a review of comprehensive energy systems assessment approaches. GCB Bioenergy v.9, p. 1168–1180, 2017. ALAMU, O.J.; WAHEED, M.A.; JEKAYINFA, S.O.O. Effect of ethanol–palm

    kernel oil ratio on alkali-catalyzed biodiesel yield. Fuel, [s.l.], v. 87, n. 8-9,

    p.1529-1533, jul. 2008.

    ALEGRIA, A.; ARRIBA, M. J. R.; CUELLAR, J.; Applied Catalysis B. 160, 743,

    2014.

    AL-ZUHAIR, S.; LING, F. W.; JUN, L. S.; Proposed kinetic mechanism of the

    production of biodiesel from palm oil using lipase. Process Biochemistry, [s.l.],

    v. 42, n. 6, p.951-960, jun. 2007.

    ANP. Agência Nacional de Petróleo, Gás Natural e Biocombustíveis.

    Disponível em: . Acesso em: 08 mar. 2018.

    ANUAR, M.R., ABDULLAH, A.Z. Challenges in biodiesel industry with regards

    to feedstock, environmental, social and sustainability issues: a critical

    review. Renewable And Sustainable Energy Reviews, v.58, p. 208-223,2016.

    ASIDHARAN, M.; KUMAR, R.. Transesterification over various zeolites under

    liquid-phase conditions. Journal Of Molecular Catalysis A: Chemical, [s.l.], v.

    210, n. 1-2, p.93-98, mar. 2004.

    BATISTA, A. C. M. Utilização da Análise Térmica para Avaliação da qualidade do Biodiesel. 2016. 62f. Trabalho de Conclusão de Curso – Universidade Federal do Rio Grande do Norte. BHARATHIRAJA, B.; CHAKRAVARTHY, M.; RANJITHKUMAR R.; YUVARAJ, D.;

    JAYAMUTHUNAGAI, J.; PRAVEENKUMAR R.; PALANI, S. Biodiesel production

    using chemical and biological methods – A review of process, catalyst, acyl

    acceptor, source and process variables. Renewable And Sustainable Energy

    Reviews, [s.l.], v. 38, p.368-382, out. 2014.

    BIODIESELBR - História e Biodiesel:

    https://www.biodieselbr.com/biodiesel/historia/biodiesel-historia.htm. Acesso em 7

    de Novembro de 2018.

    https://www.sciencedirect.com/science/article/pii/S1364032115016792https://www.sciencedirect.com/science/article/pii/S1364032115016792https://www.sciencedirect.com/science/article/pii/S1364032115016792

  • 68

    BIODIESELBR. Algodão. Disponível em:<

    https://www.biodieselbr.com/plantas/algodao/algodao.htm>. Acesso em 24 Out.

    2018.

    BORGES, M.E.; DÍAZ, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. A renewable and Sustanaible Energy Reviews, v. 16, n. 5, p 2840, 2012. BOZBAS, K. Biodiesel as an alternative motor fuel: Production and policies in

    the European Union. Renewable And Sustainable Energy Reviews, [s.l.], v. 12, n.

    2, p.542-552, fev. 2008.

    BULUT, U.; MURATOGLU, G. Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus. Energy Policy, [s.l.], v. 123, p.240-250, dez. 2018. CALLE, F.R.; PELKMANS,L.; WALTER, A. A Global overview of vegetable oils,

    with reference to biodiesel. IEA Bioenergy Task 40, 89p. 2009.

    CAMPOS, M. R. A produção de biodiesel e as contribuições da agroecologia e do cooperativismo agrícola. 2012. 41 f. Trabalho de Conclusão de Curso (Monografia). Curso de Geografia e Meio Ambiente, Universidade Presidente Antônio Carlos, Barbacena, Minas Geris, 2012. CAPRARIIS, B.; FILIPPIS, P. D.; PETRULLO, A.; SCARSELLA, M. Hydrothermal

    liquefaction of biomass: Influence of temperature and biomass composition

    on the bio-oil production. Fuel, v. 208, p. 618-625, 2017.

    CASTRO, K. S. Produção de biodiesel a partir do óleo de girassol através da

    transesterificação por rota metílica, utilizando KI/Zeólita Natural. 2017. 75f.

    Trabalho de Conclusão de Curso – Universidade Federal do Rio Grande do Norte,

    Natal.

    CERCADO, A. P.; BALLESTEROS, F.; CAPAREDA, S. Ultrasound assisted

    transesterification of microalgae using synthesized novel

    catalyst. Sustainable Environment Research, [s.l.], p.1-6, mar. 2018.

    CÉSAR, A. S.; ALMEIDA, F. A.; SOUZA, R. P.; SILVA, G. C.; ATABANI, A. E. The

    prospects of using Acrocomia aculeata (macaúba) a non-edible biodiesel 65

    feedstock in Brazil. Renewable and Sutainable Energy Reviews, v. 49, p. 1213-

    1220, 2015.

    CLEVERLAND, C.J.; KAUFMANN, R.K.; STERN, D.I. Aggregation and the role

    of energy in the economy. Ecological economics, v.32, p. 301-317, 2000.

    CORREA, M. Determinação do índice de acidez de um óleo. Disponível em: < http://www.ebah.com.br/content/ABAAAfbrEAA/determinacao -indice-acidez-oleo >. Acesso em 21 jun. 2014.

    https://www.sciencedirect.com/science/article/pii/S1364032112000834#!https://www.sciencedirect.com/science/article/pii/S1364032112000834#!

  • 69

    CORSINI, A.; MARCHEGIANI, A.; RISPOLI, F.; SCIULLI, F.; VENTURINI, P.

    Vegetable oils as fuels in Diesel engine. Engine performance and emissions.

    Energy Procedia, v. 81, p. 942-949, 2015.

    COSTA, R. C. Potential for producing bio-fuel in the Amazon deforested

    áreas. Biomass and Bioenergy, v.89, p. 416-424, 2016.

    DERMIBAS, A. Importance of biodiesel as transportation fuel. Energy

    Policy, v.35,p. 4661-4670,2007.

    DERMIBAS. Biodiesel processing and production. Fuel Processing Technology.v. 86, p.1097-1107, 2003.

    DMYTRYSHYN, S.l.; DALAI, A. K.; CHAUDHARI, S.T.; MISHRA, H.K.; REANEY,

    M. J. Synthesis and characterization of vegetable oil derived esters:

    evaluation for their diesel additive properties. Bioresource Technology, [s.l.], v.

    92, n. 1, p.55-64, mar. 2004.

    DOUGLAS, A.; SKOOG, F.; HOLLER, J.; TIMOTHY, A. N.; IGNEZ, C.

    (Tradutora); ISOLANI, P. C. (Tradutor); SANTOS, R.H.A. (Tradutor); FRANCISCO,

    R.H.P. (Tradutora). Copyright © 2002. 85-7307-976-2. Artmed Editora

    S.A.. Princípios de Análise Instrumental.

    . Acesso 07 jun. 2018.

    EHIMEN, E. A.; SUN, Z. F.; CARRINGTON, C.G. Variables affecting the in situ

    transesterification of microalgae lipids. Fuel, [s.l.], v. 89, n. 3, p.677-684, mar.

    2010.

    ELLABBAN, O.; ABU-RUB, H.; BLAABJERG, F. Renewable energy resources:

    current status, future prospects and their enabling technology. Renewable

    And Sustainable Energy Reviews, v. 39 ,p. 748-764, 2014.

    EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Disponível em: <

    https://www.embrapa.br/busca-de-noticias/-/noticia/2176654/cultivares-de-algodao-

    transgenico-estao-disponiveis-para-o-plantio-na-proxima-safra>. Acesso em: 20

    nov. 2018.

    EVANGELISTA, J. P. C.; GONDIM, A. D.; SOUZA, L. D.; ARAUJO, A. S. Alumina-

    supported potassium compounds as heterogeneous catalysts for biodiesel

    production: A review. Renewable and sustainable energy reviews, v. 59, p. 887-

    894, 2016.

    https://www.sciencedirect.com/science/article/pii/S0301421507001516https://www.sciencedirect.com/science/article/pii/S1364032114005656https://www.sciencedirect.com/science/article/pii/S1364032114005656

  • 70

    FAZAL, M.; HASEEB, A.; MASJUKI, H. Biodiesel feasibility study: an

    evaluation of material compatibility; performance; emission and engine

    durability. Renewable And Sustainable Energy Reviews, v.15, p. 1314-1324,

    2011.

    FERNANDES, R.; OLIVEIRA, C. R.; MARTINS, M. I.; CARDOSO, V. L.; REIS, M.

    H. M. PRODUÇÃO DE BIODISEL POR CATÁLISE HETEROGÊNEA USANDO

    ÓXIDO MISTO CaO-CeO2 COMO CATALISADOR. 2015.

    FOCKE, W. W.; WETHUIZEN, I. V. D.; GROBLER, A. B. L.; NSHORANE, K. T.;

    REDDY, J. K.; LUYT, A. S. The effect of synthetic antioxidantes on the

    oxidative stability of biodiesel. Fuel, v. 94, p. 227-233, 2012.

    FREIRE, R. M. M.; ALMEIDA, E. C.; FIGUEIREDO, S. M.; COSTA, J. N.;

    SANTOS, J. W. Caracterização química de genótipos de algodão herbáceo

    (Gossypium hirsutum L. r. latifolium H). In: CONGRESSO BRASILEIRO DE

    ALGODÃO, 2., Ribeirão Preto, 1999. Anais. Campina Grande: EMBRAPA-CNPA,

    1,999. p. 663-665.

    FRIEDLINGSTEIN, P.; ANDREW, R.M.; ROGELJ, J.; PETERS, G.P.; CANADELL,

    J.G.; KNUTTI, R.; LUDERER, G.; RAUPACH, M.R.; SCHAEFFER, M.; VAN D.P.;

    LE QUÉRÉ, C. Persistent growth of CO2 emissions and implications for

    reaching climate targets. Nature Geoscience, v.7,p. 709-715, 2014.

    FUKUDA, H.; KONDO, A.; NODA, H. Biodiesel fuel production by transesterification of oils, Journal of Bioscience and Bioengineering. V.92, 405–416, 2001. GALVÃO, L. P. F. C.; SANTOS, A. G. D.; GONDIM, A. D.; BARBOSA, M. N.;

    ARAUJO, A. S.; SOUZA, L. D.; JUNIOR, V. J. F. Comparative study of oxidative

    67 stability of sunflower and cotton biodiesel through P-DSC. Journal of

    thermal analysis and calorimetry, v. 106, p. 625-629, 2011.

    GONDIM, A. D. Avaliação da estabilidade térmica e oxidativa do biodiesel de

    algodão e do efeito da adição de antioxidantes (α-tocoferol e BHT). 2009.

    249f. Tese (Doutorado em Química) - Programa de Pós-Graduação em Química,

    Universidade Federal do Rio Grande do Norte, Natal.

    GRANADOS, M. L.; ALBA-RUBIO, A.C.; VILA, F.; ALONSO, D. M.; MARISCAL, R.

    Surface chemical promotion of Ca oxide catalysts in biodiesel production

    reaction by the addition of monoglycerides, diglycerides and

    glycerol. Journal Of Catalysis, [s.l.], v. 276, n. 2, p.229-236, 2010.

    https://www.sciencedirect.com/science/article/pii/S1364032110003448https://www.sciencedirect.com/science/article/pii/S1364032110003448https://www.sciencedirect.com/science/article/pii/S1364032110003448

  • 71

    GRIMALDI, R. “Óleo de Algodão – Composição e Refino”. Disponível em:

    https://www.editorastilo.com.br/oleo-de-algodao-composicao-e-refino/. Acesso:

    23/10/2018.

    HASAN, M.M.; RAHMAN, M.M. Performance and emission characteristics of

    biodiesel–diesel blend and environmental and economic impacts of biodiesel

    production: a review. Renewable And Sustainable Energy Reviews, v. 74,p. 938-

    948, 2017.

    HO, D.P.; NGO, H.H.; GUO, W. A mini review on renewable sources for biofuel. Bioresource Technology v.169, p.742–749, 2014. ISSARIYAKUL, T.; DALAI, A. K. Biodiesel from vegetable oils. Renewable And

    Sustainable Energy Reviews, v. 31, p. 446-471, 2014.

    JAIRAM, S.; KOLAR, P.; SHARMA-SHIVAPPA, R.; OSBOME, J. A.; DAVIS, J. P.

    KI-impregnated oyster shell